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1. Introduction 

 

Thin-walled tubes, as lightweight energy absorbers, 

have been used to dissipate energy during the crash 

phenomenon. These tubes convert the kinetic energy of the 

impact load to the plastic work and prevent the transfer of 

energy to the occupants. In order to have ideal crushing 

characteristics, optimization of structures with low weight 

and high energy absorption capacity is as a great 

importance. To this end, surrogate-based optimization has 

been considered as an alternative method to reduce 

computational cost. 

Many numerical, experimental, and theoretical research 

have been conducted in order to do in-depth study about the 

thin-walled structures crashworthiness. Pioneering experi-

mental work were carried out by Abramowicz and Joens on 

squared-section steel alloy structures in order to investigate 

the different crushing modes, including the symmetric and 

axisymmetric modes (Abramowicz and Jones 1984). 

Various geometrical configurations of energy absorbing 

structure have been considered. Among the different types 

of cross sections, circular cross sections are more preferable 

due to the better manufacturability (Nagel 2005). Moreover, 

some researchers have considered tapered and pyramid 

shapes instead of cylindrical ones, due to the better 
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crashworthy abilities (Kim et al. 2002, Qi et al. 2012). 

An innovation in this regard is implementing 

imperfections including indentations, longitudinal grooves, 

and various triggering patterns that makes folding easier 

and improves the crushing characteristics (Zhang et al. 

2007, Zhang and Huh 2009, Guler et al. 2010, Khayat et al. 

2017). The number, size, and position of these 

imperfections were investigated in a number of studies 

(Hosseinipour and Daneshi 2003, Acar et al. 2011). 

Marzbanrad et al. (2009) studied the effective influence of 

imperfections on maximum crash force and the energy 

absorption capacity of the structure. 

Recently, lots of creative and innovation-based studies 

such as multi-cell tapered energy absorbers and double-

walled tubes have been put into action in order to improve 

energy absorption performance (Azimi and Asgari 2016a, b, 

Mahmoodi et al. 2016). Also, Baykasoğlu et al. proposed a 

multi-objective optimization of circular tubes with graded 

thickness. They employed finite element to generate 

metamodels for prediction of accurate optimal results 

(Baykasoglu and Baykasoglu 2016, 2017). Functionally 

graded thickness (FGT) for obtaining variable stiffness 

throughout the length of a structure and providing more 

efficient control of the crashworthiness parameters have 

been utilized by Baykasoglu and Cetin (2015). 

In numerical analysis, surrogate modelling techniques 

are mostly applicable to decrease the computational cost. 

There are a number of studies in which metamodels are 

integrated with optimization algorithm to achieve an 
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Abstract.  In this paper, the single and multi-objective optimization of thin-walled conical tubes with different types of 

indentations under axial impact has been investigated using surrogate models called metamodels. The geometry of tapered thin-

walled tubes has been studied in order to achieve maximum specific energy absorption (SEA) and minimum peak crushing force 

(PCF). The height, radius, thickness, tapered angle of the tube, and the radius of indentation have been considered as design 

variables. Based on the design of experiments (DOE) method, the generated sample points are computed using the explicit finite 

element code. Different surrogate models including Kriging, Feed Forward Neural Network (FNN), Radial Basis Neural 

Network (RNN), and Response Surface Modelling (RSM) comprised to evaluate the appropriation of such models. The 

comparison study between surrogate models and the exploration of indentation shapes have been provided. The obtained results 

show that the RNN method has the minimum mean squared error (MSE) in training points compared to the other methods. 

Meanwhile, optimization based on surrogate models with lower values of MSE does not provide optimum results. The RNN 

method demonstrates a lower crashworthiness performance (with a lower value of 125.7% for SEA and a higher value of 56.8% 

for PCF) in comparison to RSM with an error order of 10−3. The SEA values can be increased by 17.6% and PCF values can 

be decreased by 24.63% by different types of indentation. In a specific geometry, higher SEA and lower PCF require triangular 

and circular shapes of indentation, respectively. 
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optimal design. Zhang (Zhang et al. 2014), Khalkhali 

(Khalkhali and Samareh Mousavi 2012), Azimi and Asgari 

(Azimi and Asgari 2016b) and Vinayagar and Kumar 

(Vinayagar and Senthil Kumar 2017), utilized Kriging, Feed 

Forward Neural Network, quadratic, and a new developed 

method for optimization procedure, respectively. Baroutaji 

et al. presented a multi-objective optimization of short 

circular tubes subjected to the quasi-static loading. They 

developed a linear and quadratic surrogate model to obtain 

optimal values of diameter, width and thickness of the 

circular tube (Baroutaji et al. 2015). Fang et al. carried out 

a comprehensive review for structural crashworthiness 

optimization. They have discussed some important topics 

such as design criteria, surrogate models, geometrical 

configurations and optimization procedures (Fang et al. 

2017). Due to the direct influence of the surrogate models 

over the optimization results, comparison of the 

performance of the various surrogate models with respect to 

crashworthiness is of great importance. However, there are 

limited number of research related to the comparison study 

between different surrogate models for prediction of 

crashworthiness optimal values, which are similar to the 

present study. 

