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1. Introduction 

 

Recently Nano materials have attracted the attention of 

scientific researcher ‘s societies in fields such as 

engineering, physics and chemistry. Because of their Nano 

scale dimensions, Nano materials have unique properties. 

Nanoparticles, nanotubes, nanobeams and Nano plates are 

prevalent examples of these materials. Nano materials have 

special electrical, optical, chemical and mechanical 

properties and because of these advantageous properties, 

they are being utilized in nanostructures like Nano sensors, 

Nano electromechanical systems (NEMS), Nano-

optomechanical systems (NOMS) and Nano composites 

(Eichenfield et al. (2009), Simsek 2011). To design these 

nanostructures with adequate precision, small-scale effects 

and atomic forces must be considered. Studies have shown 

that the small-scale effects significantly influence the 

mechanical properties in nanostructures. Ignoring these 

effects would lead to inaccurate designs. Small-scale effects 

can be considered in mechanical models via Eringen‘s 

nonlocal theory, which is a modified form of classical 

mechanics. Recently applying Eringen‘s nonlocal elasticity 

for analysis of nanostructures like nanobeams, Nano plates, 

carbon nanotubes, and graphene has been increased, 

because of its quick and reliable results (Murmu and 

Adhikari 2010, Rahmani 2014, Belkorissat et al. 2015, 

Jandaghian and Rahmani 2015, Bounouara et al. 2016). 

Nonlocal elasticity theory has been verified by experimental 

results in previous studies. Wang and Varadan (2006) 
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studied vibration characteristic of both single-walled 

nanotubes (SWNTs) and double-walled nanotubes 

(DWNTs) via the nonlocal continuum mechanics and elastic 

beam theories. They denoted that the results of the nonlocal 

continuum mechanics are in reasonable agreement with the 

published experimental reports. Miandoab et al. (2015) 

used nonlocal elasticity theory to study the static behavior 

of electrically actuated micro and nano-beams. In this 

research free end gap of microbeam was compared with 

experimental results for different applied voltages. In 

addition, pull-in voltages are compared with experimental 

ones. As can be seen in results, nonlocal continuum theory 

reduces the difference between experimental and classical 

numerical results.In another study which was conducted by 

Patti et al. (2015) the flexural behavior of polypropylene 

composites filled with various contents of multi-wall carbon 

nanotube was assessed by experimental tests and modeled 

by using a nonlocal approach. Ghavanloo and Fazelzadeh 

(2013) developed nonlocal continuum based model to study 

the radial vibration of the anisotropic nanoparticles. The 

obtained results were successfully compared to 

experimental results for several nanoparticles including 

gold, silver, germanium, and cadmium selenide nano-

particles. Moreover, it was observed that the frequency 

decreases with increasing nonlocal parameter, and the effect 

of nonlocal parameter on the frequency was significant for 

the nanoparticles with small radius. 

There are various studies in the literature regarding the 

analysis of single nanobeams by utilizing nonlocal elasticity 

(Chaht et al. 2015, Jandaghian and Rahmani 2015, Pourseifi 

et al. 2015, Ahouel et al. 2016, Bounouara et al. 2016, 

Hayati et al. 2016, Hosseini and Rahmani 2016). Reddy 

(2007) rewrote the formulations of Euler-Bernoulli, 

Timoshenko, Reddy, and Levinson beam theories by using 
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Eringen‘s nonlocal elasticity and obtained the governing 

equations of the nonlocal theories. Analytical solutions were 

shown for bending, buckling and vibration by utilizing the 

nonlocal theories and the influence of nonlocal parameter 

on deflections, buckling loads, and natural frequencies were 

determined. Emam (2013) exhibited a nonlocal nonlinear 

model for buckling of nanobeams. This model is 

appropriate for Euler-Bernoulli, Timoshenko, and higher-

order shear deformation beam theories. The nonlocal effects 

were modeled based on Eringen‘s nonlocal theory. 

Analytical solutions for the critical buckling load were 

shown and the influence of nonlocal effects and aspect ratio 

on critical buckling load and the amplitude of buckling for 

simply supported and fixed-fixed nanobeams were 

investigated. Nguyen et al. (2014) present an analytical 

solutions for the size-dependent static analysis of the 

functionally graded (FG) nanobeams with various boundary 

conditions based on the nonlocal continuum model. Zemri 

et al. (2015) present a nonlocal shear deformation beam 

theory for bending, buckling and vibration of functionally 

graded nanobeams by using the nonlocal differential 

constitutive relations of Eringen. A new nonlocal hyperbolic 

refined plate model for free vibration properties of 

functionally graded (FG) plates was presented by 

Belkorissat et al. (2015). This nonlocal nano-plate model 

incorporates the length scale parameter which can capture 

the small scale effect. Shojaeefard et al. (2018) studied the 

free vibration of a rotating variable thickness two-

directional FG circular microplate. The results revealed that 

there was a non-proportional relation between the natural 

frequencies of the microplate and the thickness-variations 

of the section. The results showed that the increase of the 

size dependency would lead to the reduction of the non-

dimensional natural frequency as well as the critical angular 

velocity. In another study, they investigated free vibration 

and thermal buckling of micro temperature-dependent FG 

porous circular plate subjected to a nonlinear thermal load. 

