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1. Introduction 

 

Various external and internal sources generate vibration 

instabilities in buildings, such as the motorway traffic, 

existence of industrial equipment (for instance compressors, 

crushers, sieve shaker and dryer) or people walking inside 

the building. These vibrations also affect the performance of 

concrete foundations and therefore the vibrations may need 

to be reduced. Vibrations can be reduced by improving the 

properties of concrete slabs or by using new technologies, 

such as the use of piezoelectric materials. Concrete 

foundation can be modified by being mixed with nano 

material in order to increase its stiffness. In this subject, it 

can be mentioned a research on reducing building vibrations 

through foundation improvement by Persson et al. (2016). 

The vibration behavior of plates on elastic foundations 

has attracted considerable attention in recent years. Lam et 

al. (2000) used the Green‟s functions to obtain canonical 

exact solutions of elastic bending, buckling and vibration 

for Levy plates resting on two-parameter elastic 

foundations. Buczkowski and Torbacki (2001) presented a 

finite element method for the thick plates on two-parameter 

elastic foundation. By employing the Rayleigh-Ritz method, 

the three dimensional vibration of rectangular thick plates 

on elastic foundations was investigated by Zhou et al. 

(2004). The free vibrations of simply supported rectangular 

plates, resting on two different models of soils, were 

considered by De Rosa and Lippiello (2009). Ferreira et al. 

(2010) used the radial basis function collocation method to 

study static deformation and free vibration of plates on 
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Pasternak foundation. Nonlinear vibration analysis of 

laminated plates resting on nonlinear two-parameters elastic 

foundations was studied by Akgoz and Civalek (2011). 

Kumar and Lal (2012) studied the vibration analysis of 

nonhomogeneous orthotropic rectangular plates with 

bilinear thickness variation resting on Winkler foundation. 

Bahmyari and Khedmati (2013) considered the vibration 

analysis of nonhomogeneous moderately thick plates with 

point supports resting on Pasternak elastic foundation using 

element free Galerkin method. Vibrational analysis of 

advanced composite plates resting on elastic foundation was 

studied by Mantari et al. (2014). They derived the 

governing equations of a type of functionally graded plates 

resting on elastic foundation by employing the Hamilton‟s 

principal. An original first shear deformation theory to 

study advanced composites on elastic foundation was 

presented by Mantari and Granados (2016). Uğurlu (2016) 

analyzed the vibration of elastic bottom plates of fluid 

storage tanks resting on Pasternak foundation based on 

boundary element method. Bounouara et al. (2016) 

investigated a nonlocal zeroth-order shear deformation 

theory for free vibration of functionally graded nanoscale 

plates resting on elastic foundation. Also, a dimensionless 

parametric study for forced vibrations of foundation-soil 

systems was done by Chen et al. (2016a). A non-polynomial 

four variable refined plate theory for free vibration of 

functionally graded thick rectangular plates on elastic 

foundation was investigated by Meftah et al. (2017). 

None of the above researchers have considered piezo-

based nano-composite structures. Mechanical analysis of 

nanostructures has been reported by many researchers 

(Zemri et al. 2015, Larbi Chaht et al. 2015, Belkorissat et 

al. 2015, Ahouel et al. 2016, Bounouara et al. 2016, 

Bouafia et al. 2017, Besseghier et al. 2017, Bellifa et al. 

2017, Mouffoki et al. 2017, Khetir et al. 2017). In recent 
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years, theoretical and experimental studies have been 

conducted on nano-composites subjected to electric field. 

Static analysis of FG-CNT reinforced composite plate 

imbedded in piezoelectric layers with three cases of CNT 

distribution based on three-dimensional theory was 

discussed by Alibeigloo (2013). Piezo-based wireless sensor 

network for early-age concrete strength monitoring is 

planned by Chen et al. (2016b). Van Thu and Duc (2016) 

presented an analytical approach to investigate the non-

linear dynamic response and vibration of an imperfect 

three-phase laminated nanocomposite cylindrical panel 

resting on elastic foundations in thermal environments. 