Motivated by this fact, the present paper aims to provide 

a comparison study between four types of metamodels, 

including Kriging, Feed Forward Neural Network (FNN), 

Radial Basis Neural Network (RNN), and Response Surface 

Method (RSM). The optimum values of five design 

variables (thickness, tapered angle, the bottom radius of 

frustum, height, and the radius of indentation) for energy 

absorption characteristics are evaluated based on the 

explicit dynamic finite element code. Moreover, the effect 

of indentation shape (circular, hexagonal, squared and 

triangular) on the crushing mode has been investigated. The 

model has been validated by a theoretical solution as well as 

experimental and numerical studies available in the 

literature. Sample points are selected based on the design of 

the experiment (DOE) Latin Hypercube method. 

Evolutionary single and multi-objective Genetic Algorithm 

(GA) are utilized as the optimization method. 

 

 

2. Problem description and finite element 
modelling 
 

The structure considered in this paper is a tapered tube 

of circular cross section. The indentation is located in the 

middle section of the cone edge to increase the value of 

energy absorption and prevent global buckling (Najafi 

2009). As shown in Fig. 1, in the single and multi-

optimization sections of this study, the circular shape of 

indentation is considered, and geometrical variables 

including thickness t, tapered angle 𝛼, the bottom radius of 

frustum R, height H, and the radius of indentation r are 

studied in order to find optimum values. 

Section 4.2.4 of present study is focused on exploring 

which types of indentations (triangular, squared, hexagonal, 

and circular) lead to better crushing characteristics. To this 

end, four tubes with different shapes of indentation and 

similar geometries have been shown in Fig. 2. 

 

Fig. 1 Schematic of tapered tube under axial crushing. 

 

 

 

Fig. 2 Tapered tube with different types of indentation. 
 

 

The performance of the energy-absorbing structure can 

be evaluated by the means of these two important 

parameters: specific energy absorption (SEA) and peak 

crushing force (PCF). The ECR-R29 standard test, in which 

a pendulum with initial kinematic energy of 30 kJ hits a 

bumper, is applied to this study. According to the 

approximate size of an energy-absorbing structure and the 

length of a vehicle bumper, the initial energy is divided into 

20 energy-absorbing structures. For the configuration of 

boundary conditions, the bottom edge is bonded with a rigid 

plate. 

A 75-kg rigid mass block hits the energy-absorbing 

structure in the axial direction with initial velocity of 6.33 
𝑚

𝑠
 which provides 1.5 kJ initial kinetic energy for each 

energy absorber. The schematic of boundary conditions is 

demonstrated in Fig. 1. 

On the other hand, it should be noted that the crushing 

efficiency would be more useful in the problems that the 

rigid wall velocity and the length of the tube have constant 

values in order to can do an existent comparison. 

Considering the mentioned design variables, the 
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Table 1 Strain hardening data for AA 6063T7 (Zhang et al. 2010) 

 

Plastic strain Plastic stress (Mpa) 

0 0.8694 ×102 

0.2696 ×10−3 0.9594 ×102 

0.2110 ×10−2 0.1013 ×103 

0.5746 ×10−2 0.1093 ×103 

0.1493 ×10−1 0.1273 ×103 

0.2630 ×10−1 0.1493 ×103 

0.6939 ×10−1 0.1695 ×103 

0.1527 0.1710 ×103 

 

 

objective functions of the optimization problem are defined 

as follows 
 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 = −𝑆𝐸𝐴 𝐻, 𝑅, 𝑡, 𝛼, 𝑟  𝑎𝑛𝑑 𝑓2

= 𝑃𝐶𝐹 𝐻, 𝑅, 𝑡, 𝛼, 𝑟   
 

An aluminium alloy (AA6063T7 (Zhang et al. 2010)) 

with Young’s modulus of 69 Gpa, Poisson’s ratio of 0.3, 

yield strength of 86.94 Mpa, and adensity of 2700 kg/m3 is 

selected. Aluminium alloys are low sensitive to strain rate; 

therefore, in this study, the effect of strain rate is neglected 

(Azimi and Asgari 2016a). Based on experimental data in 

Table 1, the multi-linear hardening curve is assumed as 

plastic behaviour. Moreover, isotropic hardening and the 

Von-Mises yield function are considered for the plastic 

region. 

The problem is modelled in the ANSYS Explicit code in 

a parametric module. In the present study, the Quadrilateral 

“SHELL 181” element is applied to the energy-absorbing 

structures. It is a four-node element with six degrees of 

freedom at each node. The number of integration points is 

5, which are located through the thickness of each layer. 

Two points are located on the top and bottom surfaces, 

respectively, and the remaining three points are distributed 

at equal distances between the two points. Two types of 

contacts are assumed. Firstly, a Line-to-Surface contact is 

utilized to bond the bottom edge of the tube to the support. 

Hereafter, automatic contact detection and a frictionless 

interaction is applied to all components since friction is not 

the major energy-absorbing mechanism in this problem. 

The explicit dynamic ANSYS solver uses a central 

difference time integration scheme, which is often referred 

to as the Leapfrog method. (ANSYS 2009) 
 

2.1 Mesh sensitivity 
 

The mesh sensitivity analysis is carried out to find the 

appropriate element size for numerical simulations. Since 

the design space is expanded, the unique element size 

cannot be obtained in all geometries. Therefore, we 

consider an element size interval with the average of 10 

mm. In order to validate this interval, a set of tapered tubes 

with different element sizes are simulated. The dimensions 

of the tubes are similar:t = 1 mm, α = 75, R = 125 mm,  r = 

6 mm, H = 250 mm. Three different element sizes (9, 10, 

and 12 mm) are considered to examine the numerical 

convergence and accuracy of interval. The crushing 

 

Fig. 3 Mesh sensitivity to force-displacement curve 

 

 

force versus displacement curves is shown in Fig. 3. It 

should be noted that the results of tubes with 9 and 10 mm 

element sizes are similar and to decrease numerical cost we 

consider element size of 10 mm. 