The results reveal that the increase of size dependency and 

the temperature-change would lead to the increase of 

differences between the first natural frequencies predicted 

based on the two theories (Shojaeefard et al. 2017). Najafi 

et al. (Najafi et al. 2017) studied the nonlinear dynamic 

response of FGM beams with Winkler–Pasternak 

foundation subject to noncentral low velocity impact in 

thermal field. In this paper also by using a modified Hertz‘s 

contact law, the influence of material properties of the 

substrate layers on impact response and a general case of 

impact with different indenter‘s axial position was taken 

into account. In another study, they presented (Najafi et al. 

2016) a nonlinear analysis for impact response of 

functionally graded material plates which are resting on a 

nonlinear three-parameter elastic foundation with simply 

supported end condition. The effect of thermal field was 

considered and material properties of the plates were 

assumed to be temperature dependent. 

Extensive studies have been conducted regarding the 

analysis of sandwich structures with soft cores (Phan et al. 

2012a, b, Rahmani et al. 2012, Frostig et al. 2013, Frostig 

2014, Khalili et al. 2014, Bennai et al. 2015, Bouchafa et 

al. 2015, Hamidi et al. 2015, Yuan et al. 2015, Lashkari and 

Rahmani 2016). Phan et al. (2012a) investigated the 

bending of a sandwich beam with nonidentical skins and a 

vertically flexible core by using high-order theory which is 

based on Hamilton‘s principle. In this theory, it is assumed 

that horizontal and vertical displacements in the core are 

nonlinear. The Analysis utilized classical beam theory for 

the skins and a two-dimensional elasticity theory for the 

core. 

Recently limited studies regarding nano-sandwich 

beams/plates consisting of two single nanobeams/ 

nanoplates and a soft core have been conducted (Hosseini 

and Rahmani 2016, Rahmani et al. 2016). Analysis of nano-

sandwich beams and plates are very beneficial because of 

their applications in NEMS, NOMS, nano composites and 

nano sensors (Murmu and Adhikari 2010, 2011a, b, Murmu 

et al. 2011). Murmu and Adhikari (2011a) investigated the 

buckling of double-nanobeam-systems. These systems were 

modeled by Eringen‘s nonlocal elasticity. The effect of 

nonlocal parameter on buckling and effect of stiffness of 

elsatic medium between two nanobeams on nonlocal 

parameter were investigated. Murmu et al. (2011) studied 

the buckling behavior of bonded double-nanoplate-systems. 

Thesmall-scale effects were included in the analysis by 

using Eringen‘s nonlocal elasticity. An analytical method 

was used to obtain the buckling load of a double-nanoplate-

system. The influnce of nonlocal effects on buckling of the 

double-nanoplate-system and effect of stiffness of the 

elastic medium between two nanoplates on nonlocal 

parameter were studied. Murmu and Adhikari (2010) 

studied the nonlocal transverse vibration of double-

nanobeam-systems. Expressions for free vibration of these 

systems were developed by using Eringen‘s nonlocal 

elasticity. The effect of nonlocal parameter on natural 

frequencies and effect of stiffness of elsatic medium 

between two nanobeams on nonlocal parameter were 

studied. Murmu and Akhikari (2011b) also investigated the 

nonlocal vibration of bonded double-nanoplate-systems. 

Expression for free vibration of double-nanoplate-systems 

were obtained using nonlocal elasticity. An analytical 

method was used for obtaining the natural frequencies of 

double-nanoplate-system. The influence of nonlocal effects 

on natural frequencies of the double-nanoplate-system and 

the effect of stiffness of the elastic medium between two 

nanoplates on nonlocal parameter were investigated. 

In this paper, bending analysis of nano-sandwich beams 

is investigated by using high-order and nonlocal theories. 

The presented model is consisted of a transversely flexible 

core and two thin skins. It is assumed that the skins are 

linearly elsatic and the core is a two dimensional medium 

which has shear resistance and nonlinear displacement 

fileds and is completely connected to the skins. It is 

assumed that the longitudinal stresses of the core are 

negligible, since flexibility of the core is extremely higher 

than the skins. Equations of motion are derived by using 

high-order and nonlocal theories. Differential equations for 

bending of a simply-supported nano-sandwich beam are 

solved and numerical results are obtained. The effects of 

nonlocal parameter, stiffness of the core and length to 

height ratio on deflection of the nano-sandwich beam are 

studied. 
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2. Nonlocal elasticity 
 

In Eringen‘s nonlocal theory, it is assumed that the stress 

field at a point x in an elastic body which is dependent on 

the strain field at that point is also dependent on strain fields 

at all other points in the body. Nonlocal stress tensor ζ at 

point x can be expressed as 
 

( , ) ( )
V

R x x x dx        
(1) 

 

Where ζ′(x) is the classic stress tensor at point x and the 

function R(|x′-x|, η) corresponds to the nonlocal modulus; |x′ 

-x| is the distance and η is a material constant depending on 

internal and external characteristic lenghts (e.g., lattice 

spacing and wavelength, respectively). According to 

Hooke‘s law, the stress ζ′ at the point x is dependent on the 

strain ε at that point 
 

( ) (x) : (x)x D    (2) 
 

where D is the elasticity tensor, and : is the double-dot 

product. 

Eqs. (1)-(2) together define the nonlocal constitutive 

relation for a Hookean continuum. Solving the elasticity 

problems by using Eq. (1) has proven to be a difficult task, 

because of its integral form. Thus, to simplify the process, 

an equivalent differential form was introduced. This 

differential relation is expressed as 
 

2 2 2 0(1 ) ,
e a

l
l

      
 

(3) 

 

where e0 is a material constant and a and l are the internal 

and external characteristic lengths, respectively. 

