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1. Introduction 

 

As the importance of anisotropic devices has increased 

in many fields of optics and microwaves, wave propagation 

in anisotropic media has been widely studied over in the last 

decades. The anisotropic nature basically stems from the 

polarization or magnetization that can occur in materials 

when external fields pass by. Mathematical modeling of 

plane wave propagation along with the free boundary of an 

elastic half-space has been subject of continued interest for 

many years. Keith and Crampin (1977) derived a 

formulation for calculating the energy division among 

waves generated by plane waves incident on a boundary of 

anisotropic media. Reflection of plane waves at the free 

surface of a transversely isotropic thermoelastic diffusive 

solid half-space has been discussed by Kumar and 

Mukhopadhyay (2010), Othman (2010). Wave propagation 

has remained the study of concern of many researchers 

(Sharma and Marin 2013, Kumar and Gupta 2013, Kumar 

2015, Lata et al. 2016, Othman and Abd-Elaziz 2017). 

Chen and Gurtin (1968) and Chen et al. (1968, 1969) 

have formulated a theory of heat conduction in deformable 

bodies which depends upon two distinct temperatures, the 

conductive temperature 𝜑 and the thermo dynamical 

temperature T. For time independent situations, the 

difference between these two temperatures is proportional 

to the heat supply, and in absence of heat supply, the two 

temperatures are identical. For time dependent problems, 

the two temperatures are different, regardless of the 

presence of heat supply. The two temperatures T, 𝜑 and the 
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strain are found to have representations in the form of a 

travelling wave plus a response, which occurs instan-

taneously throughout the body (Boley and Tolins 1962). 

The wave propagation in two temperature theory of 

thermoelasticity was investigated by Warren and Chen 

(1973). 

Green and Naghdi (1991) postulated a new concept in 

thermoelasticity theories and proposed three models which 

are subsequently referred to as GN-I, II, and III models. The 

linearized version of model-I corresponds to classical 

thermoelastic model (based on Fourier‟s law). The 

linearized version of model-II and III permit propagation of 

thermal waves at finite speed. Green-Naghdi‟s second 

model (GN-II), in particular exhibits a feature that is not 

present in other established thermoelastic models as it does 

not sustain dissipation of thermal energy (Green and Naghdi 

1993). In this model, the constitutive equations are derived 

by starting with the reduced energy equation and by 

including the thermal displacement gradient among other 

constitutive variables. Green-Naghdi‟s third model (GN-III) 

admits dissipation of energy. In this model the constitutive 

equations are derived by starting with the reduced energy 

equation, where the thermal displacement gradient in 

addition to the temperature gradient, are among the 

constitutive variables. Green and Naghdi (1992) included 

the derivation of a complete set of governing equations of a 

linearized version of the theory for homogeneous and 

isotropic materials in terms of the displacement and 

temperature fields and a proof of the uniqueness of the 

solution for the corresponding initial boundary value 

problem. 

A comprehensive work has been done in 

thermoelasticity theory with and without energy dissipation 

and thermoelasticity with two temperatures. Youssef (2011), 

constructed a new theory of generalized thermoelasticity by 
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taking into account two-temperature generalized 

thermoelasticity theory for a homogeneous and isotropic 

body without energy dissipation. Several researchers 

studied various problems involving two temperature e.g., 

(Youssef 2006, Sharma and Marin 2013, Sharma and 

Bhargav 2014, Sharma et al. 2013, Sharma and Kumar 

2013, Kumar et al. 2016a, b, c, 2017, Ezzat et al. 2016). 

In view of the fact that most of the large bodies like the 

earth, the moon and other planets have an angular velocity, 

as well as earth itself behaves like a huge magnet, it is 

important to study the propagation of thermoelastic waves 

in a rotating medium under the influence of magnetic field. 

So, the attempts are being made to study the propagation of 

finite thermoelastic waves in an infinite elastic medium 

rotating with angular velocity. Several authors (Das and 

Kanoria 2014, Atwa and Jahangir 2014, Ezzat and AI-Bary 

2016, 2017) have studied various problems in generalized 

thermoelasticity to study the effect of rotation. 

Sandwich structures are widely used in diverse 

applications such as spacecraft, aircraft, automobiles, boats 

and ships due to their substantial bending strength and 

impact resistance at a light weight. The dynamic 

applications have motivated various studies of wave 

propagation and dynamic flexural deformation of multilayer 

beams and plates. Elphinstone and Lakhtakia (1994) have 

investigated the response of a plane wave incident on a 

chiral solid slab sandwiched between two elastic half 

spaces. Khurana and Tomar (2009) discussed longitudinal 

wave response of chiral slab interposed between micropolar 

elastic solid half spaces. Wave propagation in sandwich 

layer has been investigated by many researchers 

(Chaudhary et al. 2010, Deshpande and Fleck 2005, Liu and 

Bhattacharya 2009, Vlase et al. 2017). 

Different authors discussed different types of problems 

in viscoelasticity. Freudenthal (1954) pointed out that most 

solids when subjected to dynamic loading exhibit viscous 

effects. The Kelvin -Voigt model is one of the macroscopic 

mechanical models often used to describe the viscoelastic 

behaviour of a material. This model represents the delayed 

elastic response subjected to stress where the deformation is 

time dependent. Iesan and Scalia (1989) studied some 

theorems in the theory of thermoviscoelasticity. Borrelli and 

Patria (1991) investigated the discontinuity of waves 

through a linear thermoviscoelastic solid of integral type. 

Pal (2000) studied the problem of torsional body forces in 

viscoelastic half-space. Corr et al. (2001) investigated the 

non linear generalized Maxwell fluid model for viscoelastic 

materials. Ezzat et al. (2010) presented research on thermo-

electric-visco elastic materials. Effect of viscosity on wave 

propagation in anisotropic thermoelastic medium with 

three-phase-lag model was discussed by Kumar et al. 

(2012). Sharma et al. (2013) analysed effect of viscousity 

on wave propagation in anisotropic thermoelastic with 

Green-Naghdi theory Type-II and Type-III. AI-Basyouni et 

al. (2014) discussed effect of rotation, magnetic field and a 

periodic loading on radial vibrations thermo-viscoelastic 

non-homogeneous media. Thermo-viscoelastic materials 

with fractional relaxation operators were discussed by Ezzat 

et al. (2015). Yadav et al. (2015) investigated a state 

problem of Two-Temperature generalized thermovisco-

elasticity with fractional order strain subjected to moving 

heat source. 

Here in this paper, we consider transversely isotropic 

magnetothermoelastic solid slab of uniform thickness, 

interposed between two different semi-infinite 

homogeneous isotropic elastic solids. A plane longitudinal 

or transverse wave propagating through one of the 

viscoelastic solid half spaces, is made incident upon 

transversely isotropic magnetothermoelastic solid. We have 

presented the reflection and transmission coefficients 

obtained separately, corresponding to the appropriate set of 

boundary conditions. The effect of energy dissipation on 

variations in the modulus of the amplitude ratios with the 

angle of incidence are depicted graphically. 
 