 

2.2 Crashworthiness indices 
 

The performance of energy-absorbing tubes can be 

evaluated by several indices such as mean crushing force 

(𝑃𝑚𝑒𝑎𝑛 ), the PCF, and the SEA. SEA denotes the total 

absorbed energy of these tubes during the crushing 

deformation of the structures per unit mass. It can be 

expressed as follows 
 

𝑆𝐸𝐴 𝛿 =
 𝐹(𝑥)

𝛿

0
𝑑𝑥

𝑚
 (1) 

 

where 𝐹(𝑥), 𝛿 and 𝑚 are the axial crushing force, the 

crushing displacement, and the mass of the structure, 

respectively. Moreover, mean crushing force (𝑃𝑚𝑒𝑎𝑛 ) can be 

evaluated based on the value ofSEA, and the displacement 

is expressed as follows 
 

𝑃𝑚𝑒𝑎𝑛 =
𝐸𝑛𝑒𝑟𝑔𝑦 𝑎𝑏𝑠𝑜𝑟𝑝𝑡𝑖𝑜𝑛

𝛿
 (2) 

 

2.3 Theoretical verification of model 
 

In order to validate results, a comparison is conducted 

between the finite element analysis and two theoretical 

solutions. The theoretical solutions are based on a 

cylindrical thin-walled tube subjected to frontal impact 

loading with the axisymmetric crushing mode (Ambrosio 

2001). According to Fig. 4, during axisymmetric crushing, 

three plastic hinges are generated. The total plastic energy 

absorbed by the two plastic hinges that are located at the top 

and bottom is as follows 
 

𝐸1 = 2𝜋𝑅𝑀 (3) 
 

The plastic collapse moment per unit lateral length for 

the tube is 
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Fig. 4 Axisymmetric crushing mode for an axially 

compressed cylindrical tube 

 

 

𝑀 =
 3

2
𝑡2𝑆𝑦  (4) 

 

The energy absorbed by the middle plastic hinge as the 

position changes from R to R+ l while the incremental 

angle 𝑑𝜃 varies from 0 to π 2  is as follows 

 

𝐸2 =  4𝜋𝑀 𝑅 + 𝑙𝑠𝑖𝑛𝜃  𝑑𝜃

𝜋

2

0

 (5) 

 

𝐸2 = 2𝜋2𝑅𝑀 + 4𝜋𝑙𝑀 (6) 
 

Besides, the lateral stretching for hinge lines renders the 

𝐸3  energy absorption as the angle varies from 𝜃  to 

𝜃 + 𝑑𝜃 as follows 
 

𝐸3 = 2𝜋𝑆𝑦 𝑙2𝑡 (7) 
 

The total energy absorbed during the generation of one 

complete wrinkle is 𝐸𝑇 = 𝐸1 + 𝐸2 + 𝐸3 and so 
 

𝐸𝑇 =
2𝜋

 3
𝑆𝑦𝑡2 𝜋𝑅 + 𝑙 + 2𝜋𝑆𝑦 𝑙2𝑡 (8) 

 
Where t, Sy, l, and R are thickness, yield strength, length 

of the plastic hinge, and radius of the cylinder, respectively. 

Eqs. (3)-(8) have been considered based on the following 

reference (Ambrosio 2001). 

Moreover, the average crush force of empty tubes can be 

derived from (Hanssen et al. 2000) 
 

𝑃𝑚𝑒𝑎𝑛 = 𝑘𝐷𝑆𝑦(2𝑅)
1

3 𝑡
5

3  (9) 

 

Where 𝑘𝐷is a dimensionless constant equal to 17. Using 

the same parameters for the finite element method, and the 

theoretical models as 𝑡 = 2.5 mm, 𝑆𝑦 = 86.94 Mpa, 𝑅 =

90 mm, the total values of energy absorption and mean 

crushing force by the two methods are illustrated in Table 2. 

 

2.4 Experimental verification of model 
 

The validation of the finite element model is also 

performed using an experimental test (Zarei and Kröger 

Table 2 Theoretical and FEM values for EA and Pmean 

 FEM 
Refs. 

(Hanssen et al. 2000) 

Energy absorption (J) 1294.2 1143.011 

𝑃𝑚𝑒𝑎𝑛 (kN) 34.41 38.43 
 

 

 

 

Fig. 5 Comparison of the deformed shapes between finite 

element method (FEM) solution and experiment 

(Zarei and Kröger 2006) 

 

 

2006). An aluminium tube with material properties are 

defined in the reference (Zarei and Kröger 2006). From Fig. 

5, the deformation patterns are similar in both finite element 

simulation and experimental result. The force-displacement 

curves for both the experimental test and the finite element 

model are provided in Fig. 6. The values of total energy 

absorption and mean crashing force are also shown in Table 

3. 

An additional validation for FEM frusta model with the 

results of Mamalis et al. has been made (Mamalis et al. 