By using Eqs. (2)-(3), stress resultants can be expressed 

in terms of strains. Unlike in local theory where relations 

between stress resultants and strains can be expressed by 

linear algebraic equations, nonlocal theory expresses these 

relations by differential equations. For homogeneous 

isotropic beams with the assumption that the nonlocal 

behavior is insignificant in thickness direction, the nonlocal 

constitutive relation in Eq. (3) takes the following forms 
 

, ,

2

0

,

( )

xx xx xx xx xx xzE G

e a

     



   

    

(4) 

 

where E and G are Young‘s modulus and shear modulus, 

respectively; μ is called the nonlocal parameter; The x-

coordinate and z-coordinate are taken along the length and 

thickness of the beam, respectively, andy-coordinate is 

taken along the width of the beam; ζxx and εxx are 

longitudinal stress and strain, respectively, andη andγxzare 

shear stress and strain, respectively; (   ),xx is the second 

derivative with respect to x-coordinate (Reddy 2007). 

In-plane resultants for the beam are 
 

,xx xx xx xx

A A

N dA M z dA   
 

(5) 

 

where A is the area of the cross-section of the beam. 

In all beam theories, the resultant axial force-strain 

relation is similar and it is given by 
 

xx, 0,xxx xxN N EAu 
 (6) 

 

where u0 is the horizontal displacement of mid-plane of the 

beam, and (   ),x is the first derivative with respect to x-

coordinate. 

In Euler-Bernoulli beam theory, the relation between the 

resultant bending moment and strain is given by 
 

xx, ,xx xx xxM M EIw  
 (7) 

 

where w is the vertical displacement and I is the second 

moment of area about the y-axis (Reddy 2007). 
 

 

3. Mathematical formulation 
 

The governing equations, boundary and continuity 

conditions for a static nano-sandwich beam can be derived 

using Hamilton‘s principle. This method minimizes the total 

energy, as follows 
 

( ) 0U V    (8) 

 

where U and V are the internal potential energy and external 

work, respectively. δ is the variational operator. 

The relation of the variation of the internal potential 

energy in terms of stress and strain is 
 

top bot

core core

xx xx xx xx
v v

zz zz c c
v v

U dv dv

dv dv

    

   

  



 

 
 

(9) 

 

where ζxx and εxx are the longitudinal stresses and strains in 

the upper and lower skins; ηc and γc are shear stresses and 

strains in the core; ζzz and εzz are the vertical stresses and 

strains in the core; vtop, vbot and vcore are the volume of the 

top and bottom skins and the core, respectively; dv is the 

differential volume. 

The relation of the variation of the external work is 
 

0

, ,

(

)

l

t t b b t t

b b t t x b b x

V n u n u q w

q w m w m w dx

   

  

    

 



 

(10) 

 

where ni, qi, and mi (i = t, b) are the distributed horizontal, 

vertical loads, and bending moments, respectively, which 

are applied to top and bottom skins; ui, wi, and wi,x (i = t, b) 

are the horizontal, vertical displacement, and rotation in the 

skins, respectively; dx is the differential length. The 

geometry of the nano-sandwich beam is shown in Fig. 1. 

According to Euler-bernoulli beam theory, strain-

displacement relations for the skins are 
 

0 , t,xx

t

xx t x tu z w  
 

(11a) 

 

0 , ,

b

xx b x b b xxu z w  
 (11b) 
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where zi (i = t, b) is the vertical coordinate of each skin, 

which is measured downward from neutural axis of each 

skin. 

Strain-displacement relations for the core are 
 

, ,c c z c xu w  
 (12a) 

 

,zz c zw 
 (12b) 

 

where uc and wc are the horizontal and vertical 

displacements in the core, respectively; z is the vertical 

coordinate of the core, which is measured downward from 

the upper interface; (   ),z is the first derivative with 

respect to z-coordinate. 

Continuity conditions for the upper and lower interfaces 

are 

At z = 0 
 

0 ,
2

t t
c t t x

d
u u w 

 
(13a) 

 
t

c tw w
 

(13b) 

 

At z = c 
 

0 ,
2

b b
c b b x

d
u u w 

 
(14a) 

 
b

c bw w
 

(14b) 

 

where ui
c and wi

c (i = t, b) are the longitudinal and vertical 

displacements in the core at the interfaces, respectively; di (i 

= t, b) and c are the thickness of skins, and the core, 

respectively (Frostig et al. 1992). 

Equations of motion can be derived by substituting Eqs. 

(9)-(10) in Eq. (8), by using strain-displacement relations 

 

 

(Eqs. (11)-(12)) and integration by parts, and with the use of 

continuity conditions (Eqs. (13)-(14)) 
 

, 0
0t

xx x c tz
N b n


  

 
(15) 

 

, 0b

xx x c bz c
N b n


  

 
(16) 

 

, , 00

,

2

0

t t
xx xx c x zz zz

t t x

bd
M b

q m

 


 

  
 

(17) 

 

, ,

,

2

0

b b
xx xx c x zz z cz c

b b x

bd
M b

q m

 


 

  
 

(18) 

 

, , 0c x zz z  
 

(19) 

 

,z 0c 
 (20) 

 

where Ni
xx and Mi

xx (i = t, b) are the in-plane resultants of the 

skins, respectively, and b is the width of the beam. 

