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Bending of FGM rectangular plates resting on non-uniform elastic foundations

in thermal environment using an accurate theory
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Abstract. This article presents the bending analysis of FGM rectangular plates resting on non-uniform elastic foundations in
thermal environment. Theoretical formulations are based on a recently developed refined shear deformation theory. The
displacement field of the present theory is chosen based on nonlinear variations in the in-plane displacements through the
thickness of the plate. The present theory satisfies the free transverse shear stress conditions on the top and bottom surfaces of
the plate without using shear correction factor. Unlike the conventional trigonometric shear deformation theory, the present
refined shear deformation theory contains only four unknowns as against five in case of other shear deformation theories. The
material properties of the functionally graded plates are assumed to vary continuously through the thickness, according to a
simple power law distribution of the volume fraction of the constituents. The elastic foundation is modeled as non-uniform
foundation. The results of the shear deformation theories are compared together. Numerical examples cover the effects of the
gradient index, plate aspect ratio, side-to-thickness ratio and elastic foundation parameters on the thermo-mechanical behavior of
functionally graded plates. Numerical results show that the present theory can archive accuracy comparable to the existing

higher order shear deformation theories that contain more number of unknowns.
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1. Introduction

Functionally graded materials (FGMs) are considered as
one of the modern generation of composite materials. The
advantage of using advanced functionally graded materials
is that they can survive in high thermal gradient
environment, while maintaining their structural integrity.
The concept of the FGM was proposed in 1980 by Japanese
material scientists, as documented well in Ref. (Koizumi
1993). A typical FGM is made from a mixture of a ceramic
and a metal. The history of the FGM as well as its
applications can be found in the report by Jha et al. (2013).
Having this structure, makes the FGM proper for some
applications like reactor shells, turbines, building structures
and many other engineering applications. Most of the
studies on FGM have been restricted to thermal stress
analysis, thermal buckling, fracture mechanics and
optimization.

Plates supported by elastic foundations have been
widely adopted by many researchers to model various
engineering problems during the past decades. To describe
the interactions of the plate and foundation as more
appropriate as possible, scientists have proposed various
kinds of foundation models, Ref. (Kerr 1964). The simplest
model for the elastic foundation is the Winkler model
(1867), which regards the foundation as a series of
separated springs without coupling effects between each
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other, resulting in the disadvantage of discontinuous
deflection on the interacted surface of the plate. This was
later improved by Pasternak (1954) who took account of the
interactions between the separated springs in the Winkler
model by introducing a new dependent parameter. From
then on, the Pasternak model was widely used to describe
the  mechanical behavior of structure-foundation
interactions (Han and Liew 1997, Omurtag et al. 1997,
Matsunaga 2000, Filipich and Rosales 2002, Zhou et al.
2004, Zenkour 2009, Benyoucef et al. 2010, Kiani et al.
2011, Thai and Choi 2011, Behravan Rad 2012, Behravan
Rad and Shariyat 2013, Bouderba et al. 2013, Sobhy 2013,
Khalfi et al. 2014, Liang et al. 2014, Yaghoobi and
Fereidoon 2014, Yaghoobi et al. 2014, Ait Amar Meziane et
al. 2014, Bakora and Tounsi 2015, Meksi et al. 2015,
Tebboune et al. 2015, Hamidi et al. 2015, Bounouara et al.
2016, Ait Atmane et al. 2016, Yazid et al. 2018).

