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1. Introduction 

 

Pressure vessels represent one of the most important 

elements of mechanical engineering equipments, since they 

are used as storage of pressurized gases or liquids. To 

design these structures, it is necessary to compute the stress 

distribution in cylinders. To this end, despite most 

researchers have used a one-dimensional symmetric 

analysis to compute stresses or strains, the available 

investigations recommend two-dimensional analyses to 

achieve higher quality predictions, especially at the 

cylinders boundaries. In addition, it is well known from the 

literature that a CNTs reinforcement of materials, increases 

the effective stiffness of FG-CNTRC cylindrical pressure 

vessels significantly. Thus, in this work we develop a two-

dimensional analysis based on the FSDT for FG-CNTRC 

cylindrical pressure vessels subjected to thermal and 

mechanical loads. The CNTs, as reinforcement, can also 

improve the strength properties of a cylindrical shell. An 

interesting literature review on the topic is presented in the 

following before showing the main novelties of the 

proposed investigation. 

In a recent work by Alibeigloo (2014), the free vibration 

behavior of FG-CNTRC cylindrical panels embedded in 
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piezoelectric layers was investigated in a parametric form, 

while examining the effect of the volume fraction and 

distribution of CNTs, as well as the effect of the 

piezoelectric layer thickness, mean radius-to-thickness ratio 

and modes number, on the vibration behavior of hybrid 

cylindrical panels. Shen and Xiang (2012) presented a 

parametric nonlinear vibration analysis of CNTRC 

cylindrical panels resting on an elastic foundation in a 

thermal environment, where the equations of motion were 

solved with an improved perturbation technique, according 

to a micro-mechanical model and multi-scale approach. In 

line with this work, Arefi et al. (2016a) studied the thermo-

mechanical properties of FG cylindrical shells resting on a 

Pasternak foundation, as highly required for Micro-Electro-

Mechanical Systems (MEMS) and Nano-Electro-

Mechanical Systems (NEMS) devices. Their results were 

based on the FSDT, and demonstrated that an increased 

non-homogeneous index yields to a decrease of the radial 

and axial displacement. The thermopiezoelectric behavior 

of a thick walled cylinder with FG materials was also 

studied by Khoshgoftar et al. (2009) through a systematic 

investigation, in terms of stress distribution, electric 

potential and electric field in sensors or actuators. In a 

recent work, Kiani (2017) has investigated the postbuckling 

problem of CNTRC plates subjected to a uniform thermal 

loading. Among different possible distributions of CNTs, he 

found that a FG-X pattern leads to a higher buckling 

temperature and a decrease of the postbuckling deflection of 

plates. In addition, Nguyen et al. (2017) recently studied the 

nonlinear dynamics and vibrations of FG-CNTRC shear 
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deformable circular cylindrical shells with temperature 

dependent material properties, based on a higher-order 

shear deformation theory (HSDT). Arefi et al. (2016b) 

studied the thermoelastic behavior of a FG cylindrical 

pressure vessel, whose response was particularly affected 

by the boundary conditions. A FSDT was also applied by 

Zhang et al. (2014) for a parametric static and dynamic 

analysis of CNTRC cylindrical panels, under different 

boundary conditions and types of distributions of CNTs. A 

further application of the FSDT shell theory was found in 

Asadi et al. (2017), where the aerothermoelastic response of 

supersonic FG-CNTRC flat panels with temperature-

dependent properties was demonstrated to be strictly 

dependent on the distribution and volume fraction. For an 

interesting review on the structural behavior of FG-CNT 

composites, the reader is also referred to a recent work by 

Liew et al. (2015). Different HSDTs have been recently 

applied and compared to the FSDT shell theory, in a 

combined form with the GDQ approach for the study of the 

static and dynamic response of composite plates and shells 

of arbitrary shapes reinforced by agglomerated 

nanoparticles made of CNTs (see Tornabene et al. 2009, 

2011, Tornabene and Ceruti 2013, Fereidoon et al. 2011, 

Tornabene and Ceruti 2013, Tornabene and Viola 2013, 

Kamarian et al. 2016, Tornabene et al. 2014, 2016, 2017, 

2018, Liu et al. 2016, Banić et al. 2017, Fantuzzi et al. 

2017, Nejati et al. 2017a, b, among others). Some 

interesting parametric studies about the free vibrations of 

composite plates are presented in Mohammadzadeh-

Keleshteri et al. (2017) for annular sector plates with 

surface-bonded piezoelectric layers, as well as in Arefi et al. 