2005). To this end, the aluminum alloy 6061-T6 is 

considered for the material of energy absorber with a 

 

 

 

Fig. 6 Force-displacement curves for experimental test 

(Zarei and Kröger 2006) and finite element solution 
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Table 3 Experimental (Zarei and Kröger 2006) and FEM values 

for energy absorption and mean crushing force 

 FEM Experimental 

Energy absorption (J) 1000 998 

𝑃𝑚𝑒𝑎𝑛  (kN) 11.98 13.03 

PCF (kN) 24.70 24.28 
 

 

 

 
 

 

Fig. 7 Comparison of the deformed shapes between FEM 

frusta model and experiment(Mamalis et al. 2005) 
 

 

geometric specifications of a tapered angle (𝛼 = 10°) , 

height (𝐻 = 127.1 𝑚𝑚) , thickness (𝑡 = 0.48 𝑚𝑚)  and 

radius of tapered (𝑅 = 63.6 𝑚𝑚). It should be note that in 

the simulation, the crushing condition is considered as a 

quasi-static and the rigid wall velocity has a constant value 

during the crushing (𝑉 = 1
𝑚

𝑠
). Also, static and dynamic 

friction coefficient equals to 0.3 and 0.2, respectively. As it 

is shown in Fig. 7, the deformed shapes of present frusta 

model are in a good agreement with experimental results. 

Results of the initial peak force are tabulated in Table 4. 

As another validation for frusta, the present frusta model 

has been compared with those reported by Gupta et al. 

(2006). The Aluminum alloy with multi-linear plastic curve 

is considered for the material of energy absorber (Yield 

stress = 55 Mpa, Young’s modulus = 70 Gpa, Tangent 

modulus = 4213 Mpa). The specimen No. C25 with a 

geometric specifications of semi-apical angle (α = 23°), 

height (𝐿 = 88.10 mm), thickness (𝑡 = 0.7 mm) and base 

diameter (𝐷 = 165 mm) is chosen to configure the FEM 

model. It should be note that in the present simulation, the 

crushing condition is considered as a quasi-static and the 

rigid wall velocity has a constant value during the crushing 

(𝑉 = 0.1
m

s
, 𝑡 = 0.1 sec, crush displacement = 10 mm.). 

 

 
Table 4 Comparison of experimental (Mamalis et al. 2005) and 

FEM values for frusta initial peak force 

 FEM 
Experimental 

(Mamalis et al. 2005) 

Initial peak force (kN) 3.09 3.6 

Total energy absorption (kJ) 2.14 2.50 
 

Also, static and dynamic friction is considered as 0.1 in this 

simulation. The Plastic energy absorption and peak initial 

force of simulated model are 46.5 J and 4.23 kN 

respectively, while the same parameters reported by Gupta 

et al. are 45 and 4.19 kN. It is clearly found to be a good 

agreement with results of Gutpa et al. (2006). 
 

 

3. Design of experiments and surrogate modelling 
 

3.1 Design of experiments 
 

Design of experiments (DOE) is a strategy to allocate 

and determine the input data in design space with the aim of 

maximizing the amount of recognition and having more 

information on the problem (Park 1994).Within the input 

data (training sample points), a function or a model is 

released. These sample points are trained by the surrogate 

model to predict the demanded responses. In this paper, for 

the FNN, RNN, and the Kriging surrogate models, the input 

data is 100 sample points, and the Latin Hypercube 
 

 

 

Fig. 8 Process of DOE and optimization using different 

meta-models 

 

 
Table 5 Latin Hypercube sample points 

point H R t α (º) r 
SEA 

(kJ/kg) 

PCF 

(N) 

1 151.52 147.42 2.8 83.94 4.34 1.25 175760 

2 139.39 123.18 1.99 84.55 7.09 2.46 80559.88 

… 
       

99 309.09 98.94 1.59 79.7 9.76 2.12 50294.32 

100 169.23 185 1.94 72.69 7.54 1.42 68307.76 
 

*Note: All dimensions are in mm 
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Fig. 9 Deformed shapes of sample points 1 and 2 

 

 

Sampling (LHS) DOE method is applied. Based on the 

iterative procedure, we found that the required number of 

input data points for the second order RSM method is 27. 

The flowchart of surrogate-based optimization integrated 

with DOE is shown in Fig. 8. Table 5 and Fig. 9 show the 

geometry parameters and deformed shapes of sample points 

1 and 2 of the following input data. The number of sample 

points and further details with respect to DOE are provided 

in Appendix A. 
 

3.2 Surrogate modelling 
 

Surrogate modelling is an engineering method that is 

used when evaluating outputs are not possible because of 

the complexity of the problem and high computational 

costs. Meta-models predict responses by means of training 

sample points, and then training the functions to fit on the 

input data. In this paper, Kriging, second order RSM, FNN 

and RNN are utilized for multi-objective and single-

objective optimization. 