Sasmal et al. (2017) investigated electrical conductivity and 

piezo-resistive characteristics of CNT and CNF 

incorporated cementitious nanocomposites under static and 

dynamic loading. In magneto-electro-elastic (MEE) 

composite materials a coupling between mechanical, 

electric and magnetic fields results in the ability to 

exchange energy among these three energy forms. These 

materials have direct application in sensors and actuators, 

damping and control of vibrations in structures. Xue et al. 

(2011) studied the large deflection of a rectangular MEE 

thin plate for the first time based on the classical plate 

theory. Li and Zhang (2014) investigated the free vibration 

of a MEE plate resting on a Pasternak foundation by using 

the Mindlin theory. Large amplitude free vibration of 

symmetrically laminated magneto-electro-elastic 

rectangular plates on Pasternak type foundation was 

investigated by Shooshtari and Razavi (2015). Ebrahimi et 

al. (2017) proposed a four-variable shear deformation 

refined plate theory for free vibration analysis of embedded 

smart plates made of porous magneto-electro-elastic 

functionally graded (MEE-FG) materials resting on elastic 

foundations. Duc et al. (2017a, b, c) studied thermal and 

mechanical stability of a functionally graded composite 

truncated conical shell, plates and double curved shallow 

shells reinforced by carbon nanotube fibers. Based on 

Reddy‟s third-order shear deformation plate theory, the 

nonlinear dynamic response and vibration of imperfect 

functionally graded carbon nanotube-reinforced composite 

plates was analyzed by Thanh et al. (2017). Duc et al. 

(2018) presented the first analytical approach to investigate 

the nonlinear dynamic response and vibration of imperfect 

rectangular nanocompsite multilayer organic solar cell 

subjected to mechanical loads using the classical plate 

theory. 

Furthermore, the mechanical behavior of concrete 

structures containing nanoparticles has been investigated 

experimentally by a number of researchers, but there is little 

mathematical control in this field. Nirmala and 

Dhanalakshmi (2015) studied the Influence of nano 

materials in the distressed retaining structure for crack 

filling. The influences of nanoparticles on dynamic strength 

of ultra-high performance concrete was tested by Su et al. 

(2016). Fathi et al. (2017) investigated the Mechanical and 

physical properties of expanded polystyrene structural 

concretes containing Micro-silica and Nano-silica. In the 

field of mathematical modeling of concrete structures, 

Jafarian Arani and Kolahchi (2016) studied the buckling 

analysis of concrete columns reinforced with carbon 

nanotubes by using Euler-Bernoulli and Timoshenko beam 

models. Zamanian et al. (2017) investigated the nonlinear 

buckling of a concrete column reinforced with SiO2 

nanoparticles. Also, Arbabi et al. (2017) explored the 

buckling of concrete columns reinforced with Zinc Oxide 

nanoparticles subjected to electric field. 

To the best of the authors‟ knowledge, the effects of 

using nano particles and piezoelectric layer on the vibration 

of concrete foundations have not been investigated. So, this 

study is done to fill the gap in this area. The purpose of this 

paper is to study the free vibration smart control of concrete 

foundation reinforced by SiO2 nanoparticles embedded in 

soli medium. The structure is covered by a piezoelectric 

layer subjected to external voltage. In order to obtain the 

equivalent material properties of nanocomposite structure, 

the Mori-Tanaka model is used. Applying first order shear 

deformation theory (FSDT), the motion equations are 

achieved based on Hamilton‟s principal. Navier method is 

applied for obtaining the frequency of the system. The 

effects of applied voltage, volume percent and 

agglomeration of SiO2 nanoparticles, soil medium and 

geometrical parameters of structure on the frequency of 

system are disused in detail. 

 

 

2. Mathematical model 
 

As shown in Fig. 1, a concrete foundation reinforced 

with SiO2 nanoparticles and covered by piezoelectric layer 

with length L, width b, concrete thickness h and 

piezoelectric layer thickness hp is considered. 