 

2. Basic equations 
 

The constitutive relations for a transversely isotropic 

thermoelastic medium are given by 

 

𝑡𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝑒𝑘𝑙 − 𝛽𝑖𝑗𝑇 (1) 

 

Equation of motion for a transversely isotropic 

thermoelastic medium rotating uniformly with an angular 

velocity 𝛀 = Ω𝑛, where n is a unit vector representing the 

direction of axis of rotation and taking into account Lorentz 

force 

 

𝑡𝑖𝑗 ,𝑗 + 𝐹𝑖  =  𝜌  𝑢 𝑖 +  𝜴 ×  𝜴 × 𝑢  
𝑖

+  2𝜴 × 𝑢  𝑖  (2) 

 

Following Chandrasekharaiah (1998) and Youssef 

(2011), the heat conduction equation with two temperature 

and with and without energy dissipation is given by 

 

𝐾𝑖𝑗𝜑,𝑖𝑗 + 𝐾𝐼𝐽
∗𝜑, 𝑖𝑗 = 𝛽𝑖𝑗𝑇0𝑒𝑖𝑗 + 𝜌𝐶𝐸𝑇  (3) 

 

The above equations are supplemented by generalized 

Ohm‟s law for media with finite conductivity and including 

the Hall current effect 

 

𝑱 =
𝜎0

1 + 𝑚2
  𝑬 + 𝜇0   𝒖 × 𝑯−

1

𝑒𝑛𝑒
𝑱 × 𝑯0   (4) 

 

and the strain displacement relations are 

 

𝑒𝑖𝑗 =
1

2
 𝑢𝑖,𝑗 + 𝑢𝑗 ,𝑖 ,          𝑖, 𝑗 = 1, 2, 3 (5) 

 

Here, 𝐹𝑖 = 𝜇0(𝑱 × 𝑯0)𝑖  are the components of Lorentz 

force. 
 

𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝛼𝑖𝑗   and  𝑇 = 𝜑 − 𝑎𝑖𝑗𝜑,𝑖𝑗  

𝛽𝑖𝑗 = 𝛽𝑖𝛿𝑖𝑗 ,   𝐾𝑖𝑗 = 𝐾𝑖𝛿𝑖𝑗 ,   𝐾𝑖𝑗
∗ =  𝐾𝑖

∗𝛿𝑖𝑗 , 

i is not summed 

 

Following Achenbach (1973), the constitutive relations 

for the viscoelastic half space are 
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𝑡𝑖𝑗 ,𝑗
𝑙 = 2𝜇𝑙𝑢𝑖,𝑗

𝑙 + 𝜆𝑙𝑢𝑘 ,𝑘
𝑙 𝛿𝑖𝑗  

 
 𝑖, 𝑗, 𝑘 = 1, 2, 3     and     𝑙 = 1, 2 , 

(6) 

 

and, equations of motion are 

 

𝜇𝑙𝑢𝑖 ,𝑗𝑗
𝑙 +  𝜆𝑙 + 𝜇𝑙 𝑢𝑖 ,𝑖𝑗

𝑙 = 𝜌𝑒
𝜕2𝒖𝑖

𝑙

𝜕𝑡2
 

(𝑖, 𝑗 = 1, 2, 3      and     𝑙 = 1, 2) 

(7) 

 

𝐶𝑖𝑗𝑘𝑙  𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑘𝑙𝑖𝑗 = 𝐶𝑗𝑖𝑘𝑙 = 𝐶𝑖𝑗𝑙𝑘   are elastic para-

meters, 𝛽𝑖𝑗  is the thermal tensor, 𝑇 is the temperature, 𝑇0 is 

the reference temperature, 𝑡𝑖𝑗  are the components of stress 

tensor, 𝑒𝑘𝑙  are the components of strain tensor, 𝑢𝑖  are the 

displacement components, 𝜌  is the density, 𝐶𝐸  is the 

specific heat, 𝐾𝑖𝑗   is the thermal conductivity, 𝐾𝐼𝐽
∗  is the 

materialistic constant,  𝑎𝑖𝑗  are the two temperature 

parameters,  𝛼𝑖𝑗 is the coefficient of linear thermal 

expansion, Ω is the angular velocity of the solid, H is the 

magnetic strength, 𝒖  is the velocity vector, E is the 

intensity vector of the electric field,  𝑱 is the current density 

vector, 𝑚 = 𝜔𝑒𝑡𝑒 =
𝜎0𝜇0𝐻0

𝑒𝑛𝑒  
  is the Hall parameter, 𝑡𝑒  is 

the electron collision time, 𝜔𝑒 =
𝑒𝜇0𝐻0

𝑚𝑒
 is the electronic 

frequency, e is the charge of an electron, 𝑚𝑒  is the mass  

of the electron, 𝜎0 =
𝑒2𝑡𝑒𝑛𝑒

𝑚𝑒  
, is the electrical conductivity 

and 𝑛𝑒  is the number of density of electrons. 𝜆𝑙 , 𝜇𝑙 ,𝜌𝑙  are 

the Lame‟s constants and density in the elastic half space. 

𝒖𝑖
𝑙  (𝑖 = 1, 2, 3  and  𝑙 = 1, 2) are the components of 

displacement vector,  𝑡𝑖𝑗 ,𝑗
𝑙
 are the components of stress in 

elastic half space. 

 

 

3. Formulation of the problem 
 

Consider a layered model consisting of a transversely 

isotropic magnetothermoelastic slab of finite thickness H, 

which is rotating uniformly with an angular velocity 𝛀 

initially at uniform temperature 𝑇0  with Hall current effect, 

is interposed between two distinct elastic half spaces. 

Introducing the Cartesian co-ordinate system  𝑥1, 𝑥2, 𝑥3  
such that 𝑥1 − and 𝑥3 − axis are on horizontal plane and 

𝑥3 − axis is pointing vertically downwards. Let the 

intermediate layer occupying the region 𝑀 [0 ≤ 𝑥3 ≤ 𝐻] 
be delineated by the planes 𝑥3 = 0 and 𝑥3 = 𝐻 as shown 

in Fig. 1 and the two elastic half spaces be occupying the 

regions 𝑀(1): [𝑥3 < 0]  and 𝑀(2):  𝑥3 > 𝐻 . For two 

dimensional problem, the displacement vectors 𝒖, 𝒖𝑙  

(𝑙 = 1, 2) in transversely isotropic magnetothermoelastic 

and in elastic half space are taken as 

 

𝒖 =  𝑢1, 0,𝑢3     and     𝒖𝑙 =  𝑢1
𝑙 , 0,𝑢3

𝑙  , 

(𝑙 = 1, 2) 
(8) 

 

We also assume that 

 