(2011), Arefi and Rahimi (2011b), Rahimi et al. (2012), 

Arefi and Rahimi (2014), Arefi and Khoshgoftar (2014), 

Yue et al. (2014), for FG cylinders with thermo-magneto-

mechanical loadings. Similar problems for shells and plates 

have been successfully treated in the literature by applying 

advanced numerical procedures, based on the Ritz method, 

the meshless method, or the discrete singular convolution 

method (see Civalek 2008, Gürses et al. 2009, Baltacioglu 

et al. 2010, Akgoz and Civalek 2013, Ye et al. 2014, Xin 

and Hu 2016). Arefi and Rahimi (2011b, 2012b) studied 

nonlinear analysis of FG square and circular plates based on 

Kirchhoff plate theory. A power-law distribution was 

assumed to include the variation of all mechanical and 

electrical material properties. A complete set of governing 

equations of motion were derived based on piezo-magnetic 

relations and tensor analysis in curvilinear coordinate 

system for a FG shell of revolution by Arefi (2014). The 

literature survey reveals, however, that the analysis of 

thermo-mechanical loading of pressurized FG-CNTRC 

cylinders is less taken into consideration. Due to the lack of 

information about this aspect, we develop herein a two-

dimensional thermo-elastic analysis of pressurized FG-

CNTRC cylindrical shells based on the FSDT approach. 

The cylindrical shells are here reinforced by CNTs, where 

two different distributions are assumed along the thickness 

direction. The governing equations are derived based on the 

principle of virtual works, whereas the eigenvalue problem 

is employed to derive the homogeneous solution. A 

parametric investigation is performed numerically to study 

the effect of different volume fractions and patterns of 

CNTs on the global structural response in terms of 

displacements, rotations, as well as in terms of axial, radial 

and circumferential stresses and strains. This is of extreme 

importance for practical industry applications and 

optimizations design. The remainder of this work is 

organized as follows: the problem formulation is first 

reviewed together with the basic equations and material 

properties in Section 2. The homogeneous solution 

procedure is briefly reported in Section 3, whereas the 

numerical results are presented and discussed in Section 4. 

Finally, conclusions are drawn in Section 5. 

 

 

2. Problem formulation 
 

Let consider a CNTRC cylindrical shell with geometry 

and dimensions as shown in Fig. 1. The CNT volume 

fraction is assumed to vary along the thickness to form a FG 

structure, according to different distribution patterns (see 

Fig. 2). For each distribution, the CNT volume fraction is 

mathematically defined as (see Wang et al. 2017a, 

Alibeigloo and Pasha Zanosi 2017) 
 

 
 
 
 

 
 
 
𝑝𝑎𝑡𝑡𝑒𝑟𝑛 1     𝑉𝐶𝑁𝑇 = 𝑉𝐶𝑁𝑇

∗                                                  𝑈𝐷

  𝑝𝑎𝑡𝑡𝑒𝑟𝑛 2     𝑉𝐶𝑁𝑇 = 2  
𝑟 − 𝑅


+ 0.5 𝑉𝐶𝑁𝑇

∗               𝐹𝐺 − ∇

   𝑝𝑎𝑡𝑡𝑒𝑟𝑛 3     𝑉𝐶𝑁𝑇 = 2  −
𝑟 − 𝑅


+ 0.5 𝑉𝐶𝑁𝑇

∗          𝐹𝐺 − ∆

   𝑝𝑎𝑡𝑡𝑒𝑟𝑛 4     𝑉𝐶𝑁𝑇 = 4 
 𝑟 − 𝑅 


 𝑉𝐶𝑁𝑇

∗                      𝐹𝐺 − 𝑋

  (1) 

 

where 𝑟 and 𝑅 refer to a general radius and the mean 

radius of the cylinder, respectively, and 𝑉𝐶𝑁𝑇
∗  is the 

effective volume fraction computed as (Shen 2011, 2014, 

Alibeigloo and Pasha Zanoosi 2017, Fallah et al. 2017, 

Zghal et al. 2017) 
 

𝑉𝐶𝑁𝑇
∗ =

𝑊𝐶𝑁

𝑊𝐶𝑁 +  
𝜌𝐶𝑁

𝜌𝑚
 −  

𝜌𝐶𝑁

𝜌𝑚
 𝑊𝐶𝑁

 (2) 

 

In Eq. (2), 𝑊𝐶𝑁 is the mass fraction of the CNTs, and 

𝜌 refers to the density. In addition, the subscripts “CN” and 

“m” stand for CNTs and matrix, respectively. 