 

3.2.1 Response surface methodology 
One of the engineering methods in surrogate modelling 

is the 2nd order response surface methodology. The 

following equations demonstrate the quadratic form of this 

method with respect to the present problem variables 

(Myers et al. 2009) 

 

𝑓 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5  

= 𝐶0 + 𝐶1𝑥1 + 𝐶2𝑥2 + ⋯ + 𝐶6𝑥1
2 + ⋯ 

+𝐶11𝑥1𝑥2 + ⋯ + 𝐶20𝑥4𝑥5 

(10) 

 

where𝑓 is the predicting function, 𝐶𝑖  are the coefficients 

and 𝑥𝑖are the design variables, and 𝑥1 to 𝑥5 are H, R, 

t, 𝛼, and r, respectively. After the determination of 

coefficients, the function is employed in the optimization 

algorithm. The coefficients are illustrated in Table 6 and the 

process of coefficient determination is provided in 

Appendix B. According to Table 6, thickness, tapered 

Table 6 Coefficients of RSM method for SEA (kJ/kg) and PCF 

(N) functions 

Coeff. 
SEA 

(kJ/kg) 

PCF 

(N) 
Coeff. 

SEA 

(kJ/kg) 

PCF 

(N) 

 𝑪𝟎  1.91 45.23  𝑪𝟏𝟏  0.15 11.80 

 𝑪𝟏  1.141 11.73  𝑪𝟏𝟐  0.65 0.64 

 𝑪𝟐  1.78 26.72  𝑪𝟏𝟑  0.45 10.49 

 𝑪𝟑  2.11 35.95  𝑪𝟏𝟒  0.12 2.28 

 𝑪𝟒  0.86 31.36  𝑪𝟏𝟓  0.94 36.15 

 𝑪𝟓  0.04 -5.73  𝑪𝟏𝟔  0.66 17.51 

 𝑪𝟔  0.80 4.01  𝑪𝟏𝟕  0.01 20.18 

 𝑪𝟕  0.93 14.23  𝑪𝟏𝟖  0.29 37.85 

 𝑪𝟖  1.13 14.37  𝑪𝟏𝟗  0.07 26.68 

 𝑪𝟗  0.07 28.77  𝑪𝟐𝟎  0.03 29.65 

 𝑪𝟏𝟎  0.08 6.03    
 

 

 

radius, and height are important variables for SEA since 
 𝐶3 ,  𝐶2 ,  and  𝐶1  have higher magnitudes than other 

coefficients. Besides, thickness is an effective design 

variable for the PCF, especially in terms such as 𝑥3 × 𝑥4 

and 𝑥3 × 𝑥2. 

 

3.2.2 Radial basis neural network 
All the training sample points are implemented in the 

neural network MATLAB toolbox. The radial basis network 

type has one layer containing 100 neurons and the spread 

constant is defined as 1.0. Appendix B provides descriptive 

details for this section. 

 

3.2.3 Feed forward neural network 
In this study, the training sample points are processed by 

a hidden layer of 10 neurons. All training procedures are 

performed in the MATLAB Neural Network toolbox with 

the configuration of Bayesian regularization for the training 

algorithm. To this end, 70% of sample points are trained, 

and subsequently, 15% are validated to measure network 

generalization; the remaining 15% are tested to verify the 

network performance. 

 

3.2.4 Kriging method 
Due to the high accuracy in predicting nonlinear 

problems, this method has been utilized frequently in recent 
years (Esfahlani et al. 2013, Gu et al. 2017). In this method, 

the target responses are simulated by a major function 𝑓 

and a residual function 𝑍. The following equation illustrates 

the overall form of Kriging formulation (Koziel et al. 2011) 

 
𝑠 𝑥 = 𝑓 𝑥 + 𝑍 𝑥  (11) 

 
All training sample points are implemented in the Dace 

Kriging toolbox (Lophaven et al. 2002). In this study, 𝑓 is 

considered as a 2nd order polynomial function and the 

Gaussian function is used as the correlation. The descriptive 

details about the Kriging method are included in Appendix 

B. 
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4. Numerical results 
 
In this part, the fitting quality of surrogate models in 

training sample points and surrogate-based optimizations 

using different surrogate models are carried out. Moreover, 

in the last section, the effects of the indentation’s shape are 

investigated to predict the crushing modes. 

 

4.1 Performance of metamodels 
 

The mean squared error (MSE) is selected to 

demonstrate the differences between approximated outputs 

(meta-models) and finite element solutions. The MSE 

values are normalized as follows 

 

𝑀𝑆𝐸 =
1

𝑁
  𝑦𝑚𝑒𝑡𝑎𝑚𝑜𝑑𝑒𝑙 − 𝑦𝑟𝑒𝑎𝑙  2

𝑛=𝑁

𝑛=1

 (12) 

 

𝑁𝑀𝑆𝐸 =
𝑀𝑆𝐸

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑀𝑆𝐸
 (13) 

 

where 𝑁  is the number of training sample points, 

𝑦𝑚𝑒𝑡𝑎𝑚𝑜𝑑𝑒𝑙 includes the values of the SEA- and PCF-

approximated functions, and 𝑦𝑟𝑒𝑎𝑙 refers tofinite element 

solutions. Results for MSE and NMSE in the SEA and the 

PCF functions are available in Tables 7 and 8. 

According to Tables 7 and 8, FNN and RNN have the 

maximum and the minimum NMSE, respectively. However, 

RNN, as the most accurate meta-model, does not 

necessarily lead to global optimum results. 