𝐸 = 0,           𝛀 =  0,   𝛺,   0  (9) 

 

Fig. 1 Sandwiched layered medium 
 

 

The generalized Ohm‟s law gives 
 

𝐽2 = 0 (10) 
 

the current density components 𝐽1 and 𝐽3 using Eq. (10) 

are given as 
 

 𝐽1 =
𝜎0𝜇0𝐻0

1 + 𝑚2
  𝑚

𝜕𝑢1

𝜕𝑡
−
𝜕𝑢3

𝜕𝑡
  (11) 

 

 𝐽3 =
𝜎0𝜇0𝐻0

1 + 𝑚2
  
𝜕𝑢1

𝜕𝑡
+ 𝑚

𝜕𝑢3

𝜕𝑡
  (12) 

 

Following Slaughter (2002), using appropriate trans-

formations, on the set of Eqs. (2) and (3) and with the aid of 

Eqs. (8)-(12), the field equations for transversely isotropic 

magnetothermoelastic medium are 
 

𝑐11

𝜕2𝑢1

𝜕𝑥2
+ 𝑐13

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
+ 𝑐44  

𝜕2𝑢1

𝜕𝑥3
2 +

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
  

−𝛽1

𝜕

𝜕𝑥1
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  − 𝜇0𝐽3𝐻0 

= 𝜌  
𝜕2𝑢1

𝜕𝑡2
− 𝛺2𝑢1 + 2𝛺

𝜕𝑢3

𝜕𝑡
  

(13) 

 

(𝑐13 + 𝑐44)
𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+ 𝑐44

𝜕2𝑢3

𝜕𝑥1
2 + 𝑐33

𝜕2𝑢3

𝜕𝑥3
2  

−𝛽3

𝜕

𝜕𝑥3
 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  + 𝜇0𝐽1𝐻0 

= 𝜌  
𝜕2𝑢3

𝜕𝑡2
− 𝛺2𝑢3 − 2𝛺

𝜕𝑢1

𝜕𝑡
  

(14) 

 

 𝑘1 + 𝑘1
∗ 𝜕

𝜕𝑡
 
𝜕2𝜑

𝜕𝑥1
2 +  𝑘3 + 𝑘3

∗ 𝜕

𝜕𝑡
 
𝜕2𝜑

𝜕𝑥3
2 

= 𝑇0

𝜕2

𝜕𝑡2
 𝛽1

𝜕𝑢1

𝜕𝑥1
+ 𝛽3

𝜕𝑢3

𝜕𝑥3 
 + 𝜌𝐶𝐸𝑇  

(15) 

 

and the stress components are 
 

𝑡33 = 𝑐13𝑒11 + 𝑐33𝑒33 − 𝛽3𝑇 (16) 

 

𝑡13 = 2𝑐44𝑒13 (17) 
 

where 
 

𝑇 = 𝜑 −  𝑎1

𝜕2𝜑

𝜕𝑥1
2 + 𝑎3

𝜕2𝜑

𝜕𝑥3
2  
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𝛽1 = (𝑐11+𝑐12)𝛼1 + 𝑐13𝛼3, 

𝛽3 = 2𝑐13𝛼1 + 𝑐33𝛼 +3  
 

In the above equations we use the contracting subscript 

notations (11 → 1,22 → 2,33 → 3,23 → 4,31 → 5,12 → 6) 

to relate 𝑐𝑖𝑗𝑘𝑙  𝑡𝑜 𝑐𝑚𝑛  

The field equations for the elastic half spaces are 
 

 𝜇𝑙  
𝜕2𝑢1

𝑙

𝜕𝑥1
2 +

𝜕2𝑢1
𝑙

𝜕𝑥3
2 +  𝜆𝑙 + 𝜇𝑙 

𝜕2𝑢3
𝑙

𝜕𝑥1𝜕𝑥3
= 𝜌𝑙

𝜕2𝑢1
𝑙

𝜕𝑡2
, 

(𝑙 = 1, 2) 

(18) 

 

𝜇𝑙  
𝜕2𝑢3

𝑙

𝜕𝑥1
2 +

𝜕2𝑢3
𝑙

𝜕𝑥3
2 +  𝜆𝑙 + 𝜇𝑙 

𝜕2𝑢1
𝑙

𝜕𝑥1𝜕𝑥3
= 𝜌𝑙

𝜕2𝑢3
𝑙

𝜕𝑡2
, 

(𝑙 = 1, 2) 

(19) 

 

In order to account for the material damping behaviour 

the material coefficients 𝜆 and 𝜇  are assumed to be a 

function of time operator D = 
𝜕

𝜕𝑡
, i.e. 

 

𝜆𝑙 = 𝜆𝑙
∗
   where   𝜆𝑙

∗
= 𝜆𝑙(𝐷)     (𝑙 = 1, 2) 

 

𝜇𝑙 = 𝜇𝑙 ∗     where     𝜇𝑙 ∗ = 𝜇𝑙 𝐷         (𝑙 = 1, 2) 

 

Assuming that the viscoelastic nature of the material is 

described by the Voigt model of linear viscoelasticity 

(Kaliski 1963), we write 
 

𝜆𝑙 = 𝜆𝑙
∗
 1 + 𝑄1

𝜕

𝜕𝑡
  

 

𝜇𝑙 = 𝜇𝑙 ∗  1 + 𝑄2

𝜕

𝜕𝑡
 , 

 

The stress components for elastic half spaces in the 

𝑥1 − 𝑥3 plane are 
 

𝑡13
𝑙 = 𝜇𝑙  

𝜕𝑢1
𝑙

𝜕𝑥3
+
𝜕𝑢3

𝑙

𝜕𝑥1
 ,      (𝑙 = 1, 2) (20) 

 

𝑡33
𝑙 = (𝜆𝑙)

𝜕𝑢1
𝑙

𝜕𝑥1
+  𝜆𝑙 + 2𝜇𝑙 

𝜕𝑢3
𝑙

𝜕𝑥3
,     (𝑙 = 1, 2) (21) 

 

To facilitate the solution, we introduce the dimension-

less quantities 
 

𝑥1
′ =

𝑥1

𝐿
,      𝑥3

′ =
𝑥3

𝐿
, 

(𝑢1
′ ,𝑢3

′ ,𝑢1
′ 𝑙 ,𝑢3

′ 𝑙) =
𝜌𝑐1

2

𝐿𝛽1𝑇0

 𝑢1,𝑢3,𝑢1
𝑙 ,𝑢3

𝑙 , 

𝑇′ =
𝑇

𝑇0
,     𝑡′ =

𝑐1

𝐿
𝑡,     𝑡11

′  =
𝑡11

𝛽1𝑇0
, 

𝐽′ =
𝜌𝑐1

2

𝛽1𝑇0
𝐽(𝑡33

′ , 𝑡31
′ ,  𝑡13

′ 𝑙 , 𝑡33
′ 𝑙 ) 