 

 

 

Fig. 1 Geometry of the CNTRC cylindrical shell 
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2.1 Effective material properties 
 

The effective Young’s modulus and shear modulus of 

the FG-cylindrical shell are here computed by using the rule 

of mixtures as follows (Shen 2014, Alibeigloo and Pasha 

Zanoosi 2017, Fallah et al. 2017, Zghal et al. 2017) 
 

𝐸11 = 𝜂1𝑉𝐶𝑁𝑇𝐸11
𝐶𝑁𝑇 + 𝑉𝑚𝐸

𝑚  (3) 

 
𝜂2

𝐸22
=
𝑉𝐶𝑁𝑇

𝐸22
𝐶𝑁𝑇 +

𝑉𝑚
𝐸𝑚

 (4) 

 
𝜂3

𝐺12
=
𝑉𝐶𝑁𝑇

𝐺12
𝐶𝑁𝑇 +

𝑉𝑚
𝐺𝑚

 (5) 

 

where 𝜂1,  𝜂2,  𝜂3, are the well-known efficiency 

parameters, 𝑉𝑚  is the volume fraction of the matrix, 𝐸𝑚 , 

𝐸11
𝐶𝑁𝑇 , 𝐸22

𝐶𝑁𝑇  and 𝐺12
𝐶𝑁𝑇  are the elastic moduli of the matrix 

and of the CTNs, respectively. The volume fractions of the 

CNT and matrix are related by the following expression 
 

𝑉𝐶𝑁𝑇 + 𝑉𝑚 = 1 (6) 
 

while the density 𝜌 and the Poisson’s ratio 𝜈12 of the FG-

cylindrical shell are defined as 
 

𝜌 = 𝑉𝐶𝑁𝑇𝜌
𝐶𝑁𝑇 + 𝑉𝑚𝜌

𝑚  (7) 

 

𝜈12 = 𝑉𝐶𝑁𝑇𝜈12
𝐶𝑁𝑇 + 𝑉𝑚𝜈

𝑚  (8) 
 

The other effective mechanical properties are reported 

below in terms of elastic modulus, shear modulus and 

Poisson’s ratio, namely 
 

𝐸33 = 𝐸22  ,𝐺13 = 𝐺12  , 𝜈31 = 𝜈21  , 𝜈32 = 𝜈21 (9) 

 

2.2 Basic equations 
 

In this study, the FSDT is employed to describe the 

displacement field of the cylinder in terms of deformation 

 

 

 

Fig. 3 Scheme of a cylindrical pressure vessel resting on 

Pasternak’s foundation 
 

 

of the mid-surface and rotation about its outward axis 

(Nejad et al. 2015, Wang et al. 2017b) 
 

 
𝑢𝑥
𝑤𝑧
 =  

𝑢
𝑤
 + 𝑧  

𝜑𝑥
𝜑𝑧
  (10) 

 

where 𝑢𝑥 , 𝑤𝑧  refer to the axial and radial displacement 

components, respectively, and 𝑢, 𝑤, 𝜑𝑥 , 𝜑𝑧  are functions 

of the axial 𝑥-component. By using the displacement field 

of Eq. (10), the strain components are derived as (Aydogdu 

2012) 
 

 
 
 
 
 

 
 
 
 𝜀𝑥 =

𝜕𝑢𝑥
𝜕𝑥

=
𝜕𝑢

𝜕𝑥
+ 𝑧

𝜕𝜑𝑥
𝜕𝑥

                                                

𝜀𝑧 =
𝜕𝑤𝑧
𝜕𝑧

= 𝜑𝑧                                                                   

𝜀𝑡 =
𝑤𝑧
𝑟

=
𝑤 + 𝑧𝜑𝑧
𝑅 + 𝑧

                                                          

𝛾𝑥𝑧 = 2𝜀𝑥𝑧 =
𝜕𝑢𝑥
𝜕𝑧

+
𝜕𝑤𝑧
𝜕𝑥

= 𝜑𝑥 +
𝜕𝑤

𝜕𝑥
+ 𝑧

𝜕𝜑𝑧
𝜕𝑥

           
 

  (11) 
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Fig. 2 Different CNTs distribution patterns 
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in the axial, radial, circumferential and shear direction (see 

Fig. 3). Thus, the stress-strain relations can be expressed by 

(Naghashpour and Hoa 2013, Shen and Xiang 2014, 

Daneshmehr et al. 2015, Shen 2016, Wu and Liu 2016, 

Shen et al. 2017, Shen and Xiang 2018) 

 

 
 
 
 