According to Eq. (20) the shear stress ηc is only a 

function of x-coordinate. Therefore 
 

0
( )c cz z c
x  

 
 

 
(21) 

 

According to Eqs. (6)-(7), constitutive relations for the 

skins of the nano-sandwich beam are (i = t, b) 
 

, 0 ,

i i

xx xx xx i i i xN N E A u 
 

(22) 

 

, ,

i i

xx xx xx i i i xxM M E I w  
 

(23) 

 

and also, according to Eq. (4), constitutive relations for the 

 

Fig. 1 Geometry of the nano-sandwich beam 
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core of the nano-sandwich beam are 
 

,xx c cG   
 

(24) 

 

,zz zz zz c zzE   
 

(25) 

 

where Ec and Gc are Young‘s modulus and shear modulus of 

the core, respectively. 

According to Eqs. (19)-(21), ζzz,zz in Eq. (25) will be 

zero. Thus 

zz c zzE 
 (26) 

 

The vertical and horizontal displacements in the core 

can be determined by using Eqs. (19)-(24). By integrating 

Eq. (19) with respect to z, the following relation is acquired 
 

, 1( , )zz xx z z c   
 

(27) 

 

Vertical displacement in the core (wc) is obtained by 

substituting ζzz from Eq. (26) into Eq. (27), by using Eq. 

(12b) and integrating with respect to z along the height of 

the core, and by using the continuity condition at the upper 

and lower interface layers 
 

, ,2

2 2

x xb t
c t

c c

cw w
w z z w

E c E

   
    

   

(28) 

 

Also, the vertical stress in the core takes the following 

form 

,

,

( )

2

xc b t
zz x

cE w w
z

c


 


   

 
(29) 

 

According to Eq. (24), the shear strain in the core is 
 

,

1
( )c xx

cG
   

 

(30) 

 

By substituting γc from Eq. (12a) into Eq. (30), the 

following relation is obtained 
 

, , ,

1
( )c z xx c x

c

u w
G

   

 
(31) 

 

Horizontal displacement in the core (uc) is acquired by 

substituting wc from Eq. (28) into Eq. (31), and integrating 

with respect to z along the height of the core, and by 

utilizing the continuity condition at the upper interface layer 
 

, ,3 2

,

2
, 2

, 0

1
( )

6 2

4 2 2

xx b x

c xx

c c

xx t
t x t

c

w
u z z z

G E c

c dz
z z w u

E c


 



   

 
     

   

(32) 

 

The governing equations for the nano-sandwich beam 

are formulated with the use of five unknowns: u0t,u0b,wt, wb, 

and η. Four of the governing equations are derived by 

substituting Ni
xx, Mi

xx, η, and ζzz from Eqs. (22)-(24), (29) 

into Eqs. (15)-(18), and then again by using Eqs. (15)-(18). 

The fifth governing equation is obtained by applying 

continuity condition at the lower interface layer to Eq. (32). 

The governing equations are as follows 

 

 0 , ,,

,

( )

0

t t t x xx tx

t xx

E A u b n

n

 



  

 
 

(33) 

 

 0 , ,,

,

( )

0

b b b x xx bx

b xx

E A u b n

n

 



  

 
 

(34) 

 

 

 

 

, ,

, ,

, ,

, ,x ,

( )

( )

2

0

t t t xx xx

c
b t b xx t xx

t
x xxx

t t xx t t xxx

E I w

bE
w w w w

c

b c d

q q m m



 

 

   


 

    
 

(35) 

 

 

 

 

b, ,

, ,

, ,

b, b,x b,

( )

( )

2

0

b b xx xx

c
b t b xx t xx

b
x xxx

b xx xxx

E I w

bE
w w w w

c

b c d

q q m m



 

 

   


 

    
 

(36) 

 
3

0 0 ,

, ,

12

( ) ( )
0

2 2

b t xx

c c c

b t
b x t x

c c c
u u

G G E

c d c d
w w


 

 
    

 

 
  

 

(37) 

 
With the use of Eq. (37), η can be eliminated from the 

governing equations. By doing so, the number of governing 

equations and the unknowns will be reduced to four. These 

four governing equations are as follows 

 
3

0 , 0 ,

0 0 , ,

0 , 0 ,

, ,

12

( ) ( )

2 2

( ) ( )

2 2

t t t xx t t t xxxx

c c c

b t
b t b x t x

b xx t xx

b t
b xxx t xxx

c c c
E A u E A u

G G E

c d c d
b u u w w

u u

b c d c d
w w





 
  
 

  
    

 

 
      
   

(38) 
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12

0
12
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E A u E A u

G G E
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G E






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It is assumed that the nano-sandwich beam is simply-

supported at the lower skin and is free at the upper skin, and 

is under the load qt, which is applied to the upper skin. 

Therefore, for solving the governing equations for this 

nano-sandwich beam, Navier‘s method is utilized. 

According to this method, u0t, u0b, wt, wb, and qt are 

expressed as 
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where l is the length of the beam. Qi for uniform load q0, 
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point load P (applied to x = a), and sinusoidal load q0 sin 

(πx/l) is given below 
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Substituting u0t, u0b, wt, wb, and qt from Eqs. (42)-(46) 

into Eqs. (38)-(41) yields 
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(51) 

 

Eqs. (48)-(51) can be written in a matrix form 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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t
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ut

ub

a a a a C i F

a a a a C i

a a a a C i

a a a a C i

     
     
     
     
     

      

(52) 

 

The elements of the matrices are listed in the Appendix. 