 

2.1 FSDT theory 
 

There are many new theories for modeling of different 

structures. Some of the new theories have been used by 

Tounsi and co-authors (Bessaim et al. 2013, Bouderba et al. 

2013, 2016, Belabed et al. 2014, Zidi et al. 2014, Bourada 

et al. 2015, Bousahla et al. 2016, Beldjelili et al. 2016, 

Boukhari et al. 2016, Draiche et al. 2016, Attia et al. 2015, 

Mahi et al. 2015, Bennoun et al. 2016, El-Haina et al. 2017, 

Menasria et al. 2017, Chikh et al. 2017, Henderson et al. 

2018, Sanada 2018, Stelson 2018). 

Based on FSDT shell theory, the displacement field can 

be expressed as (Reddy 2002) 

 

     , , , , , , , ,xu x z t u x t z x t    
 (1a) 

 

     , , , , , , , ,v x z t v x t z x t    
 (1b) 

 

   , , , , , ,w x z t w x t 
 (1c) 

 

where (u (x, ζ, z, t), v(x, ζ, z, t), w(x, ζ, z, t)) denote the 

displacement components at an arbitrary point (x, ζ, z) in 

the shell, and (u (x, ζ, t), v(x, ζ, t), w(x, ζ, t)) are the 

displacement of a material point at (x, ζ) on the mid-plane 

(i.e., z = 0) of the shell along the x-, ζ-, and z-directions, 

respectively; ϕx and ϕζ are the rotations of the normal to the 

mid-plane about x- and ζ- directions, respectively. Based on 
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above relations, the strain-displacement equations may be 

written as 
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where (εxx, εζζ) are the normal strain components and (γζz, 

γxz, γxζ) are the shear strain components. 
 

2.2 Constitutive equations of piezoelectric material 
 

In a piezoelectric material, application of an electric 

field to it will cause a strain proportional to the mechanical 

field strength, and vice versa. The constitutive equation for 

stresses ζ and strains ε matrix on the mechanical side, as 

well as flux density D and field strength E matrix on the 

electrostatic side, may be arbitrarily combined as follows 

(Kolahchi et al. 2016) 
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where ζij, εij, Dii and Eii are stress, strain, electric 

displacement and electric field, respectively. Also, Cij, eij 

and ij denote elastic, piezoelectric and dielectric 

coefficients, respectively. Noted that Cij and αxx, αζζ may be 

obtained using Mori-Tanaka model (Mori and Tanaka 

1973). The electric field in terms of electric potential (Φ) is 

expressed as 
 

,kE  
 (5) 

 

where, the electric potential is assumed as the combination 

of a half-cosine and linear variation, which satisfies the 

Maxwell equation. It can be written as (Kolahchi et al. 

2016) 
 

02
( , , , ) cos( ) ( , , ) ,

V zz
x y z t x y t

h h


   

 
(6) 

 

where ϕ (x, ζ, t) is the time and spatial distribution of the 

electric potential which must satisfy the electric boundary 

conditions, V0 is external electric voltage. 

However, using Eq. (1), the governing equations of 

piezoelectric material (i.e., Eqs. (3) and (4)) for FSDT may 

be written as 
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Fig. 1 A schematic figure for concrete foundation with piezoelectric layers reinforced with SiO2 nanoparticles 
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For the concrete foundation, with neglecting the 

piezoelectric properties we have 
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2.3 Mori-Tanaka Model and agglomeration effects 
 

In this section, the effective modulus of the concrete 

foundation reinforced by SiO2 nanoparticles is developed. 