 
 
𝜍𝑥
𝜍𝑡
𝜍𝑧
𝜏𝑥𝑡
𝜏𝑥𝑧
𝜏𝑡𝑧  
 
 
 
 
 

=

 
 
 
 
 
 
𝑄11 𝑄12 𝑄13 0 0 0
𝑄21 𝑄22 𝑄23 0 0 0
𝑄31 𝑄32 𝑄33 0 0 0

0 0 0 𝑄44 0 0
0 0 0 0 𝑄55 0
0 0 0 0 0 𝑄66 

 
 
 
 
 

 
 
 
 
 
 
𝜀𝑥 − 𝛼11𝑇
𝜀𝑡 − 𝛼22𝑇
𝜀𝑧 − 𝛼33𝑇

𝛾𝑥𝑡
𝛾𝑥𝑧
𝛾𝑡𝑧  

 
 
 
 
 

 

(12) 

 

where 

 

𝑄11 =
𝐸11

∆
 1 − 𝜈23𝜈32 , 𝑄22 =

𝐸22

∆
 1 − 𝜈13𝜈31 , 

𝑄33 =
𝐸33

∆
 1 − 𝜈21𝜈12  

𝑄44 = 𝐺23 , 𝑄55 = 𝐺13 , 𝑄66 = 𝐺12  

𝑄12 =
𝐸11

∆
 𝜈21 + 𝜈31𝜈23 , 𝑄13 =

𝐸11

∆
 𝜈31 + 𝜈21𝜈32  

𝑄23 =
𝐸22

∆
 𝜈32 + 𝜈12𝜈31  

∆= 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈31𝜈13 − 2𝜈12𝜈32𝜈13 

(13) 

 

In Eq. (12), 𝑇 represents the increment in temperature 

from the reference state, and 𝛼11 , 𝛼22  and 𝛼33  are the 

coefficients of thermal expansion. The variations of the 

strain energy and external work can be determined as 

 

𝛿𝑈 =  𝜍𝑖𝑗 𝛿𝜀𝑖𝑗𝑑𝐴 =   𝜍𝑥𝛿𝜀𝑥 + 𝜍𝑡𝛿𝜀𝑡 + 𝜍𝑧𝛿𝜀𝑧 + 𝜏𝑥𝑧𝛿𝛾𝑥𝑧  𝑑𝐴 (14) 

 

𝛿𝑊 =   𝑃𝑖𝛿𝑤𝑧|
𝑧=−



2

− 𝐹𝑓𝛿𝑤𝑧|
𝑧=



2

 𝑑𝐴 (15) 

 

where 

 

 
 
 
 
 
 

 
 
 
 
 𝐹𝑓 = 𝑘1  𝑤𝑧=



2

 − 𝑘2

𝜕2

𝜕𝑥2
 𝑤

𝑧=


2

                                
 
 

𝑤
𝑧=



2

= 𝑤 +


2
𝜑𝑧

 𝛿   
  𝛿𝑤 +



2
𝛿𝜑𝑧                                  

 
 

𝜕2

𝜕𝑥2
 𝑤

𝑧=


2

 =
𝜕2𝑤

𝜕𝑥2
+


2

𝜕2𝜑𝑧
𝜕𝑥2

 
 𝛿   
   
𝜕2𝛿𝑤

𝜕𝑥2
+


2

𝜕2𝛿𝜑𝑧
𝜕𝑥2

 
 

  (16) 

 

and 𝑘1  and 𝑘2  are the Pasternak coefficients. By 

substitution of Eqs. (11) and (16) into Eqs. (14) and (15), 

the variations of the strain energy and energy of the external 

work become 

 

𝛿𝑈 = 2𝜋  −
𝜕𝑁𝑥
𝜕𝑥

𝛿𝑢 +  𝑁𝑥𝑧 −
𝜕𝑀𝑥

𝜕𝑥
 𝛿𝜑𝑥   

                  +   𝑄𝑡 −
𝜕𝑁𝑥𝑧
𝜕𝑥

 𝛿𝑤 +  𝑁𝑡 + 𝑁𝑧 −
𝜕𝑀𝑥𝑧

𝜕𝑥
 𝛿𝜑𝑧   𝑑𝑥 

(17) 

 