By solving the matrix Eq. (52), wt, wb, u0t, and u0b can be 

determined. 

 

 

4. Numerical results 
 
To validate the presented theory with Frostig‘s high-

order theory, Nonlocal parameter in the presented theory is 

considered zero, and mechanical and geometrical properties 

of the sandwich beam are chosen from Table 1. It is 

assumed that this sandwich beam is under the point load ‗P 

= 490.322 N‘ which is applied to midspan of the upper skin. 

Table 2 presents the center deflection of the skins of this 

sandwich beam based on the proposed theory and Frostig‘s 

Table 1 Mechanical and geometrical properties of the sandwich 

beam (Frostig et al. 1992) 
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Table 2 Center deflection of the skins of the sandwich beam 

subjected to point load ‗P = 490.332 N‗ based on the 

proposed theory and Frostig‘s high-order theory 

Center deflection 

(mm) 

Ref. 

(Frostig et al. 1992) 

Present study 

(μ = 0) 

wt_ center 2.9712 2.9712 

wb_ center 2.7816 2.7816 
 

 

 

Table 3 Mechanical and geometrical properties of the nano-

sandwich beam 

L c b dt = db Gc Ec Et=Eb 

75 nm 15 nm 15 nm 5 nm 2 GPa 4.88 GPa 660 GPa 
 

 

 

high-order theory. It is observed from Table 2 that center 

deflections of both theories are similar. 

It is assumed that the nano-sandwich beam is composed 

of graphene skins and a polymer core. In this study, three 

cases with different loading types are investigated. In case 

(1) Point load ‗P = 1 nN‘ is to the midspan of the upper skin 

and in cases (2) and (3) Distributed load ‗q = 1nN/m‘ and 

sinusoidal load ‗q = sin(πx/l)nN/m‘ are applied to this skin, 

respectively. In this study, considering 50 terms in the series 

solution leads to numerical convergence. Mechanical and 

geometrical properties of the nano-sandwich beam are 

presented in Table 3. 

Tables 4-6 present the non-dimensional center deflection 

of skins of the nano-sandwich beam obtained by nonlocal 

high-order theory for various nonlocal parameters for cases 

(1), (2) and (3), respectively. Also, the deflection of skins 

for cases (1) and (2) are shown in Figs. 2 and 3, 

respectively. It is observed from these Figures and Tables 

that by increasing the nonlocal parameter, the deflections of 

the skins will be increased. Thus, the influence of small-

scale effects is to increase the deflection of the nano-

sandwich beam. Small-scale effects decrease the stiffness of 

material and thus increase the deflection. 

It is also noticeable that by increasing the nonlocal 

 

 
Table 4 Non-dimensional center deflection of skins of the nano-

sandwich beam subjected to point load ‗P = 1 nN‘ for 

various nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  = wcenter × 100 × 

(El / PL3), (E = Et = Eb), (I = It = Ib) 

 μ = 0 μ = 2 nm2 μ = 5 nm2 μ = 10 nm2 

𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  3.8914e-1 3.9168e-1 3.9548e-1 4.0178e-1 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  3.0146e-1 3.0273e-1 3.0464e-1 3.0785e-1 
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Table 5 Non-dimensional center deflection of skins of the nano-

sandwich beam subjected to distributed load ‗q = 1nN/m‘ 

for various nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  = wcenter × 100 
× (El / qL4), (E = Et = Eb), (I = It = Ib) 

 μ = 0 μ = 2 nm2 μ = 5 nm2 μ = 10 nm2 

𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  2.2852e-1 2.2917e-1 2.3015e-1 2.3178e-1 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.9090e-1 1.9161e-1 1.9268e-1 1.9445e-1 
 

 

 

Table 6 Non-dimensional center deflection of skins of the nano-

sandwich beam subjected to sinusoidal  load ‗q = 

sin(πx/l) nN/m‘ for various nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  

= wcenter × 1011 × (El / L4), (E = Et = Eb), (I = It = Ib) 

 μ = 0 μ = 2 nm2 μ = 5 nm2 μ = 10 nm2 

𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.8248e-1 1.8306e-1 1.8393e-1 1.8538e-1 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.5014e-1 1.5071e-1 1.5158e-1 1.5302e-1 
 

 

 

 

 

parameter, the influence of small-scale effects will be 

increased and the deflections will be increased more. This 

can be shown by introducing a parameter called deflection 

increase percentage (DIP). Deflection increase percentage 

(DIP) is defined as 
 

100
nonlocal local

local

w w
DIP

w


 

 

(53) 

 

Figs. 4 and 5 show the variation of DIP for midspan of 

the skins against the nonlocal parameter for cases (1) and 

(2), respectively. According to these figures, by increasing 

the nonlocal parameter, the DIP for midspan of the skins 

increases. 