=  
𝑡33

𝛽1𝑇0
,
𝑡31

𝛽1𝑇0
,
𝑡13
𝑙

𝛽1𝑇0
,
𝑡33
𝑙

𝛽1𝑇0
 , 

𝜑′ =
𝜑

𝑇0 
,     𝑎1

′ =
𝑎1

𝐿
,     𝑎3

′ =
𝑎3

𝐿
,     ℎ′ =

ℎ

𝐻0
, 

(22) 

𝑀 =
𝜎0𝜇0𝐻0

𝜌𝑐1𝐿
,     Ω′ =

𝐿

𝑐1
Ω     where    𝑐11 = 𝜌𝑐1

2 (22) 

 

Using dimensionless quantities defined by Eq. (22) in 

the Eqs. (13)-(15) and Eqs. (18)-(19), and suppressing the 

primes, the resulting equations yield 

 

𝜕2𝑢1

𝜕𝑥1
2 + 𝛿4

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
+ 𝛿2  

𝜕2𝑢1

𝜕𝑥3
2 +

𝜕2𝑢3

𝜕𝑥1𝜕𝑥3
  

−
𝜕

𝜕𝑥1
 𝜑 −  

𝑎1

𝐿
 
𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2   

−
𝑀

1 + 𝑚2
𝜇0 𝐻0  

𝜕𝑢1

𝜕𝑡
+ 𝑚

𝜕𝑢3

𝜕𝑡
  

=
𝜕2𝑢1

𝜕𝑡2
− 𝛺2𝑢1 +    2𝛺

𝜕𝑢3

𝜕𝑡
 

(23) 

 

𝛿1

𝜕2𝑢1

𝜕𝑥1𝜕𝑥3
+ 𝛿2

𝜕2𝑢3

𝜕𝑥1
2 + 𝛿3

𝜕2𝑢3

𝜕𝑥3
2  

−
𝛽3

𝛽1

𝜕

𝜕𝑥3
 𝜑 −  

𝑎1

𝐿
 
𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2      

+
𝑀

1 + 𝑚2
 𝜇0𝐻0   𝑚

𝜕𝑢1

𝜕𝑡
−
𝜕𝑢3

𝜕𝑡
  

=
𝜕2𝑢3

𝜕𝑡2
− 𝛺2𝑢3 − 2𝛺

𝜕𝑢1 

𝜕𝑡
 

(24) 

 

휀1  1 +
휀3

휀1

𝜕

𝜕𝑡
 
𝜕2𝜑

𝜕𝑥1
2 + 휀2  1 +

휀4

휀2

𝜕

𝜕𝑡
 
𝜕2𝜑

𝜕𝑥3
2 

= 휀5
′𝛽1

2 𝜕2

𝜕𝑡2
 
𝜕𝑢1

𝜕𝑥1
+
𝛽3

𝛽1

𝜕𝑢3

𝜕𝑥3
   

+ 
𝜕2

𝜕𝑡2
  𝜑 −

𝑎1

𝐿

𝜕2𝜑

𝜕𝑥1
2 +

𝑎3

𝐿

𝜕2𝜑

𝜕𝑥3
2   

(25) 

 

𝛿1 =
(𝑐13 + 𝑐44)

𝑐11
,     𝛿2 =

𝑐44

𝑐11
,     𝛿3 =

𝑐33

𝑐11
,     𝛿4 =

𝑐13

𝑐11
, 

휀1 =
𝑘1

𝜌𝐶𝐸𝑐1
2 ,     휀2 =

𝑘3

𝜌𝐶𝐸𝑐1
2 ,     휀3 =

𝑘1
∗

𝐿𝜌𝐶𝐸𝑐1
, 

휀4 =
𝑘3

∗

𝐿𝜌𝐶𝐸𝑐1
,     휀5

′ =
𝑇0

𝜌2𝐶𝐸𝑐1
2 

 

For the mediums 𝑀(1) and 𝑀(2), we have 
 

∇2𝜙𝑙 =
1

(𝛼′(𝑙))2
 
𝜕2𝜑𝑙

𝜕𝑡2
  (26) 

 

∇2𝜓𝑙 =
1

𝛽′(𝑙)2  
𝜕2𝜓𝑙

𝜕𝑡2
  (27) 

 

where 
 

𝛼′(𝑙) =
𝛼(𝑙)

𝑐1
, 𝛽′(𝑙) =

𝛽 (𝑙)

𝑐1
, 𝛼(𝑙) =   

 𝜆𝑙+2𝜇 𝑙 

𝜌 𝑙 and 𝛽(𝑙) =

 
𝜇 𝑙

𝜌 𝑙  are velocities of longitudinal and transverse waves 

respectively for the mediums 𝑀(1)
 and 𝑀(2)

 for (𝑙 = 1, 2) 
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and 𝜙𝑙  and 𝜓𝑙
 are the scalar potentials defined by 

 

𝑢1
𝑙 =

𝜕𝜙𝑙

𝜕𝑥1
−
𝜕𝜓𝑙

𝜕𝑥3
,          𝑢3

𝑙 =
𝜕𝜙𝑙

𝜕𝑥3
+
𝜕𝜓𝑙

𝜕𝑥1
 (28) 

 

We seek a wave solution of the form for transversely 

isotropic magnetothermoelastic solid as 
 

 

𝑢1

𝑢3

𝜑
 =  

𝑈1

𝑈3

𝜑∗
 exp{ 𝑖𝑘 𝑥1sin휃 + 𝑥3cos휃 − 𝑖𝜔𝑡 } (29) 

 

where (sin휃, cos휃)  denotes the projection of the wave 

normal onto the 𝑥1 − 𝑥3 plane, 𝑘 and 𝜔 are respectively 

the wave number and angular frequency of plane waves  

propagating in 𝑥1 − 𝑥3 plane. 

Upon using Eq. (29) in Eqs. (23)-(25) and then 

eliminating 𝑈1,𝑈3 and 𝜑∗ from the resulting equations 

yields the following characteristic equation 

 

𝐴𝑘6 + 𝐵𝑘4 + 𝐶𝑘2 + 𝐷 = 0 (30) 

 

where 𝐴, B, C, D are given in Appendix A. 

The roots of Eq. (30) gives six values of 𝑘, in which we 

are interested to those roots whose imaginary parts are 

positive. Corresponding to these roots, there exists three 

waves corresponding to decreasing orders of their 

velocities, namely quasi-longitudinal, quasi-transverse and 

quasi-thermal waves. The phase velocity is given by 
 

𝑉𝑗 =  
𝜔

 𝑅𝑒(𝑘𝑗 ) 
,          𝑗 = 1, 2, 3 

 

where 𝑉𝑗 , j = 1, 2, 3 are the phase velocities of QL, QTS 

and QT waves respectively. 