𝛿𝑊 = 2𝜋    𝑃𝑖  𝑅 −


2
 − 𝐹𝑓  𝑅 +



2
  𝛿𝑤  

  − 𝑃𝑖  𝑅 −


2
 − 𝐹𝑓  𝑅 +



2
  


2
𝛿𝜑𝑧  𝑑𝑥 

       = 2𝜋   𝑃𝑖  𝑅 −


2
    

                      − 𝑘1  𝑤 +


2
𝜑𝑧 − 𝑘2  

𝜕2𝑤

𝜕𝑥2
+


2

𝜕2𝜑𝑧
𝜕𝑥2

   𝑅 +


2
  𝛿𝑤 

         −  𝑃𝑖  𝑅 −


2
    

          + 𝑘1  𝑤 +


2
𝜑𝑧 − 𝑘2   

𝜕2𝑤

𝜕𝑥2
+


2

𝜕2𝜑𝑧
𝜕𝑥2

    𝑅 +


2
  


2
𝛿𝜑𝑧 𝑑𝑥 

       = 2𝜋  𝑊1𝛿𝑤 −𝑊2𝛿𝜑𝑧 𝑑𝑥 

(18) 

 

where 

 

 𝑊1 = 𝑃𝑖  𝑅 −


2
 −  𝑘1  𝑤 +



2
𝜑𝑧 − 𝑘2  

𝜕2𝑤

𝜕𝑥 2
+



2

𝜕2𝜑𝑧

𝜕𝑥 2
   𝑅 +



2
  

𝑊2 =  𝑃𝑖  𝑅 −


2
 +  𝑘1  𝑤 +



2
𝜑𝑧 − 𝑘2   

𝜕2𝑤

𝜕𝑥2
+


2

𝜕2𝜑𝑧
𝜕𝑥2

    𝑅 +


2
  


2
 

 

and 𝑁𝑖𝑗 ,𝑀𝑖𝑗  are the internal actions defined as 
 

 𝑁𝑥 ,𝑁𝑧 ,𝑁𝑥𝑧  =   𝑅 + 𝑧  𝜍𝑥 ,𝜍𝑧 , 𝜏𝑥𝑧  d𝑧



2

−


2

     

 𝑁𝜃 ,𝑀𝜃  =  𝜍𝜃 1, 𝑧 d𝑧



2

−


2

     

 𝑀𝑥 .𝑀𝑥𝑧  =  𝑧 𝑅 + 𝑧  𝜍𝑥 , 𝜏𝑥𝑧  d𝑧
/2

−/2

 

 

The application of the Hamilton’s principle yields 

(Daneshmehr and Rajabpoor 2014, Rahmani and Pedram 

2014, Dai et al. 2015, Jabbari et al. 2015) 

 
𝛿Π = 𝛿𝑈 − 𝛿𝑊 = 0 (19) 

 

and the substitution of Eqs. (14) and (15) into Eq. (19) gets 

to the following differential equations in terms of internal 

stress resultants 
 

 
 
 
 
 

 
 
 
 𝛿𝑢 ∶  −

𝜕𝑁𝑥
𝜕𝑥

= 0                             

𝛿𝜑𝑥 ∶  𝑁𝑥𝑧 −
𝜕𝑀𝑥

𝜕𝑥
= 0                 

𝛿𝑤 ∶  𝑄𝑡 −
𝜕𝑁𝑥𝑧
𝜕𝑥

−𝑊1 = 0        

𝛿𝜑𝑧 ∶  𝑁𝑡 + 𝑁𝑧 −
𝜕𝑀𝑥𝑧

𝜕𝑥
+ 𝑊2 = 0

  (20) 

 

Combining the Eqs. (17)-(18) and Eq. (20), the problem 

can be defined in matrix form as follows 
 

𝑮𝟏𝑿
′′ + 𝑮𝟐𝑿

′ + 𝑮𝟑𝑿 = 𝑭 → 

→ 𝑿 = [𝑢 𝑥     𝜑𝑥 𝑥     𝑤 𝑥     𝜑𝑧 𝑥 ]
𝑇 

(21) 

 

where 𝑮𝟏, 𝑮𝟐, 𝑮𝟑 and the force vector 𝑭 are defined as 
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𝑮𝟏 =

 
 
 
 
 
 
−𝐴1 −𝐴2 0 0
−𝐴2 −𝐴3 0 0

0 0 −𝐴4 − 𝐵2 −𝐴5 −


2
𝐵2

0 0 −𝐴5 −


2
𝐵2 −𝐴6 − (



2
)2𝐵2 

 
 
 
 
 

 

 

𝑮𝟐 =  

0 0 −𝐴7 −𝐴8 − 𝐴9

0 0 𝐴4 − 𝐴9 𝐴5 − 𝐴10 − 𝐴11

𝐴7 −𝐴4 + 𝐴9 0 0
𝐴8 + 𝐴9 −𝐴5 + 𝐴10 + 𝐴11 0 0

  