For a clearer comparison between deflection of the 

upper and lower skins, Figs. 6 and 7 are presented for cases 

(1) and (2) with μ = 4 nm2, respectively. These figures show 

 

 

 

 

  

(a) Upper skin (b) Lower skin 

Fig. 2 Deflection of the skins of the nano-sandwich beam under the point load ‗P = 1 nN‘ for various nonlocal parameters 

  

(a) Upper skin (b) Lower skin 

Fig. 3 Deflection of the skins of nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ for various nonlocal parameters 
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(a) Upper skin (b) Lower skin 

Fig. 4 Variation of DIP for midspan of the skins of the nano-sandwich beam under the point load ‗P = 1 nN‘ with the 

nonlocal parameter 

  

(a) Upper skin (b) Lower skin 

Fig. 5 Variation of DIP for midspan of the skins of the nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ 

with the nonlocal parameter 

 

Fig. 6 Deflection of the upper and lower skins of the nano-sandwich beam under the point load ‗P = 1 Nn‘ for μ = 4 nm2 
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that the deflection of the upper skin is greater than that of 

the lower skin. This behavior is due to the presence of the 

flexible core between the skins. This flexible core has 

nonlinear displacement fields, and absorbs some of the 

energy caused by loading. Thus, less energy will be 

transferred to the lower skin. 

Figs. 8 and 9 present horizontal displacement of the 

skins of the nano-sandwich beam for various nonlocal 

parameters, for cases (1) and (2), respectively. It is 

concluded from these figures that by including the small-

scale effects in the analysis, horizontal displacement of the 

skins will also be increased. It is also noticeable that by 

increasing the nonlocal parameter, horizontal displacement 

of the skins will be increased. 

For the first and second cases, the effect of Young‘s 

modulus of the core on the deflection of the upper and 

 

 

 

 

lower skins for various nonlocal parameters is shown in 

Figs. 10-13. By decreasing Young‘s modulus of the core, 

i.e., by increasing E / Ec (Et = Eb = E), the core will become 

more flexible and thus the deflection of the upper skin will 

be increased. However, by softening the core, the deflection 

of the lower skin will become smaller, since most of the 

deformation will occur in the core. 

Figs. 14 and 15 show the effect of Young‘s modulus of 

the core on the DIP for midspan of the skins of the nano-

sandwich beam for cases (1) and (2), respectively. 

According to Fig. 14(a), by increasing Ec to E / Ec ≈ 71.5, 

the DIP for the midspan of the upper skin will be increased 

for various nonlocal parameters, i.e., the influence of the 

small-scale effects on deflection of the upper skin will be 

increased. By increasing Ec further from E / Ec ≈ 71.5, the 

DIP for the midspan of the upper skin will be slightly 

 

Fig. 7 Deflection of the upper and lower skins of the nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ 

for μ = 4 nm2 

  

(a) Upper skin (b) Lower skin 

Fig. 8 Horizontal displacement of the skins of the nano-sandwich beam under the point load ‗P = 1 nN‘ for various 

nonlocal parameters 
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decreased, i.e., the influence of the small-scale effects on 

deflection of the upper skin will be slightly decreased. Also, 

Fig. 14(b) shows that by increasing Ec to E / Ec ≈ 143.8, the 

 

 

 

 

 

 

influence of the small-scale effects on deflection of the 

lower skin will be decreased for various nonlocal 

parameters and by increasing Ec further from E / Ec ≈ 143.8, 

  

(a) Upper skin (b) Lower skin 

Fig. 9 Horizontal displacement of the skins of nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ for 

various nonlocal parameters 

   

(a) μ = 0 (b) μ = 4 nm2
 (c) μ = 9 nm2

 

Fig. 10 The effect of Young‘s modulus of the core on deflection of the upper skin of the nano-sandwich beam under the 

point load ‗P = 1 nN‘ 

   

(a) μ = 0 (b) μ = 4 nm2
 (c) μ = 9 nm2

 

Fig. 11 The effect of Young‘s modulus of the core on deflection of the lower skin of the nano-sandwich beam under the 

point load ‗P =1nN‘ 
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this influence will be slightly increased. Fig. 15(a) shows 

that in case (2), by increasing the Young‘s modulus of the 

core, the influence of the small-scale effects on deflection 

 

 

 

 

 

 

of the upper skin will be increased for various nonlocal 

parameters. Also, according to Fig. 15(b), by increasing 

Young‘s modulus of the core, the influence of the small- 

   

(a) μ = 0 (b) μ = 4 nm2
 (c) μ = 9 nm2

 

Fig. 12 The effect of Young‘s modulus of the core on deflection of the upper skin of the nano-sandwich beam under the 

distributed load ‗q = 1 nN/m‘ 

   

(a) μ = 0 (b) μ = 4 nm2
 (c) μ = 9 nm2

 

Fig. 13 The effect of Young‘s modulus of the core on deflection of the lower skin of the nano-sandwich beam under the 

distributed load ‗q =1nN/m‘ 

  

(a) Upper skin (b) Lower skin 

Fig. 14 Variation of DIP for midspan of the skins of the nano-sandwich beam under the point load ‗P = 1 nN‘ with 

E / Ec for various nonlocal parameters 

383



 

Omid Rahmani, Soroush Deyhim and S. Amir Hossein Hosseini 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a) Upper skin (b) Lower skin 

Fig. 15 Variation of DIP for midspan of the skins of the nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ 

with E / Ec for various nonlocal parameters 

Table 7 Non-dimensional center deflection of the skins of the nano-sandwich beam subjected to point load ‗P = 1 nN‘ for various length to 

height ratios and nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  = wcenter × 100 × (EtIt / PL3)] 

L/h 

μ (nm2) 
Center 

deflection 
5 10 15 20 25 30 35 40 45 

0 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.79072e-1 6.57207e-2 4.17628e-2 3.30012e-2 2.88541e-2 2.65704e-2 2.51806e-2 2.42726e-2 2.36469e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.60206e-1 6.33625e-2 4.10640e-2 3.27064e-2 2.87032e-2 2.64831e-2 2.51256e-2 2.42357e-2 2.36210e-2 