 

 

 

4. Wave solution 
 

Let a plane P or SV wave travelling through the elastic 

half space 𝑀(1) be incident at the interface 𝑥3 = 0 and 

makes an angle  휃0
(1)

 with the 𝑥3 −axis. A part of this 

incident energy will be reflected back into the medium 

𝑀(1) and rest will be transmitted into the medium M. Now 

the wave associated with transmitted energy will proceed 

through the medium M to interact with the boundary 

𝑥3 = 𝐻 , where again some part of this energy will be 

reflected and rest will be transmitted into the medium 𝑀(2). 

The reflected energy further proceeds back to interact with 

the boundary 𝑥3 = 0, and the process will repeat. To satisfy 

the boundary conditions at both the interfaces, i.e., 𝑥3 = 0 

and 𝑥3 = 𝐻 , we shall take the following reflected and 

refracted waves into consideration. 

A plane longitudinal or transverse wave, making an 

angle 휃0  with the 𝑥3 −axis is incident at the interface 

through the elastic half space 𝑀(1). This wave results in 

 

Reflected waves 

(i) One reflected longitudinal wave travelling with 

speed 𝛼(1) and making an angle 휃1
(1)

 with the 

𝑥3 −axis and one transverse wave propagating 

with speed 𝛽(1) and making an angle 휃2
(1)

 with 

the 𝑥3 −axis in the medium 𝑀(1). 
(ii) A reflected longitudinal wave, transverse wave and 

a thermal wave travelling with speeds 𝑣1 , 𝑣2 and 

𝑣3  and making angles 휃1,휃2 and 휃3 with 

𝑥3 −axis in the medium M. 

 

Refracted waves 
(i) A set consisting of longitudinal wave, transverse 

wave and a thermal wave travelling with speeds 

 

 

 

 

Fig. 2 Geometry of the problem 
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𝑣1 ,𝑣2  and 𝑣3  and making angles 휃1,휃2 and 휃3  

with 𝑥3 −axis. In the medium M. 

(ii) A longitudinal wave travelling with speed 𝛼(2)
 

and making an angle 휃1
(2)

 with the 𝑥3 −axis and 

one transverse wave propagating with speed 𝛽(2)
 

and making an angle 휃2
(2)

 with the 𝑥3 −axis in the 

medium 𝑀(2). 
 

We assume the wave solution for the mediums 𝑀, 𝑀(1) 

and 𝑀(2)
 as 

 

Medium 𝑀:     𝑢1 =  (𝐴𝑗𝑃𝑗
+) +  (𝐴𝑗𝑃𝑗−3

− )

6

𝑗=4

3

𝑗=1

 (31) 

 

𝑢3 =  (𝑑𝑗𝐴𝑗𝑃𝑗
+) +  (𝑑𝑗𝐴𝑗𝑃𝑗−3

− )

6

𝑗=4

3

𝑗=1

 (32) 

 

𝜑 =  (𝑙𝑗𝐴𝑗𝑃𝑗
+) +  (𝑙𝑗𝐴𝑗𝑃𝑗−3

− )

6

𝑗=4

3

𝑗=1

 (33) 

 

where the coupling constants 𝑑𝑗  and 𝑙𝑗  are given in 

Appendix B. 
 

Medium 𝑀 1 :     𝜙 1 = 𝐴0
 1 𝑃0

+ 1 + 𝐴1
 1 𝑃0

− 1 
 (34) 

 

𝜓1 = 𝐵0
(1)

𝑄1
+(1)

+ 𝐵1
(1)

𝑄1
−(1)

 (35) 

 

Medium 𝑀 2 :     𝜙(2) = 𝐴0
(2)

𝑃0
+(2)

 (36) 

 

𝜓(2) = 𝐵0
(2)

𝑄1
+(2)

 (37) 
 

Where 
 

𝑃0
+ 𝑙 = exp[𝑖𝜔{ sin휃0

 𝑙 𝑥1 + 𝑐𝑜𝑠휃0
 𝑙 𝑥3)/𝛼′  𝑙 − 𝑡} , 

𝑙 = 1, 2 

 

 

𝑃0
−(1)

= exp[𝑖𝜔{(sin휃0
 1 𝑥1 − 𝑐𝑜𝑠휃0

 1 𝑥3)/𝛼′  1 − 𝑡}], 

 

𝑄1
+ 𝑖 = exp[𝑖𝜔{ sin휃1

 𝑙 𝑥1 + 𝑐𝑜𝑠휃1
 𝑙 𝑥3)/𝛽′  𝑙 − 𝑡} , 

𝑙 = 1, 2 

 

𝑄1
−(1)

= exp[𝑖𝜔 {(sin휃1
 1 𝑥1 − 𝑐𝑜𝑠휃1

 1 𝑥3)/𝛽′(1)  − 𝑡}] 

 
𝑃𝑗

+ = exp{𝑖𝑘𝑗 (sin휃𝑗𝑥1 + 𝑐𝑜𝑠휃𝑗𝑥3) − 𝑖𝜔𝑡} 

 
𝑃𝑗
− = exp{𝑖𝑘𝑗 (sin휃𝑗𝑥1 − 𝑐𝑜𝑠휃𝑗𝑥3) − 𝑖𝜔𝑡},  

𝑗 = 1, 2, 3 
 

where 

𝑘𝑗 =
𝜔

𝑣𝑗
. 

 

 

5. Boundary conditions 
 

B.(1) The boundary conditions to be satisfied at the 

interface 𝑥3 = 0 are 
 

(i) continuity of the stress component 𝑡33 = 𝑡33
(1)

 (38) 

 

(ii)  𝑡31 = 𝑡31
(1)

 (39) 

 

(iii) continuity of displacement components 𝑢1 = 𝑢1
(1)

 (40) 

 

(iv) 𝑢3 = 𝑢3
(1)

 (41) 

 

(v) thermally insulated boundary 
𝜕𝜑

𝜕𝑥3
= 0 (42) 

 

B.(2) The boundary conditions to be satisfied at the 

interface 𝑥3 = 𝐻 are 
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Fig. 3 Variations of amplitude ratio 𝑍𝟏 with angle of 

incidence 휃 

Fig. 4 Variations of amplitude ratio Z2 with angle of 

incidence θ 
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(i) continuity of the stress component  𝑡33 = 𝑡33
(2)

 (43) 

 

(ii) 𝑡31 = 𝑡31
(2)

 (44) 

 

(iii) continuity of displacement components 𝑢1 = 𝑢1
(2)

 (45) 

 

(iv) 𝑢3 = 𝑢3
(2)

 (46) 

 

(v) thermally insulated boundary 
𝜕𝜑

𝜕𝑥3

= 0 (47) 

 

Amplitude ratios 
 

Incident P wave 
Using Eqs. (31)-(37) in the Eqs. (38)-(47) with the aid 

of Eqs. (23)-(27), we obtain a non homogeneous system of 

 

 

 