Different methods are available to obtain the average 

properties of a composite. Due to its simplicity and 

accuracy even at high volume fractions of the inclusions, 

the Mori-Tanaka method is employed in this section. The 

matrix is assumed to be isotropic and elastic, with the 

Young‟s modulus Em and the Poisson‟s ratio υm. The 

constitutive relations for a layer of the composite with the 

principal axes parallel to the r, ζ and z directions are (Mori 

and Tanaka 1973) 
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where ζij, εij, γζz, k, m, n, l, p are the stress components, the 

strain components and the stiffness coefficients 

respectively. According to the Mori-Tanaka method the 

stiffness coefficients are given by 
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(21) 

where the subscripts m and r stand for matrix and 

reinforcement respectively. Cm and Cr are the volume 

fractions of the matrix and the nanoparticles respectively 

and kr, lr, nr, pr, mr are the Hills elastic modulus for the 

nanoparticles (Mori and Tanaka 1973). The experimental 

results show that the assumption of uniform dispersion for 

nanoparticles in the matrix is not correct and the most of 

nanoparticles are bent and centralized in one area of the 

matrix. These regions with concentrated nanoparticles are 

assumed to have spherical shapes, and are considered as 

„„inclusions‟‟ with different elastic properties from the 

surrounding material. The total volume Vr of nanoparticles 

can be divided into the following two parts (Shi and Feng 

2004) 
inclusion m

r r rV V V 
 (22) 
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 and 𝑉𝑟
𝑚  are the volumes of nanoparticles 

dispersed in the spherical inclusions and in the matrix, 

respectively. Introduce two parameters ξ and δ describe the 

agglomeration of nanoparticles 
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However, the average volume fraction cr of nano-

particles in the composite is 
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Assume that all the orientations of the nanoparticles are 

completely random. Hence, the effective bulk modulus (K) 

and effective shear modulus (G) may be written as 
 

 

1

1 ,

1 1 1

in

out

out

in

out

K

K
K K

K

K



 

  
  

   
  

    
   

,

 

(26) 

 

 

1

1 ,

1 1 1

in

out

out

in

out

G

G
G G

G

G



 

  
  

   
  

    
     

(27) 

 

where 
 

 

 

3
,

3

r m r r

in m

r r r

K C
K K

C C

  

  


 

 
 

(28) 

 

  

   

3 1
,

3 1 1 1

r r m r

out m

r r r

C K
K K

C C

  

   

 
 

        

(29) 

 

 

 

3
,

2

r m r r

in m

r r r

G C
G G

C C

  

  


 

 
 

(30) 

468



 

Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis 

 

  

   

3 1
,

2 1 1 1

r r m r

out m

r r r

C G
G G

C C

  

   

 
 

        

(31) 

 

where χr, βr, δr, εr may be calculated as 
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where, Km and Gm are the bulk and shear moduli of the 

matrix which can be written as 
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Furthermore, β, α can be obtained from 
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Finally, the elastic modulus (E) and poison‟s ratio (υ) 

can be calculated as 
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2.4 Energy method 
 

The total potential energy, V, of the system is the sum of 

potential energy, U, kinetic energy, K, and the work done by 

the elastic medium, W. 
 

2.4.1 Potential energy 
The potential energy can be written as 
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Combining of Eqs. (1), (7)-(14) and (43) yields 
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where the stress resultant-displacement relations can be 

written as 
 

2 2

2 2

p

c ph h
hxx xxxx

c p

yy yy yy

h h
c p

xy xy xy

N

N dz dz

N

 

 

 





    
        

      
     

        

 

 

(45) 

 

2 2
' '

2 2

,

p

h h
hc p

xz xzx

c p
h hyz yz

Q
k dz k dz

Q

 

 



 

        
      

        
 

 

(46) 

 

2 2

2 2

,

p

c ph h
hxx xxxx

c p

yy yy yy

h h
c p

xy xy xy

M

M zdz zdz

M

 

 

 





    
        

      
     

        

 

 

(47) 

 

In which k′ is shear correction coefficient. Substituting 

Eqs. (1) and (7)-(14) into Eqs. (45)-(47), the stress 

resultant-displacement relations can be obtained as follow 
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Where 
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2.4.2 Kinetic energy 
The kinetic energy of system may be written as 
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Defining the moments of inertia as below 
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the kinetic energy may be written as 
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(67) 

 

2.4.3 External works 
The external work due to soil medium can be written as 

(Bowles 1988) 
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where Kw is Winkler‟s spring modulus. In addition, the in-

plane forces may be written as 
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where 
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2.5 Motion equations 
 