1 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.79356e-1 6.57581e-2 4.17744e-2 3.30064e-2 2.88569e-2 2.65721e-2 2.51817e-2 2.42733e-2 2.36474e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.60353e-1 6.33830e-2 4.10707e-2 3.27095e-2 2.87049e-2 2.64841e-2 2.51263e-2 2.42362e-2 2.36214e-2 

4 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.80205e-1 6.58702e-2 4.18094e-2 3.30219e-2 2.88652e-2 2.65771e-2 2.51850e-2 2.42756e-2 2.36491e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.60796e-1 6.34445e-2 4.10907e-2 3.27187e-2 2.87100e-2 2.64873e-2 2.51285e-2 2.42378e-2 2.36225e-2 

9 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.81615e-1 6.60564e-2 4.18675e-2 3.30476e-2 2.88790e-2 2.65854e-2 2.51905e-2 2.42795e-2 2.36519e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  1.61539e-1 6.35476e-2 4.11243e-2 3.27342e-2 2.87186e-2 2.64926e-2 2.51321e-2 2.42403e-2 2.36244e-2 
 

Table 8 Non-dimensional center deflection of the skins of the nano-sandwich beam subjected to distributed load ‗q = 1 nN/m‘ for various 

length to height ratios and nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  = wcenter × 100 × (EtIt / qL4)] 

L/h 

μ (nm2) 
Center 

deflection 
5 10 15 20 25 30 35 40 45 

0 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.02478e-1 3.73866e-2 2.41555e-2 1.94315e-2 1.72285e-2 1.60275e-2 1.53019e-2 1.48303e-2 1.45067e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  9.81117e-2 3.71161e-2 2.41021e-2 1.94146e-2 1.72216e-2 1.60242e-2 1.53001e-2 1.48292e-2 1.45061e-2 

1 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.02535e-1 3.73918e-2 2.41571e-2 1.94322e-2 1.72289e-2 1.60278e-2 1.53021e-2 1.48304e-2 1.45068e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  9.81685e-2 3.71213e-2 2.41036e-2 1.94153e-2 1.72220e-2 1.60244e-2 1.53003e-2 1.48294e-2 1.45062e-2 

4 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.02706e-1 3.74075e-2 2.41617e-2 1.94343e-2 1.72302e-2 1.60286e-2 1.53026e-2 1.48309e-2 1.45072e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  9.83387e-2 3.71369e-2 2.41082e-2 1.94174e-2 1.72232e-2 1.60252e-2 1.53008e-2 1.48298e-2 1.45065e-2 

9 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  1.02990e-1 3.74335e-2 2.41693e-2 1.94379e-2 1.72322e-2 1.60299e-2 1.53036e-2 1.48316e-2 1.45077e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  9.86226e-2 3.71629e-2 2.41159e-2 1.94209e-2 1.72253e-2 1.60266e-2 1.53018e-2 1.48305e-2 1.45070e-2 
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Table 9 Non-dimensional center deflection of the skins of the nano-sandwich beam subjected to sinusoidal load ‗q = sin(πx/l) nN/m‘ for 

various length to height ratios and nonlocal parameters [𝑤 𝑐𝑒𝑛𝑡𝑒𝑟  = wcenter × 1011 × (EtIt / L
4) 

L/h 

μ (nm2) 
Center 

deflection 
5 10 15 20 25 30 35 40 45 

0 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  8.20972e-2 2.99174e-2 1.92642e-2 1.54493e-2 1.36677e-2 1.26958e-2 1.21082e-2 1.17263e-2 1.14642e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  7.77875e-2 2.96469e-2 1.92107e-2 1.54323e-2 1.36608e-2 1.26924e-2 1.21064e-2 1.17253e-2 1.14636e-2 

1 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  8.21475e-2 2.99221e-2 1.92655e-2 1.54499e-2 1.36681e-2 1.26960e-2 1.21084e-2 1.17264e-2 1.14643e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  7.78378e-2 2.96516e-2 1.92121e-2 1.54330e-2 1.36612e-2 1.26927e-2 1.21066e-2 1.17254e-2 1.14636e-2 

4 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  8.22984e-2 2.99362e-2 1.92696e-2 1.54517e-2 1.36691e-2 1.26967e-2 1.21089e-2 1.17268e-2 1.14646e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  7.79887e-2 2.96657e-2 1.92161e-2 1.54348e-2 1.36622e-2 1.26933e-2 1.21071e-2 1.17257e-2 1.14639e-2 

9 
𝑤 𝑡_𝑐𝑒𝑛𝑡𝑒𝑟  8.25500e-2 2.99597e-2 1.92763e-2 1.54547e-2 1.36709e-2 1.26978e-2 1.21096e-2 1.17274e-2 1.14650e-2 

𝑤 𝑏_𝑐𝑒𝑛𝑡𝑒𝑟  7.82402e-2 2.96892e-2 1.92229e-2 1.54378e-2 1.36639e-2 1.26944e-2 1.21078e-2 1.17263e-2 1.14644e-2 
 

  

(a) Upper skin (b) Lower skin 

Fig. 16 Variation of DIP for midspan of the skins of the nano-sandwich beam under the point load ‗P = 1 nN‘ with 

length to height ratio for various nonlocal parameters 

  

(a) Upper skin (b) Lower skin 

Fig. 17 Variation of DIP for midspan of the skins of the nano-sandwich beam under the distributed load ‗q = 1 nN/m‘ 

with length to height ratio for various nonlocal parameters 
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scale effects on the deflection of the lower skin will be 

decreased for various nonlocal parameters. 