 

equations 
 

𝐴𝑋 = 𝐵 (48) 
 

where 𝐴 =   𝑎𝑖𝑗  10× 10
, 𝑋 =  𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5, 𝑧6,  𝑧7, 𝑧8, 𝑧9, 

 𝑧10 
𝑡  where „t‟ in the superscript represents the transpose of 

the matr ix ,  𝑧1 =
𝐴1

(1)

𝐴0
(1) , 𝑧2 =

𝐵1
(1)

𝐴0
(1)  a re  the ref lec t ion 

coefficients in the medium 𝑀(1),  𝑧𝑖 =
𝐴𝑖

𝐴0
(1) , 𝑖 = 3, 4, 5 are 

the transmission coefficients in the medium M, 𝑧𝑖 =
𝐴𝑖

𝐴0
(1) ,

𝑖 = 6, 7, 8  are the reflection coefficients in the medium M, 

𝑧9 =
𝐴0

(2)

𝐴0
(1) , 𝑧10 =

𝐵0
(2)

𝐴0
(1)  are the reflection coefficients in the 

medium 𝑀(2).  Using Cramer ‟s rule, the system of 

equations given in Eq. (48) enables us to amplitude ratios of 

various reflected and transmitted waves. The values of 𝑎𝑖𝑗   
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Fig. 5 Variations of amplitude ratio Z3 with angle of 

incidence θ 

Fig. 6 Variations of amplitude ratio Z4 with angle of 

incidence θ 
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Fig. 7 Variations of amplitude ratio Z5 with angle of 

incidence θ 

Fig. 8 Variations of amplitude ratio Z6 with angle of 

incidence θ 
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and B are given in Appendix C. 

 

Incident SV wave 

In system of equations Eq. (48), if we replace 𝐴0
(1) by 

𝐵0
(1)

 and equate 𝐴0
(1)

= 0, we obtain the amplitude ratios 

corresponding to incident SV wave. 

 

 

6. Particular cases 
 

(i) If 𝑘1
∗ = 𝑘3

∗ = 0 , then from Appendix C, we 

obtain the corresponding expressions for 

transversely isotropic magnetothermoelastic solid 

slab of uniform thickness, interposed between two 

different semi-infinite viscoelastic solids without 

energy dissipation and with two temperature with 

Hall current effect and rotation. 

 

 

 

 

(ii) If 𝑎1 = 𝑎3 = 0, then we obtain the expressions for 

transversely isotropic magnetothermoelastic solid 

slab of uniform thickness, interposed between two 

different semi-infinite viscoelastic solids with and 

without energy dissipation along with Hall current 

effect and rotation. 

(iii) If we take 𝑐11 = λ + 2𝜇 = 𝑐33 , 𝑐12 = 𝑐13 = λ , 

𝑐44 = 𝜇 , 𝛽1 = 𝛽3 =  𝛽 , 𝛼1 = 𝛼3 = 𝛼 , 𝐾1 = 𝐾3 =
𝐾 and 𝑎1 = 𝑎3= 𝑎, we obtain the corresponding 

expressions in isotropic magnetothermoelastic 

solid slab of uniform thickness, interposed between 

two different semi-infinite viscoelastic solids with 

two temperature and with and without energy 

dissipation along with combined effects of Hall 

current and rotation. 

(iv) If m = 0, we obtain the expressions for transversely 

isotropic magnetothermoelastic solid slab of 
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Fig. 9 Variations of amplitude ratio Z7 with angle of 

incidence θ 

Fig. 10 Variations of amplitude ratio Z8 with angle of 

incidence θ 
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Fig. 11 Variations of amplitude ratio Z9 with angle of 

incidence θ 

Fig. 12 Variations of amplitude ratio Z10 with angle of 

incidence θ 
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uniform thickness, interposed between two 

different semi-infinite viscoelastic solids and with 

and without energy dissipation and with two 

temperature along with rotation. 

 

 

7. Numerical results and discussion 
 

For the purpose of numerical evaluation, 

 

(i) Cobalt material has been chosen for transversely 

isotropic magnetothermoelastic solid (medium M), 

following Dhaliwal and Singh (1980), as 

𝑐11 = 3.071 × 1011𝑁𝑚−2, 
𝑐12 = 1.650 × 1011𝑁𝑚−2, 
𝑐33 = 3.581 × 1011𝑁𝑚−2, 

𝑐13 = 1.027 × 1011𝑁𝑚−2, 

𝑐44 = 1.510 × 1011𝑁𝑚−2, 
𝜌 = 8.836 × 103Kgm−3, 

𝑇0 = 298°𝐾, 𝐶𝐸 = 4.27 × 102𝐽𝐾𝑔−1𝑑𝑒𝑔−1, 

𝐾1 = .690 × 102 𝑤𝑚−1𝑑𝑒𝑔−1, 
𝐾3 = .690 × 102𝑤𝑚−1𝑑𝑒𝑔−1, 

𝛽1 = 7.04 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

𝛽3 = 6.90 × 106𝑁𝑚−2𝑑𝑒𝑔−1, 

𝐾1
∗ = 0.02 × 102𝑁𝑠𝑒𝑐−2𝑑𝑒𝑔−1, 

𝐾3
∗ = 0.04 × 102𝑁𝑠𝑒𝑐−2𝑑𝑒𝑔−1, 

𝜇0 = 1.2571 × 10−6𝐻𝑚−1, 

𝐻0 = 1𝐽𝑚−1𝑛𝑏−1, 휀0 = 8.838 × 10−12𝐹𝑚−1    

with non-dimensional parameter L = 1 and  

𝜎0 = 9.36 × 105col2/Cal. cm.sec, Ω = 3, 

𝑡0 = 0.02,𝑀 = 3 and two temperature parameters 

is taken as 𝑎1  = 0.03 and 𝑎3𝑣 = 0.06. 

 
(ii) Copper material has been chosen for elastic solid 

(medium M(1)), following Youssef (2006)s as 

𝜆1∗ = 7.76 × 1010  Kgm−1s−2, 
𝜇1∗ = 3.278 × 1010  𝐾𝑔𝑚−1𝑠−2, 

𝐶𝐸 = 0.6331 × 103𝐽𝐾𝑔−1𝐾−1, 

𝜌 = 8.954 × 103𝐾𝑔𝑚−3, 𝑄1 = 1 and 𝑄2 = 1. 

 
(iii) Following Dhaliwal and Singh (1980), Magnesium 

material has been taken for the medium M(2) as 

λ2∗ = 2.17 × 1010𝑁𝑚2, 

𝜇2∗ = 3.278 × 1010𝑁𝑚2, 
𝜔1 = 3.58 × 1011𝑆−1, 𝜌 = 1.74 × 103𝐾𝑔𝑚−3, 

𝑇0 = 298 K, 𝐶𝐸 = 1.04 × 103𝐽𝑘𝑔−1𝑑𝑒𝑔−1 

 

Matlab software 8.4.0. has been used for numerical 

computation of the resulting quantities. The values of 

Amplitude ratios of various reflected and refracted waves, 

when P wave is incident, with respect to angle of incidence 

휃 have been computed and are depicted graphically in Figs. 