Various studies on FGM materials under thermo-
mechanical environment are found in the literature. Praveen
and Reddy (1998) carried out thermo-elastic analysis of FG
plates. They investigated the static and dynamic response of
the FGM plates by varying the volume fraction of the
ceramic and metallic constituents using the simple power-
law distribution. Reddy and Cheng (2001) studied the three-
dimensional distribution of displacement and stresses of
smart FG plates. Review on various investigations of FGM
including thermo-mechanical studies are found in Birman
and Byrd (2007). In general, the behavior of functionally
graded (FG) plates/shells under mechanical and thermal
loadings can be predicted using either three-dimensional
(3D) elasticity theory or equivalent- single-layer (ESL)
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theories (Thai and Kim 2015). The simplest ESL model is
the classical plate theory (CPT), also known as Kirchhoff
theory (1850), which ignores both shear and normal
deformation effects. The next theory in the hierarchy of
ESL models is the first-order shear deformation theory
(FSDT) developed by Mindlin (1951). The FSDT accounts
for the shear deformation effect by the way of a linear
variation of in-plane displacements through the thickness. A
shear correction factor is therefore required (Youcef et al.
2018, Bellifa et al. 2016, Bouderba et al. 2016, Al-Basyouni
et al. 2015). To avoid the use of the shear correction factor,
higher-order shear deformation theories (HSDTs) were
introduced (Mahi et al. 2015, Houari et al. 2016, Boukhari
et al. 2016, Benadouda et al. 2017, Sekkal et al. 2017a, Zidi
et al. 2017, Hachemi et al. 2017, Bellifa et al. 2017a,
Belabed et al. 2018). In principle, the theories developed by
this mean can be made as accurate as desired by including a
sufficient number of terms in the series. Among the HSDTS,
the third-order shear deformation theory (TSDT) of Reddy
(1984) is the most widely used one due to its simplicity and
accuracy. A review of shear deformation theories for
isotropic and laminated plates was carried out by Ghugal
and Shimpi (2002) and Khandan et al. (2012). A
comprehensive review of various analytical and numerical
models for predicting the bending, buckling and vibration
responses of FG plates under mechanical and thermal
loadings was recently carried out by Swaminathan et al.
(2015). Using the concept of FGM many works have been
also published to examine the mechanical responses of the
functionally graded composite material reinforced
with/without carbon nanotube (Mehar et al. 2016, 20173, b,
¢, d, Mahapatra et al. 2017a, b, Bellifa et al. 2017b, Mehar
and Panda 2016a, b, ¢ and 2017a, b, ¢, Zemri et al. 2015,
Kar and Panda 2015a, b and 2016a, b, Ahouel et al. 2016,
Taibi et al. 2015, Belkorissat et al. 2015, Meradjah et al.
2015, Kar et al. 2015, Bakhadda et al. 2018, Kaci et al.
2018, Meksi et al. 2018, Zine et al. 2018). In addition, the
thermal effect on composite structures is investigated
recently by several researchers (Menasria et al. 2017, El-
Haina et al. 2017, Fahsi et al. 2017, Chikh et al. 2017,
Mouffoki et al. 2017, Khetir et al. 2017, Besseghier et al.
2017, Klouche et al. 2017, Bousahla et al. 2016, Beldjelili
et al. 2016, Mahapatra et al. 2016, Attia et al. 2015, Zidi et
al. 2014).

This work presents a bending analysis of power law
functionally graded material (P-FGM) rectangular plates
resting on non-uniform elastic foundations in thermal
environment by using a simple and an efficient refined
shear deformation theory (RSDT with two models: refined
trigonometric shear deformation theory (RTSDT) and
refined parabolic shear deformation theory (RPSDT)). The
proposed theories contain fewer unknowns and equations of
motion than the first order shear deformation theory, but
satisfy the equilibrium conditions at the top and bottom
surfaces of the plate without using any shear correction
factors. The displacement field of the proposed theory is
chosen based on nonlinear variation in the in-plane
displacements through the thickness. The partition of the
transverse displacement into the bending and shear
components leads to a reduction in the number of equations

of motion, and consequently, makes the new theory much
more amenable to implementation. The material properties
of the functionally graded plates are assumed to vary
continuously through the thickness, according to a simple
power law distribution of the volume fraction of the
constituents. The elastic foundation is modeled as non-
uniform foundation. The accuracy of obtained solutions is
verified by comparing the present results with those
predicted by solutions available in the literature.

2. Theoretical formulation

Consider a functionally graded plate of thickness h, side
length a in the x-direction, and b in the y-direction resting
on nonlinear elastic foundations as shown in Fig. 1.

2.1 Basic assumptions and Kinematics
The assumptions of the present theory are as follows:

- The transverse displacements are partitioned into
bending and shear components.

- The in-plane displacement is partitioned into
extension, bending, and shear components.

- The bending parts of the in-plane displacements are
similar to those given by classical plate theory
(CPT).

- The shear parts of the in-plane displacements give
rise to the nonlinear variations of shear strains and
hence to shear stresses through the thickness of the
plate in such a way that the shear stresses vanish on
the top and bottom surfaces of the plate.

Based on the assumptions made in the preceding
section, the displacement field can be obtained

6“b é“‘s
U(Xx,V¥,z)=uU,(X, ——— z
(X, ¥,2) =Up(X, y) o v (2) o

- M ) M )
V(X Y, 2) =Vo(x,y) =2 Y l//(Z)ay

W(Xv yi Z) = Wb (X, y) +Ws(Xv y)

FGMpiate

Non-unjform Shear A
layer ram

Non-uniform
Wirdkler layer

Fig. 1 Coordinate system and geometry for rectangular FG
plates on non-uniform elastic foundation
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Fig. 2 ANN model effect of type elastic foundation on the dimensionless center deflection (w) of a rectangular
P-FG plate (k = 2) for different side-to-thickness ratio a/h

Table 1 Different shear shape strain functions

Model

w(z) function

Ambartsumian
(1958)

Kaczkowski (1968), Panc (1975),
Reissner (1975)

Levinson (1980), Murthy (1981)
and Reddy (1984)

Touratier (1991)

Soldatos (1992)

Karama et al. (2003) and Aydogdu (2009)

Present « model 1 » Tounsi et al. (2013)

Present « model 2 » Ait Yahia et al. (2015)
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where u, v, ware displacements in the X, y, z directions, uo,
Vo and wp, W, are mid-plane displacements and y(z) is a
shape function that represents the distribution of the
transverse shear strain and stress through the thickness, as
presented in Table 1.