 

4.2 Optimization problems 
 

Single- and multi-objective optimization procedures are 

performed to maximize the SEA and the PCF. All single- 

and multi-objective optimization formulations are 

implemented in the MATLAB optimization toolbox based 

on the Genetic Algorithm (GA) and the Non-dominated 

Sorting Genetic Algorithm (NSGA-II), respectively. For 

single-objective optimization, a population size of 100 and 

 

 
Table 7 MSE and NSME of SEA surrogate models 

Metamodel MSE NMSE 

Kriging 1.24 × 10−29 1.61 × 10−27 

RNN 1.05 × 10−29 1.37 × 10−27 

FNN 77 × 10−4 1 

RSM 2 × 10−3 2.60 × 10−1 
 

 

 
Table 8 MSE and NSME of PCF surrogate models 

Metamodel MSE NMSE 

Kriging 2.73 × 10−29 1.58 × 10−27 

RNN 2.84 × 10−30 1.65 × 10−28 

FNN 1.72 × 10−2 1 

RSM 0.78 × 10−2 4.53 × 10−1 
 

a convergence tolerance of 1 × 10−6 are assumed. 

Moreover, in the multi-objective problem, the population 

size is 300 and the convergence tolerance is constant (as 

assumed before). For single objective optimization of GA, 

the algorithm stops if the average relative change in the best 

fitness function value over maximum generation is less than 

or equal to function tolerance. For the multi objective 

optimization of GA, the algorithm stops if the spread, a 

measurement of the movement of the Pareto front, is equal 

or less than function tolerance. It is to be noted that in multi 

objective GA algorithm the spread is a measure of the 

movement of the points on the Pareto front between the 

final two iterations. 

 

4.2.1 Single-objective optimization for SEA 
Single-objective optimization problem using the 

mentioned meta-models is formulated as follows 
 

Find  x = (H, R, t, α, r) 

Minimize 𝑓1 = −𝑆𝐸𝐴 𝑥  

Subjected to: 

100 ≤ 𝐻 (𝑚𝑚) ≤ 400 

65 ≤ 𝑅(𝑚𝑚) ≤ 185 

0.5 ≤ 𝑡(𝑚𝑚) ≤ 3 

60 ≤ 𝛼(𝑑𝑒𝑔𝑟𝑒𝑒) ≤ 90 

2 ≤ 𝑟(𝑚𝑚) ≤ 10 
𝐻

𝑅
> tan 𝛼 

 

Linear constraints limit the design space to the bounds 

of design variables and a nonlinear constraint is imposed to 

form a frustum. Here, a new approach has been considered 

to test the surrogate functions’ suitability in fitting the 

optimum solutions. To this end, the optimum values of 

variables (x1 to x5) are imported to the finite element code 

and the corresponding results are illustrated in Figs. 10 and 

11. The results indicate that the SEA optimum values based 

on Kriging, RSM, and FNN functions are greater than the 

RNN method, however, the RNN method has the minimum 

NMSE in training points. 

 

4.2.2 Single-objective optimization for PCF 
To minimize the PCF, the single-objective optimization 

is performed in a manner similar to Section 4.2.1, and the 

 

 

 

Fig. 10 SEA optimum values of surrogate models 
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Fig. 11 FE deformed shapes of SEA optimum points 

 

 

 

Fig. 12 PCF optimum values of surrogate models 

 

 

optimum results are shown in Fig. 12. Results indicate that 

the PCF optimum values based on FNN function is less 

than the other surrogate models; however, the FNN has the 

maximum NMSE in training points. The finite element 

deformed shapes of the PCF optimum point are shown in 

Fig. 13. 

 

4.2.3 Multi-objective optimization for PCF and SEA 
In this paper, the energy absorption capacity and the 

peak crushing force are optimized simultaneously. To this 

end, multi-objective optimization with the mentioned 

constraints in Section 4.2.1 is carried out as follows 

 

Find  𝑥 =  (𝐻, 𝑅, 𝑡, 𝛼, 𝑟) 

Minimize 𝑓 =  𝑓1 = −𝑆𝐸𝐴 𝑥 𝑎𝑛𝑑𝑓2 = 𝑃𝐶𝐹 𝑥  . 

 

Fig. 13 Finite element deformed shapes of PCF optimum 

points 

 

 

Based on the NSGA-II, the Pareto points are evaluated 

to solve the multi-objective optimization problem. The last 

generation of multi-objective optimization in each of the 

meta-models are shown in Fig. 14. 

From Fig. 14, three candidate points of RSM, FNN and 

RNN-based multi-objective optimization have been chosen 

as the samples of optimum solutions (𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖). Herein, 

𝑖 = 1, 2, 3  denotes to the RSM, FNN and RNN, 
respectively. These points are implemented in finite element 

code and the values of the SEA and the PCF are shown in 

Table 9. Deformed shapes of RSM candidate points (𝐴1, 

𝐵2, 𝐶3) have been shown in Fig. 15. 

 

4.2.4 Optimization of indentation’s shape 
In this section, to investigate the effect of the 

indentation’s shape on the crushing behaviour of energy 

absorbers, triangular, squared, hexagonal, and circular 

indentation shapes are considered. To this end, similar tube 

geometries (t = 2 mm, α = 85, R = 75, H = 180 mm) with 

the mentioned shapes of indentation have been modelled in 

the finite element code. According to the Figs. 16 and 17, 

the SEA and the PCF values for the shapes of indentation 

and the force-displacement curves are illustrated, 

respectively. 