 

𝑮𝟑 =

 
 
 
 
 
 
0 0 0 0
0 𝐴4 0 0

0 0 𝐴12 + 𝐵1 𝐴13 + 𝐴19 +


2
𝐵1

0 0 𝐴13 + 𝐴19 +


2
𝐵1 2𝐴14 + 𝐴15 + 𝐴16 +  



2
 

2

𝐵1 
 
 
 
 
 

 

 

𝑭 =

 
 
 
 
 
 

0
0

𝐴19𝑇𝛼33 + 𝐴20𝑇𝛼22 + 𝐴7𝑇𝛼11 − 𝐹1

𝐴14𝑇𝛼33 + 𝐴17𝑇𝛼22 + 𝐴9𝑇𝛼11 + 𝐴16𝑇𝛼33

+𝐴18𝑇𝛼22 + 𝐴8𝑇𝛼11 − 𝐹1



2  
 
 
 
 
 

 

(22) 

 

For more details about the coefficients 𝐴𝑖(𝑖 = 1,… ,20), 

𝐵𝑖(𝑖 = 1, 2) and 𝐹1, the reader is referred to the Appendix. 

 

 

3. Solution procedure 
 

In this section we briefly present the procedure to solve 

the problem, which includes both the homogeneous and 

particular solutions. The first solution is derived by the 

eigenvalue problem, and reads 
 

𝑋
𝑗

=  𝑐𝑖𝑣𝑗
𝑖𝑒𝑚 𝑖𝑥

8

𝑖=1

                      (𝑗 = 1…4) (23) 

 

where 𝑣𝑗
𝑖  are the eigenvectors,  𝑐𝑖  are the unknown 

constants, and 𝑚𝑖  are the associated eigenvalues of the 

problem ( 𝑖  indicates the number of eigenvalue and 𝑗 
indicates the row number of eigenvector). The eigenvalues 

𝑚𝑖  can be obtained from the following characteristic 

equation (Arefi and Rahimi 2011a, 2012a, c, Arefi and 

Bidgoli 2017, Rahimi et al. 2012) 

 

𝑑𝑒𝑡 𝑮𝟏𝑚
2 + 𝑮𝟐𝑚 + 𝑮𝟑 = 0 (24) 

 

and their associated eigenvectors 𝑣𝑗
𝑖  are calculated from 

following relation 

 

 𝑮𝟏𝑚
2 + 𝑮𝟐𝑚 + 𝑮𝟑 𝒗 = 𝟎 (25) 

 

The particular solution of Eq. (23) is obtained as follows 

 

𝑮𝟑𝑿𝑝 = 𝑭 → 𝑿𝑝 = 𝑮𝟑
−1𝑭 (26) 

 

In what follows, the main results of the problem are 

found for cylindrical shells with clamped-clamped 

boundary conditions, at the two extremities, namely 

 

𝐵.𝐶 ∶

 
 
 

 
 
𝑢  =  0
𝜑𝑥 =  0
𝑤  =  0
𝜑𝑧 =  0

 

             𝑎𝑡 𝑥 = 0, 𝐿 (27) 

 

 

4. Numerical results and discussion 
 

For the numerical investigation we consider a cylinder 

with inner radius 𝑟𝑖 = 0.04  𝑚, outer radius 𝑟0 = 0.06  𝑚 

and length 𝐿 = 0.5 𝑚.  The structure is made of a 

Polymethylmethacrylate (PMMA), with the same 

mechanical properties for the matrix as considered by Kiani 

(2017), i.e., 𝐸𝑚 = 2.5 𝐺𝑃𝑎,   𝛼𝑚 = 45 ∗ 10−6 1

 0𝐶
,  𝜈𝑚 =

0.3. In addition, an armchair Single-Walled-CNT (SWCNT) 

is here selected as reinforcement, with elastic modulus, 

shear modulus, Poisson’s ratio and thermal expansion 

coefficient dependent on the temperature. In this study the 

temperature is set to T = 300 K which leads to the following 

mechanical properties (see Kiani 2017) 

 

𝐸11
𝐶𝑁𝑇 TPa = 5.646,    𝐸22

𝐶𝑁𝑇 TPa = 7.0800, 

𝐺12
𝐶𝑁𝑇 TPa = 1.944,    𝛼11

𝐶𝑁𝑇[10−6 1

𝑘
] = 3.4584, 

𝛼22
𝐶𝑁𝑇[10−6 1

𝑘
] = 5.1682, 𝜈12

𝐶𝑁𝑇 = 0.175. 