3-12. A comparison has been made to show the effect of 

two theories of GN Type-II and GN Type-III. 

 

In the Figs. 3-12 

 

(1) Solid line corresponds to GN theory of Type-III 

(2) The small dashed line with centre symbol circle 

corresponds to GN theory of Type-II. 

Incident P wave 
Fig. 3 shows the variations of amplitude ratio 𝑧1  with 

angle of incidence 휃. Here, we notice that for GN Theory 

of Type -II and Type-III variations are in ascending order 

upto the range 00 ≤  휃 ≤ 160  and descend afterwards. 

However the variations corresponding to GN-II are higher 

than GN-III. 

Fig. 4, exhibits the variations of amplitude ratio 𝑧2 

with angle of incidence 휃. Here, we notice that variations 

increase continuously in the range 00 ≤  휃 ≤ 180  and 

decrease sharply afterwards corresponding to GN-II and 

GN-III. 

Fig. 5 shows the trends of variations of amplitude ratio 

𝑍3 with respect to angle of incidence 휃. Here, we notice 

that corresponding to GN theory of Type-III, the variations 

increase slowly whereas increase sharply and in oscillatory 

form corresponding to GN-II. 

Fig. 6 exhibits the trends of variations of amplitude ratio 

𝑍4 with respect to angle of incidence 휃. We notice that for 

GN Type-II, initially the values of 𝑍4 lie on the boundary 

surface upto 휃 = 180 but immediately after this range, a 

sudden jump in the variations is noticed whereas no 

variations are noticed in this range corresponding to GN-III. 

Fig. 7 shows the trends of variations of amplitude ratio 

𝑍5 with respect to angle of incidence 휃. We notice that 

initially the values are steady state for both the cases but as 

휃  approaches 180 , the values of amplitude ratio start 

varying and sharply increase corresponding to GN-II 

whereas corresponding to GN-III, the variations are not 

visible in this range. 

Fig. 8 displays the variations in amplitude ratio 𝑍6 with 

respect to angle of incidence 휃. Here corresponding to GN 

theory of Type-II, the values of amplitude ratio move away 

from the boundary surface in form of ascending pattern of 

waves as 휃  increases whereas the trends are different 

corresponding to GN Type -III, as here the variations 

approach boundary surface away from the initial range with 

small variations. 

Fig. 9 displays the variations in amplitude ratio 𝑍7 with 

respect to angle of incidence 휃 . It is noticed that 

corresponding to GN Type-II and Type-III, upto 휃 = 140 

the variations are negligible but arise suddenly immediately 

afterwards and keep on increasing then in the rest. 

Fig. 10 displays the variations in amplitude ratio 𝑍8 

with respect to angle of incidence 휃. Here, we notice that 

corresponding to GN-II, in the range 00 ≤  휃 ≤ 80 , the 

variations increase sharply and decrease sharply in the 

range 80 ≤  휃 ≤ 120  and remain near the boundary 

surface afterwards whereas no variations are noticed in this 

range corresponding to GN-III. 

Fig. 11 exhibits the variations in amplitude ratio 𝑍9 

with respect to angle of incidence 휃. Here corresponding to 

both the theories oscillatory pattern is observed and 

variations decrease with sharp blunt corresponding to GN-II 

whereas oscillate smoothly for GN-III. Fig. 12 displays the 

variations in amplitude ratio 𝑍10 with respect to angle of 

incidence 휃.  Here also an oscillatory pattern is seen 

corresponding to both the cases and as we move away, the 

variations are near the boundary surface. 
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8. Conclusions 
 

From the above graphs, we conclude that 

 

 More variations are noticed corresponding to GN-II 

than GN-III in the amplitude ratios. 

 In some of the amplitude ratios, in the considered 

range, variations are negligible corresponding to 

GN-III. 

 Variations corresponding to GN-II move away from 

the boundary surface whereas near the boundary 

surface corresponding to GN-III. 

 Variations corresponding to GN theory of Type-III 

move towards the boundary surface as 휃 increases 

whereas the trends are not same for GN theory of 

Type-II 

 So to detect the variations in the earth surface 

corresponding to this problem, model GN-II is better 

as this model gives us more variations and more 

better results. However the limitation is that our 

range is small. In the higher range, the results may 

be different. The present theoretical results may 

provide interesting information for experimental 

scientists/ researchers/ seismologists working on this 

subject. The used methods in the present article is 

applicable to a wide range of problems in 

thermodynamics and thermoelasticity. 
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Appendix A 
 

 

Where 

 

𝐴 = 휁4휁5휁6 − 𝑐𝑜𝑠2휃 휁2휁7𝑝1 − 𝛿1휁8
2휁1휁4 

+ 휁2휁7휁8 +  휁2휁7휁8
2휁1, 

 

 

𝐵 = −휁1휁4휁6 − 휁1𝑐𝑜𝑠
2휃 휁2휁7𝑝1 + 𝜔2휁6휁5 − 휁4휁5휁1 

+휁5𝑐𝑜𝑠
2휃 휁7𝑝1 − 𝛿1휁4휁3휁8 + 휁2휁7휁8 − 𝛿1𝜔

2휁1휁8
2 

+ 휁3휁8휁1휁4 − 휁18
2휁1휁7 − 휁2휁8휁3휁7 + 𝛿1휁8휁7 

+𝑝1휁7휁6𝑠𝑖𝑛
2휃 − 𝑠𝑖𝑛2휃 휁2휁7𝑝1 

 

 

𝐶 = −휁5휁1𝜔
2 − 휁1휁6𝜔

2 + 휁1
2휁4 − 휁1𝑐𝑜𝑠

2휃 휁7𝑝1 

−휁3𝛿1𝜔
2휁8 + 휁3

2휁4 + 휁8휁3휁1𝜔
2 − 휁1 휀5

′𝛽1
2𝜔2𝑠𝑖𝑛2휃 

 

 

𝐷 = 𝜔2 휁1
2 − 휁3

2 ,     휁1 =  
휀0𝜇0

2 𝐻0
2

𝜌
+ 1 𝜔2 + Ω2, 

 

 

휁2 =
𝑎1

𝐿
𝑠𝑖𝑛2휃 +

𝑎3

𝐿
𝑐𝑜𝑠2휃,     휁3 = −2𝑖𝜔Ω 

 

 

휁4 = 휁2𝜔
2 − 𝑠𝑖𝑛2휃 휀1 + 𝑖휀3 − 𝑐𝑜𝑠2휃  휀2 + 𝑖휀4 , 

 

 