As shown in Figs. 16 and 17, the PCF value of the 
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Fig. 14 Last generation of surrogate based multi-objective 

optimization 

 

 

𝐴1 

 

𝐵2 

 

𝐶3 

  

Fig. 15 Finite element deformed shapes of RSM candidate 

points 𝐴1, 𝐵2 and 𝐶3 

 

 
 

 

Fig. 16 SEA and PCF values based on indentation’s shapes 
 

 

 

Fig. 17 Force-displacement curves based on the 

indentation’s shape 
 

 

hexagonal shape is greater than the other shapes, possessing 

a smoother fluctuation of the force-displacement curve in 

comparison. In addition, the SEA value of the triangular 
 

 

Table 9 Candidate points of RSM, FNN and RNN-based multi-objective optimization 

Meta- 

model 

Pareto 

point 
𝑥1 

(mm) 
𝑥2 

(mm) 
𝑥3 

(mm) 

𝑥4 

(°) 

𝑥5 
(mm) 

Mass 

(kg) 

Metamodel FEM model 

PCF 

(kN) 

SEA 

(kJ/kg) 

PCF 

(kN) 

SEA\ 

(kJ/kg) 

Plastic 

energy (J) 

RSM 

𝐴1 283.54 100.96 0.52 78.26 2.13 0.184 10.00 5.53 13.75 4.08 751.26 

𝐵1 279.88 100.77 0.51 78.21 2.12 0.178 10.01 5.60 13.51 4.40 786.30 

𝐶1 282.95 103.72 0.52 78.19 2.11 0.190 10.06 5.41 13.82 4.00 763.14 

FNN 

𝐴2 259.96 66.32 0.5 80.51 8.13 0.102 17.71 8.45 17.14 7.85 801.85 

𝐵2 249.4 68.17 0.5 81.12 8.24 0.106 18.52 8.39 18.53 8.09 865.88 

𝐶2 246.47 66.54 0.5 80.2 7.8 0.098 17.88 8.48 17.58 9.12 898.17 

RNN 

𝐴3 251.65 96.06 0.61 78.2 7.35 0.190 17.18 6.41 17.03 5.73 1093.50 

𝐵3 262.15 67.8 0.61 80.33 4.51 0.127 9.79 5.70 11.63 6.25 795.71 

𝐶3 253.61 86.34 0.55 78.73 7.38 0.151 15.22 6.98 14.02 6.27 948.50 
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Fig. 18 Finite element deformed shapes of tapered 

tube for indentation shapes 
 

 

 

Fig. 19 Variation of internal energy versus crushing distance 

for indentation’s shapes 

 

 

shape is higher than the other indentations shapes because 

of the symmetric crushing mode that occurs during impact 

loading. The circular shape of indentation has the smallest 

value of the PCF because it leads to a diamond three-lobe 

crushing mode. The finite element deformed shapes of the 

tapered tube with different indentation shapes are illustrated 

in Fig. 18. A better understating of force-displacement 

curves can be obtained from internal energy-displacement 

curves, which are depicted in Fig. 19. It should be noted 

that ignoring geometrical perturbation, numerical methods 

only predict the axisymmetric collapsing mode while 

considering the effect of the imperfection, the crushing 

mode would be axisymmetric. (Baykasoglu and Cetin 

2015). 

 

 

5. Conclusions 
 

In the present study, optimization of indented conical 

thin-walled tubes considering comparison between four 

metamodels including Kriging, the Feed Forward Neural 

Network (FNN), the Radial Basis Neural Network (RNN), 

and the 2nd order Response Surface Method (RSM) have 

been investigated. The model has been validated based on 

two theoretical solutions as well as an experimental test. 

Evolutionary algorithms (Genetic Algorithm (GA) and Non-

dominated Sorting Genetic Algorithm (NSGA-II)) have 

been utilized for single- and multi-objective optimization 

procedures. In addition, with regard to the importance of 

crushing modes inpredicting the folding mechanism, the 

effect of indentation’s shape on crushing has been 

investigated. The main results can be summarized as 

follows: 
 

 Based on the RSM coefficients, thickness, tapered 

radius, and height are important variables for 

specific energy absorption (SEA). Meanwhile, 

thickness is an effective design variable for the peak 

crushing force (PCF), especially when it is 

considered concurrently with design variables 

including tapered angle and tapered radius. 

 In the single-objective optimization problems, the 

RNN method has the lowest NMSE in training 

sample points while it does not exhibit a good fit 

with optimum points (with a lower value of 125.7% 

for SEA and a higher value of 56.8% for PCF). 

 In terms of SEA (single-objective optimization), the 

Kriging, the FNN and the RSM methods exhibit 

almost a similar fitting on optimum points, however, 

the Kriging method shows a lower MSE than the 

other two methods (error order of10−29). 

 In the single-objective optimization for the PCF, the 

FNN method shows a better fitting on optimum 

points in comparison with the other three methods 

(49% lower than the RNN method). 

 Indentation shape plays an essential role in crushing 

characteristics (SEA and PCF) and can lead to 

different crushing modes. It is also concluded that 

the triangular shape of indentation can lead to an 

axisymmetric crushing mode and increase the value 

of SEA by 17.6%. Moreover, the circular shape of 

indentation minimizes the PCF by 24.6%, leading to 

a three-lobe diamond mode. 
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Appendix A. Design of experiments 
 

Design of experiments is a well-established and rigorous 

approach to engineering problems that applies principles 

and techniques at the design space so as to generate 

interpreting sets of experiment that ensure validity and 

reliability of engineering conclusions. Many types of DOE 

have been utilized during the increasingly growth of 

engineering concerns including full factorial, fractional 

factorial, central composite designs, Box-Behnken and 

Latin Hypercube sampling (LHS). First step in LHS method 

is to specify number of sample points then divide the design 

space and put sample points into divisions based on Latin 

Square method which was inspired by Euler (Wallis and 

George 2010). LHS sample points for FNN, RNN and 

Kriging are shown in the following table (Table A1). 