The governing equations can be derived by Hamilton‟s 

principal as follows 
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Substituting Eqs. (42), (67), (68) and (71) into Eq. (72) 

yields the following governing equations 
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Substituting Eqs. (48) to (55) into Eqs. (73) to (78), the 

governing equations can be written as follow 
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3. Solution procedure 
 

Steady state solutions to the governing equations of the 

system motion and the electric potential distribution which 

relate to the simply supported boundary conditions and zero 

electric potential along the edges of the surface electrodes 

can be assumed as 
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Substituting Eqs. (87)-(92) into Eqs. (79)-(84) yields 
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where Kij are defined in Appendix A. Finally, for calculating 
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the frequency of the system (ω), the determinant of matrix 

in Eq. (93) should be equal to zero. 
 

 

4. Numerical results and discussion 
 

A computer program is prepared for the vibration smart 

control solution of concrete foundation reinforced with SiO2 

nanoparticles and piezoelectric layer. Here, poly vinilidene 

fluride (PVDF) is selected for the piezoelectric layer with 

the material properties of Table 1 (Kolahchi et al. 2016). In 

addition, SiO2 nanoparticles have Yong‟s modulus of Er = 

70 GPa and Poisson‟s ratio of vr = 0.2. 
 

4.1 Validation 
 

In this paper, to validate the results, the frequency of the 

structure is obtained by assuming the absence of soil 

medium (Kw = 0). Therefore, all the mechanical properties 

and type of loading are the same as Whitney (1987). So the 

non-dimensional frequency is considered as Ω =  
𝜌ℎ𝜔2𝑎4

𝐷0
 

in which D0 = E1h
3

 / (12 (1 ‒ v12v21)). The results are 

compared with five references which have used different 

solution method. The exact solution is used by Whitney 

(1987) while discrete singular convolution approach is 

applied by Secgin and Sarigul (2008). The numerical 

solution method of Dai et al. (2004), Chen et al. (2003) and 

Chow et al. (1992) are mesh-free, finite element and Ritz, 

respectively. As it is observed in Table 2, the results of 

present work are in accordance with the mentioned 

references. 
 

4.2 Effects of different parameters 
 

Fig. 2 illustrates the effect of the SiO2 nanoparticles 

volume fraction on the dimensionless frequency of structure  
 

 

Table 1 Material properties of PVDF 

Properties PVDF 

C11 238.24 (GPa) 

C12 3.98 (GPa) 

C22 23.6 (GPa) 

e11 -0.135 (C/m2) 

e12 -0.145 (C/m2) 

11 1.1e-8 (C2/Nm2) 
 

 

 

Table 2 Validation of present work with the other references 

Method Mode number 

 1 2 3 4 

Whitney (1987) 15.171 33.248 44.387 60.682 

Secgin and Sarigul (2008) 15.171 33.248 44.387 60.682 

Dai et al. (2004) 15.17 33.32 44.51 60.78 

Chen et al. (2003) 15.18 33.34 44.51 60.78 

Chow et al. (1992) 15.19 33.31 44.52 60.79 

Present 15.169 33.241 44.382 60.674 
 

 

 

Fig. 2 Effects of SiO2 nanoparticles volume percent on 

the dimension frequency versus dimension 

applied voltage external 
 

 

 Ω = 𝜔𝐿 𝜌𝑚/𝐸𝑚 . It can be seen that with increasing the 

values of SiO2 nanoparticles volume fraction, the frequency 

of the system is increased. This is due to the fact that the 

increase of SiO2 nanoparticles leads to a harder structure. 

However, it may be concluded that using nanotechnology 

for reinforce of concrete foundations has an important role 

in improving the vibration behavior of system. 

Fig. 3 shows the effect of SiO2 nanoparticles 

agglomeration on the dimensionless frequency of structure 

versus external applied voltage. As can be seen, considering 

agglomeration of SiO2 nanoparticles leads to lower 

frequency. It is due to this point that the agglomeration of 

SiO2 nanoparticles decreases the stability and homogeneity 

of the structure. 