 

Three different volume fractions of CNTs are also 

considered for the investigation, as follows 

 

𝜂1 = 0.137, 𝜂2 = 1.022, 𝜂3 = 0.7𝜂2 for 𝑉𝐶𝑁𝑇
∗ = 0.12 

𝜂1 = 0.142, 𝜂2 = 1.626, 𝜂3 = 0.7𝜂2 for 𝑉𝐶𝑁𝑇
∗ = 0.17 

𝜂1 = 0.141, 𝜂2 = 1.585, 𝜂3 = 0.7𝜂2 for 𝑉𝐶𝑁𝑇
∗ = 0.28 

𝐾𝑤 = 𝐾𝑔 = 𝐾1 = 𝐾2 = 0 

 

Thus, a parametric analyses is performed for different 

CNT distributions, labeled as UD and VD, to investigate the 

kinematic and static response of the reinforced structure. 

 

4.1 UD distribution 
 

A first parametric investigation considers a UD 

distribution of CNTs in the structure. Fig. 4 represents the 

longitudinal distribution of the radial displacement, 𝑤, 

(Fig. 4(a)) and axial displacement, 𝑢, (Fig. 4(b)) of the 

cylinder, for different volume fractions of CNTs, 𝑉𝐶𝑁
∗ . As 

visible in Fig. 4, the boundary conditions are first verified at 

the extremities 𝑥 = 0, 𝐿. Most importantly, an increase of 

volume fractions of CNTs yields to a meaningful decrease 

of the radial displacement (Fig. 4(a)), due to the increase in 

stiffness of CNTs. Accordingly, the axial displacement of 

Fig. 4(b) seems to decrease for increasing volume fractions 

of CNTs. The kinematic response of the reinforced structure 

is also evaluated in terms of axial and radial components 

𝜓𝑥 ,𝜓𝑧 , of the rotation along the longitudinal direction for 

different volume fractions (see Figs. 5(a)-(b), respectively). 

It is worth noticing that both the rotations decrease 
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significantly for increasing volume fractions of CNTs. Once 

again, this is strictly related to the increase of the structural 

 

 

 

 

 

 

stiffness. As also expected, both the axial deformation and 

axial rotation assume a null value in the middle of the 

 

 

  

(a) Radial displacement (b) Axial displacement 

Fig. 4 Longitudinal distribution of the displacement [m], for different volume fractions and a UD pattern of CNTs 

  

(a) Radial rotation (b) Axial rotation 

Fig. 5 Longitudinal distribution of the rotation [rad], for different volume fractions and a UD pattern of CNTs 

  

(a) Axial stress (b) Circumferential stress 

Fig. 6 Longitudinal distribution of the internal stress [Pa] for different volume fractions for a UD pattern of CNTs 
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cylinder, according to the symmetric boundary conditions. 

A further numerical investigation analyses the stress and 

strain behavior along the longitudinal direction of the 

cylinder, for different volume fractions of CNTs. Fig. 6 

depicts the main results for the axial (Fig. 6(a)), 

 

 

 

 

circumferential (Fig. 6(b)), radial (Fig. 6(c)) and shear (Fig. 

6(d)) stresses. Based on the numerical results, the axial 

stress seems to increase significantly for increasing volume 

fractions of CNTs (Fig. 6(a)), whereas the circumferential, 

radial and shear stresses are almost insensitive to the 

  

(c) Radial stress (b) Circumferential stress 

Fig. 6 Continued 

  

(a) Axial strain (b) Circumferential strain 
 

  

(c) Radial strain (d) Shear strain 

Fig. 7 Longitudinal distribution of the internal strain for different volume fractions for a UD pattern of CNTs 

531



 

Mohammad Arefi, Masoud Mohammadi, Ali Tabatabaeian, Rossana Dimitri and Francesco Tornabene 

 

 

 

 

volume fraction (Figs. 6(b)-(d)). As also expected, the stress 

distribution maintains almost constant within the structure, 

 

 

 

 

 

 

far from the extremities, and varies significantly near the 

boundaries. For the same cylinder, we also study its 

 

 

  

(a) Radial displacement (b) Axial displacement 

Fig. 8 Longitudinal distribution of the displacement [m], for different volume fractions and a VD pattern of CNTs 

  

(a) Radial rotation (b) Axial rotation 

Fig. 9 Longitudinal distribution of the rotation [rad], for different volume fractions and a VD pattern of CNTs 

  

(a) Axial stress (b) Circumferential stress 

Fig. 10 Longitudinal distribution of the stress [Pa] for different volume fractions for a VD pattern of CNTs 
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response in terms of axial, circumferential, radial and shear 

deformation distribution along the longitudinal direction, 

and its sensitivity to the volume fraction of CNTs. Based on 

the numerical results plotted in Fig. 7, an increase in 

volume fraction of CNTs gets to an increased axial strain 

 

 

 

 

within the structure (Fig. 7(a)), except for the extremities, 

where a clear decrease is observed due to the boundary 

effects. 