휁5 = sin2휃 + 𝛿2cos2휃,        휁6 = 𝛿2sin2휃 + 𝛿3cos2휃  
 

휁7 = 휀5
′𝜔2𝛽1𝛽3,       휁8 = −sin휃cos휃,       𝑝5 =

𝛽3

 𝛽1
 

 

 

 

Appendix B 
 
 

𝑑𝑗 = [𝑘𝑗
4 휂𝑗  𝛿1𝑠𝑖𝑛

2휃𝑗 휀13 + 𝛿1𝑐𝑜𝑠
2휃𝑗 휀24 − 𝛿1휁𝑗

+ 휀5
′ 𝛽1𝛽3𝜔

2휁𝑗  

+ 𝑘𝑗
2 −𝛿1𝜔

2휂𝑗
+  𝑀0 + 2Ω 𝑖𝜔(휀13𝑠𝑖𝑛

2휃𝑗 + 𝑐𝑜𝑠2휃𝑗 휀24 

− 𝜔2 𝑀0 + 2Ω 𝑖𝜔  /𝐷, 

𝑗 = 1, 2, 3 

 

 

𝑙𝑗 = [𝑘𝑗
3 −𝛿1휂𝑗 휀5

′ 𝛽1𝛽3𝜔
2𝑖𝑐𝑜𝑠휃𝑗

+ (𝛿2𝑖𝑠𝑖𝑛
3휃𝑗+𝛿3𝑖𝑐𝑜𝑠

2휃𝑗 𝑠𝑖𝑛휃𝑗 )휀5
′ 𝛽1

2𝜔2 

+ 𝑖𝑘𝑗  (𝑀0𝑖𝜔 + 2𝑖𝜔Ω  휀5
′ 𝛽1𝛽3𝜔

2𝑐𝑜𝑠휃𝑗  

+  
𝑀0

𝑚
𝑖𝜔 + 𝜔2 + Ω2 (휀5

′ 𝑠𝑖𝑛휃𝑗𝛽1
2𝜔2)}]

/𝐷, 
𝑗 = 1,2,3 

 

𝐷 = 𝑘𝑗
4 휀13𝛿2sin4휃𝑗 + 휀13𝛿3휂𝑗

2 + 𝛿2휀24휂𝑗
2 + 휀24𝛿3cos4휃𝑗

− 𝛿2𝜔
2sin2휃𝑗휁𝑗 −𝜔2𝛿3cos2휃𝑗휂𝑗

− 𝛽3
2휀5

′𝜔2cos2휃𝑗휂𝑗  

+ 𝑘𝑗
2   −sin2휃𝑗𝛿2 − 𝛿3cos2휃𝑗  𝜔

2

+  
𝑀0

𝑚
𝑖𝜔 + 𝜔2 + Ω2  −휀13sin2휃𝑗

− 휀24cos2휃𝑗 + 𝜔2휁𝑗  − 𝛽3
2휀5

′𝜔2cos2휃𝑗  

+  
𝑀0

𝑚
𝑖𝜔 + 𝜔2 + Ω2 𝜔2, 

𝑗 = 1,2,3 
 

 

𝑑𝑗 = [𝑘𝑗
4 휂𝑗  𝛿1sin2휃𝑗 휀13 + 𝛿1cos2휃𝑗 휀24 + 𝛿1휁𝑗

− 휀5
′ 𝛽1𝛽3𝜔

2휁𝑗  

+ 𝑘𝑗
2 −𝛿1𝜔

2휂𝑗
+  𝑀0 + 2Ω 𝑖𝜔(휀13sin2휃𝑗 + cos2휃𝑗 휀24 

− 𝜔2 𝑀0 + 2Ω 𝑖𝜔  /𝐷, 

𝑗 = 4, 5, 6 
 

 

𝑙𝑗 = [𝑘𝑗
3 𝛿1휂𝑗 휀5

′ 𝛽1𝛽3𝜔
2𝑖cos휃𝑗

+ (𝛿2𝑖sin3휃𝑗 +𝛿3𝑖cos2휃𝑗 sin휃𝑗 )휀5
′ 𝛽1

2𝜔2 

+ 𝑖𝑘𝑗  (𝑀0𝑖𝜔 + 2𝑖𝜔Ω  휀5
′ 𝛽1𝛽3𝜔

2cos휃𝑗  

+  
𝑀0

𝑚
𝑖𝜔 + 𝜔2 + Ω2 (휀5

′ sin휃𝑗𝛽1
2𝜔2)}]

/𝐷 

𝑗 = 4, 5, 6 
 

 

휂𝑗 = sin휃𝑗 cos휃𝑗 ,     휀13 = 휀1 − 𝑖휀3𝜔, 

휀24 = 휀2 − 𝑖휀4𝜔,    휁𝑗 =
𝑎1

𝐿
sin2휃𝑗 +

𝑎3

𝐿
cos2휃𝑗 , 

𝑀0 =
𝑀

1 + 𝑚2
 𝜇0𝐻0𝑚 

 

 

 

Appendix C 
 
 

𝑎11 = 𝑖sin휃,     𝑎12 = 𝑖/𝛽′(1) 𝜔2 − 𝛽′  1 2
𝑠𝑖𝑛2휃, 

 

𝑎13 = −1,     𝑎14 = −1,      𝑎15 = −1,      𝑎16 = −1, 
 

𝑎17 = −1,     𝑎18 = −1,     𝑎19 = 0,     𝑎1,10 = 0, 

 

𝑎21 = −𝑖/𝛼′(1) 𝜔2 − 𝛼′(1)2
(sin2휃),     𝑎22 = 𝑖sin휃, 

 

𝑎21 = −𝑖/𝛼′(1) 𝜔2 − 𝛼′(1)2
(sin2휃),     𝑎22 = 𝑖sin휃, 

 

𝑎𝑎23 =−𝑑1 ,𝑎24 =−𝑑2 ,𝑎25 =−𝑑3 ,𝑎26 =−𝑑4 ,27 = −𝑑5, 

 

𝑎28 = −𝑑6,          𝑎29 = 0,          𝑎2,10 = 0, 
 

450



 

Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium 

𝑎31 = (𝜔2 − 𝛼′(1)2
)(sin휃)2 −

𝛼′(1)2
𝛾 ′(1)2

𝜔2
(sin휃)2, 

 

𝑎32 =
(𝛼′  1 2

− 𝛾 ′  1 2
)

𝛽′(1)
sin휃 𝜔2 − 𝛽′  1 2

sin2휃 

 

𝑎3𝑗 = −∆𝑗 ,          𝑗 = 3, 4, 5 

 

where 

 

∆𝑗 =
𝑐11

𝜌𝑐1
2 𝑖 sin휃 +

𝑐13

𝜌𝑐1
2 𝑖

𝑑𝑗

𝑣𝑗
 𝜔2 − 𝑣𝑗

2(sin휃)2 −
𝛽3

 𝛽1
𝑙𝑗 . 
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