The dimensionless frequency of the nano-composite 

concrete foundation is demonstrated in Fig. 4 for different 

soil mediums. In this figure, four cases of loose sand, dense 

sand, Clayey medium dense sand and Clayey soil are 

considered with the spring constants of Table 3. As can be 

seen, considering soil medium increases the frequency of 

the structure. It is due to the fact that considering soil 
 
 

 

Fig. 3 Effects of SiO2 nanoparticles agglomeration on 

the dimension frequency versus dimension 

external applied voltage 
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Fig. 4 Effects of soil medium on the dimension frequency 

versus dimension external applied voltage 

 

 
Table 3 Spring constants of soil mediums under concrete 

foundation 

Soil Kw (N/m3) 

Loose sand 4800-16000 

Dense sand 64000-128000 

Clayey medium dense sand 32000-80000 

Clayey soil 12000-24000 
 

 

 

 

Fig. 5 Effects of length to thickness ratio of concrete 

foundation on the dimension frequency versus 

dimension external applied voltage 

 

 

medium leads to stiffer structure. Furthermore, the 

frequency of the dense sand medium is higher than other 

cases since the spring constant of this medium is maximum. 

The effect of the length to thickness ratio of concrete 

foundation on the dimensionless frequency of the system is 

depicted in Fig. 5. As can be seen, the frequency of the 

structure decreases with increasing the length to thickness 

ratio. It is because increasing the length to thickness ratio 

leads to softer structure. 

Fig. 6 shows the dimensionless frequency of the 

structure for different length to width ratio of the concrete 

 

Fig. 6 Effects of length to width ratio of concrete foundation 

on the dimension frequency versus dimension 

external applied voltage 
 

 

 

Fig. 7 Effects of piezoelectric layer thickness on the 

dimension frequency versus dimension external 

applied voltage 
 

 

 

Fig. 8 Effects of mode number on the dimension frequency 

versus dimension external applied voltage 
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which is due to the higher stiffness of system with lower 

length to width ratio. 

The effect of piezoelectric layer thickness on the 

dimensionless frequency is shown in Fig. 7. It can be found 

that with increasing the piezoelectric layer thickness, the 

frequency of the structure is increased. It is because with 

increasing the piezoelectric layer thickness, the stiffness of 

the structure will be improved. 

The effect of mode numbers on the dimensionless 

frequency of system against external applied voltage is 

plotted in Fig. 8. As can be seen, with increasing the mode 

numbers, the frequency increases. 

 

 

5. Conclusions 
 

Vibration smart control of embedded concrete 

foundations reinforced with SiO2 nanoparticles and covered 

with a piezoelectric layer subjected to external voltage was 

the main contribution of the present paper. Mori-Tanaka 

model is used for obtaining the effective material properties 

of the structure considering agglomeration effects. The soil 

medium was simulated by Winkler foundation. Based on 

orthotropic FSDT, the motion equations were derived using 

energy method and Hamilton‟s principle. Exact solution is 

applied for obtaining the frequency of system so that the 

effects of the applied voltage, volume percent and 

agglomeration of SiO2 nanoparticles, soil medium and 

geometrical parameters of concrete foundation were 

considered. It can be seen that with increasing the values of 

SiO2 nanoparticles volume fraction, the frequency of the 

system was increased. Considering agglomeration of SiO2 

nanoparticles leads to lower frequency. It can be seen that 

considering soil medium increases the frequency of the 

structure. Furthermore, the frequency of the dense sand 

medium was higher than other cases since the spring 

constant of this medium was maximum. In addition, the 

frequency of the structure decreases with increasing the 

length to thickness ratio and length to width ratio of the 

concrete foundation. It can be found that with increasing the 

piezoelectric layer thickness, the frequency of the structure 

was increased. Present results are in good agreement with 

those reported by the other references. Finally, it is hoped 

that the results presented in this paper would be helpful for 

control and design of concrete foundations. 
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