 

 

 
Table A1 Sample points based on Latin Hypercube sampling 

method 

Number H R t α r 

1 151.52 147.42 2.8 83.94 4.34 

2 139.39 123.18 1.99 84.55 7.09 

3 290.91 130.45 1.61 67.84 6.69 

4 239.39 177.73 1.54 63.94 9.6 

5 354.55 78.33 1.28 79.54 3.62 

6 209.09 131.67 2.14 76.67 2.32 

7 327.27 137.73 1.03 90 5.39 

8 145.45 68.64 1.96 79.09 4.67 

9 227.27 165.61 2.27 60.3 2.97 

10 318.18 134.09 1.91 89.39 9.19 

11 324.24 109.85 2.09 73.28 9.92 

12 112.12 160.76 1.26 72.12 2.4 

13 175.76 75.91 1.08 85.45 6.53 

14 212.12 108.64 2.65 64.88 8.71 

15 336.36 81.97 2.6 86.36 8.55 

16 166.67 121.97 1.79 61.21 5.07 

17 393.94 124.39 2.17 76.97 7.82 

18 136.36 185 2.7 65.15 8.79 

19 375.76 149.85 0.9 72.73 2.57 

20 269.7 120.76 2.55 87.27 3.7 

21 293.94 145 2.77 75.76 5.56 

22 263.64 73.48 1.36 76.42 8.95 

23 215.15 171.67 1.16 77.88 9.84 

24 378.79 159.55 1.74 68.48 9.27 

25 230.3 83.18 2.12 88.48 6.28 

26 369.7 161.97 0.78 69.09 7.01 

27 203.03 166.82 1.43 67.88 5.96 

28 233.33 125.61 2.72 81.52 8.22 

29 372.73 97.73 2.07 85.15 5.23 

⁞      

99 309.09 98.94 1.59 79.7 9.76 

100 169.23 185 1.94 72.69 7.54 
 

Appendix B. Surrogate models 
 

B.1 Response surface methodology 
 

For the determination of 𝐶 matrix of coefficient the 

linear algebraic operations are applied. Overall form of 2nd 

order RSM are as followed in which 𝑓  is predicting 

response function and 𝑥 is design variables vector, 𝑥𝑖  is 

design variables and 𝑙 is the number of design variables 

(Myers et al. 2009). 
 

𝑓(𝑋) = 𝐶0 +  𝐶𝑖𝑥𝑖

𝑙

𝑖=1

+  𝐶𝑖𝑖𝑥𝑖
2

𝑙

𝑖=1

+   𝐶𝑖𝑗 𝑥𝑖𝑥𝑗

𝑙

𝑗 =𝑖+1

𝑙−1

𝑖=1

 

𝑥 = [𝑥1𝑥2𝑥3 …𝑥𝑙] 

(B1) 

 

In order to follow up the procedure it is required to 

make a response matrix 𝑦 with the dataset taken by DOE 

in which the 𝑦𝑖  corresponds to response of ith design 

vector. 

𝑦 =  

𝑦1𝑡𝑕 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒

𝑦2𝑒𝑑  𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒  

⋮
  

 

𝑈 =  1  𝑥1𝑥2 …   𝑥1
2𝑥2

2  …  𝑥1𝑥2  …  𝑥1𝑥3 …    
 

𝐶 = (𝑈′𝑈)−1𝑈′𝑦 

(B2) 

 

B.2 Radial basis neural network 
 

In this method the procedure of training is conducted in 

the following two levels. Level one is considered for the 

calculation of weights through input layers and hidden 

layers. In the second level corresponding to the calculated 

weights, the new connecting weights between hidden layers 

and outputs, should be obtained. The Radial function of 

Neural Network 𝑓 𝑥  is mentioned as follows (MacLeod 

2010) 

𝑓 𝑥 =  𝑤𝑖∅ 𝑟 

𝑙

𝑖=1

 

𝑟 =  𝑥 − 𝑐𝑖  

(B3) 

 

in which 𝑐𝑖  are first layer weights, 𝑤𝑖 are connection 

weights from hidden layer to output, ∅  is activation 

function that should be radially symmetric. 
 

B.3 Kriging method 
 

In Kriging method, the main structure is based on the 

1st or 2nd order polynomial which completely predicts such 

as the response surface method. The residual part of Kriging 

functions 𝑍, is more complicated than the main part, and is 

based on Gaussian random distribution with zero value of 

mean and non-zero values of variance and covariance, 

which are defined as follows 
 

𝐶𝑜𝑣[𝑍(𝑥𝑖  )𝑍(𝑥 𝑗  )] = 𝜎2𝑅 (   𝑅 𝑥𝑖   , 𝑥 𝑗    ) (B4) 
 

In the equation, 𝑅  is variables correlation and 

𝑅(𝑥𝑖 , 𝑥 𝑗  )  is correlation function through two sample 

points 𝑥𝑖and 𝑥 𝑗 . In this study, the correlation function is 

assumed as Gaussian distribution (Koziel et al. 2011). 
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