As also visible in Figs. 7(b)-(c), the circumferential and 

radial strain is significantly affected by the volume fraction 

  

(c) Radial stress (d) Shear stress 

Fig. 10 Continued 

  

(a) Axial strain (b) Circumferential strain 
 

  

(c) Radial strain (d) Shear strain 

Fig. 11 Longitudinal distribution of the strain for different volume fractions for a VD pattern of CNTs 
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of CNTs, with a clear reduction of the deformability for 

increasing volume fractions. Conversely, the shear strain is 

almost unaffected by the volume fraction, and it is zero 

within the structure, except for the boundary zones (see Fig. 

7(d)). 
 

4.2 VD distribution 
 

A similar systematic analysis is now repeated for a VD 

distribution of CNTs within the composite structure, while 

considering two different values of volume fractions 𝑉𝐶𝑁𝑇
∗  

equal to 0.12 and 0.17, respectively. Based on the results in 

Figs. 8 and 9, both the displacement and rotation profiles 

along the longitudinal direction of the cylinder decrease for 

increasing volume fractions because of the increased 

structural stiffness of the cylinder. 

Similar considerations can be repeated for the stress and 

strain distributions of Figs. 10 and 11, where the stress-

based results are weakly sensitive to the fraction volumes 

CNTs (Figs. 10(a)-(d)). 

A remarkable sensitivity of the response is noticed for 

the strain results, especially in the circumferential and radial 

direction (Figs. 11(b)-(c)). This could be of particular 

interest for design purposes when tailoring the mechanical 

stiffness of a composite structure for practical engineering 

applications in optical electronics, photovoltaic cells and 

energy storage. 

 

 

5. Conclusions 
 

Two-dimensional thermo-elastic static analysis of FG-

CNTRC cylindrical pressure vessel is studied in this paper 

based on the FSDT shell theory. 

The governing equations of the problem are first derived 

using the principle of virtual works, for a composite 

cylindrical shell subjected to thermal and mechanical 

loading conditions. 

The effective material properties of the composite 

structure are first determined in terms of Young’s modulus 

and Poisson’s ratio, by applying the rule of mixtures, 

whereas the eigenvalue problem is approached and solved 

numerically for the study of the structural response. 

A parametric investigation is here performed to assess 

the effect of the reinforcement distribution and volume 

fraction on the global response of the composite cylinder, 

namely the longitudinal distribution of displacements, 

rotations, stresses and strains along different directions. 

Based on the results, an increasing volume fraction of CNTs 

within the matrix yields to a general decrease of the axial 

and radial displacements, as well as of rotations, due to the 

increased stiffness of the structure. This increment in 

stiffness is also confirmed by the reduced stress and strain 

response of the reinforced cylindrical shell. 

Two different CNTs patterns are here adopted within the 

parametric investigations, namely a UD and a VD pattern 

distributions. VD patterns with the same CNTs volume 

fractions are verified to increase the stiffness of composite 

shells. This may have a good impact among designers of 

mechanical and electronic devices with tailorable 

mechanical properties 
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CC 

Appendix 
 

More details about the coefficients 𝐴𝑖(𝑖 = 1…20) , 

𝐵𝑖(𝑖 = 1,2) and 𝐹1 of Eq. (22) are detailed below. 

 

𝐴1 =  (𝑅 + 𝑧)Q11𝑑𝑧



2

−


2

 𝐴2 =  𝑧(𝑅 + 𝑧)Q11𝑑𝑧



2

−


2

 

𝐴3 =  𝑧2(𝑅 + 𝑧)Q11𝑑𝑧



2

−


2

 𝐴4 =  (𝑅 + 𝑧)Q55𝑑𝑧



2

−


2

 

𝐴5 =  𝑧 𝑅 + 𝑧 𝑄55𝑑𝑧



2

−


2

 𝐴6 =  𝑧2(𝑅 + 𝑧)𝑄55𝑑𝑧



2

−


2
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