Tables 7, 8 and 9 present the non-dimensional center 

deflection of the skins of the nano-sandwich beam for 

various length to height ratios and nonlocal parameters for 

cases (1), (2) and (3), respectively. It is observed that by 

increasing length to height ratio of the nano-sandwich 

beam, the non-dimensional center deflection of the skins 

will be decreased. 

Figs. 16 and 17 show the effect of length to height ratio 

of the nano-sandwich beam on the DIP for midspan of the 

skins for cases (1) and (2), respectively. It can be seen that 

by increasing the length to height ratio, DIP for midspan of 

the skins will be decreased, i.e., the influence of the small-

scale effects on deflection of the skins will be decreased. 
 

 

5. Conclusions 
 

In this paper, bending analysis of the nano-sandwich 

beam with a flexible core based on nonlocal high order 

theory is studied. The skins of this nanostructure are thin 

and thus classical beam theory is applied to them. The core 

is flexible in the vertical direction and its longitudinal and 

vertical displacement fields are nonlinear. The governing 

equations are derived by using Hamilton‘s principle and 

Eringen‘s nonlocal elasticity. Navier‘s method is used to 

solve the bending behavior of a simply-supported nano-

sandwich beam. Numerical results for this case are 

presented and the effect of nonlocal parameter, Young‘s 

modulus of the core and length to height ratio on the 

deflection of the nano-sandwich beam is investigated. 

 

 It is concluded that by including the small-scale 

effects, the deflection of the skins is increased and 

by increasing the nonlocal parameter, the influence 

of small-scale effects on the deflections is increased. 

 It is seen that by decreasing Young‘s modulus of the 

core, deflection of the upper skin is increased 

whereas deflection of the lower skin is decreased. 

 It is observed that by increasing length to height 

ratio, the non-dimensional center deflection of the 

skins will be decreased. 

 The effect of Young‘s modulus of the core and length 

to height ratio on the influence of the nonlocal 

parameter on deflection of the nano-sandwich beam 

is also studied. For case (1), it is observed that by 

increasing Young‘s modulus of the core to a certain 

value, the influence of the small-scale effects on 

deflection of the upper skin is increased, and by 

increasing Young‘s modulus of the core further from 

that value, this influence is slightly reduced. Also, it 

can be seen that by increasing Young‘s modulus of 

the core to a certain value, the influence of nonlocal 

parameter on deflection of the lower skin is 

decreased, and by increasing Young‘s modulus of the 

core further from that value, this influence is slightly 

increased. For case (2), it is concluded that by 

increasing Young‘s modulus of the core, the 

influence of the small-scale effects on deflection of 

the upper skin is increased, and the influence of the 

small-scale effects on deflection of the lower skin is 

reduced. 

 The effect of length to height ratio on the influence 

of the nonlocal parameter on deflection of the nano-

sandwich beam is investigated. It is noted that 

increasing length to height ratio of the nano-

sandwich beam reduces the influence of nonlocal 

parameter on deflection of the skins. 
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Appendix 
 

The elements of the matrices in Eq. (52) are as followsG 

 

 

 

 

4 6 2 43 3

11

2 4 22 2 3

12 12

( ) ( )

4 4 12

c c
t t t t

c c c c c c

t t c c

c c c

b E b Ec i c c i i c c i
a E I E I

G l G E l G l c G E l

b c d b c d bE bEi i c c i

l l G c G E l

      

   

          
               

          

       
          

        
 

2 4 23

12

4 23

( )( )

12 4

( )( )

4 12

c c t b

c c c

t b c c

c c c

b E b E b c d c di c c i i
a

G l c G E l l

b c d c d bE bEi c c i

l G c G E l

    

   

        
          

      

      
       

    
 

 

3

13

( ) ( )

2 2

t tb c d b c di i
a

l l

     
     

   
 

 

3

14

( ) ( )

2 2

t tb c d b c di i
a

l l

     
    

   
 

 

2 4 23

21

4 23

( )( )

12 4

( )( )

4 12

c c t b

c c c

t b c c

c c c

b E b E b c d c di c c i i
a

G l c G E l l

b c d c d bE bEi c c i

l G c G E l

    

   

        
          

      

      
       

    
 

 

4 6 2 43 3

22

2 4 22 2 3

12 12

( ) ( )

4 4 12

c c
b b b b

c c c c c c

b b c c

c c c

b E b Ec i c c i i c c i
a E I E I

G l G E l G l c G E l

b c d b c d bE bEi i c c i

l l G c G E l

      

   

          
               

          

       
          

      
 

 

3

23

( ) ( )

2 2

b bb c d b c di i
a

l l

     
     

   
 

 

3

24

( ) ( )

2 2

b bb c d b c di i
a

l l

     
    

   
 

 

3

31

( ) ( )

2 2

t tb c d b c di i
a

l l

     
    

   
 

 

3

32

( ) ( )

2 2

b bb c d b c di i
a

l l

     
    

   
 

 

2 4 23

33
12

t t t t

c c c

c i c c i i
a E A E A b b

G l G E l l

   


      
           

      
 

 

2

34

i
a b b

l



 

   
 

 

388