The kinematic relations can be obtained as follows

&y &y Ky ks
g, p=1&) t+2 k) b+ () ks 1
yxy y)?y I(>l<)y kjy (2)
{m} _ é(z){ﬁz}
Vv Y
where
uy AL
g)? OX kf ox?
i) Bl deio) S
0 6y kb ay
Pod oy o | Us) | otw,
oy OX Oxoy
(32)
%,
kS ox? . oW,
ke Lo 0w, {yﬂ}: dy
y 2 ! s oW
k;y g% }/XZ S
_9 W, OX
OXoy
and
dy(2)
)=1-—-2 3b
0)=1-=2 (30)

2.2 Constitutive equations

The plate is subjected to a sinusoidally distributed load
Q(x, y) and a temperature field T(x, y, z). The material
properties P of the FG plate, such as Young’s modulus E,
Poisson’s ratio v, and thermal expansion coefficient o are
given according the formulation

k
1 z
P(@) =Py +(P.-)[ 3+ @
2 h
where Pc and Py, are the corresponding properties of the
ceramic and metal, respectively, and k is the volume
fraction exponent which takes values greater than or equal

to zero.
The linear constitutive relations are

oy CyC, O ||lg,—aAT
o,r=1Cp Cp 0 e, —aAT
7'-xy 0 0 CGG 7/xy (5)

and Tyz — C44 0 7/yz
z-zx O C55 yzx

where (o, 6y, Ty, Tyz, Tyx) @A (ex, &y, Pxys Pyzs Py Are the stress
and strain components, respectively. Using the material
properties defined in Eq. (4), stiffness coefficients, Cj;, can
be expressed as

Cu=Cp= 1E_(12/)2 ; (6a)
R (6b)

-~ _~ _ E®
Cus =Cos =Cegs = 20+v)’ (6¢)

where AT =T — T, in which Ty is the reference temperature.
The applied temperature distribution T(x, y, z) through
the thickness are assumed, respectively, to be

T Y, 2) =Ty (X, y) + =T, (X, y) + isin(”—zju(x, Y. ()
h V4 h

2.3 Governing equations

The governing equations of equilibrium can be derived
by using the principle of virtual displacements. The
principle of virtual work in the present case yields (Ait
Atmane et al. 2015)

n2 | o,0¢&, +O'y58y + Txy57Xy +Tyz57yz
-h/2Q

}dQ dz
+ TX25 7/)(2

8)
~[(Q- f,)6wdQ =0

where 2 is the top surface, and f, is the density of
reaction force of foundation. For the Pasternak foundation
model (see Behravan Rad 2012, Attia et al. 2018)

f, = K, (Qw— K, (x)VZw (9a)
and
1- ¢5 Linear,
a
3
K, (X) = KUE‘ 1- (%2 Parabolic, ,
a a
1-gsin(zX)  Sinusoidal,
a
(9b)
1- ¢5 Linear,
a
3
K, (X) = JOZ‘ 1-¢%)? Parabolic,
a a
1- ¢sin(;r§) Sinusoidal,

where Ko, Jo are a constant and ¢ is a varied parameter. K is
the Winkler foundation stiffness and K, is the effect of the
shear interactions of the vertical elements, and V2 is the
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Laplace operator in x and y. Note that, if ¢ = 0, the elastic
foundation becomes Pasternak foundation and if the shear
layer foundation stiffness is neglected, the Pasternak
foundation becomes the Winkler foundation, the foundation
is homogeneous and isotropic.

Substituting Egs. (2) and (5) into Eqg. (8) and integrating
through the thickness of the plate, Eq. (8) can be rewritten
as

N,6el +N Se) +N S&
+MPSk) +MOSk) + M2 Sk,
j +MSKS +M3Sks + MESkKS, (10)
H+S507y, +550 7%
- j(Q - fe)(é‘wb +5Ws)dQ
Q

The stress resultants N, M, and S are defined by

Ny, Ny, Ny 1
hi2
b b b
MX’ MV’ MXY :_hj/z(ax’o-y’rxy z dz, (lla)
S S S
My, My, My w(2)
and
h/
70Ty, JE(2)d2. (11b)

-h/2

Substituting Eq. (5) into Eg. (11) and integrating
through the thickness of the plate, the stress resultants are
given as

N A B B°|l¢ NT
MPt=| B D D* Rk°i—iMP®T
MS Bs Ds Hs ks MST

S=A%  (12)

where

N={N,N,N_J,Me={me Mo M )

. (13a)
M S {MX,My,MXSy},
t
NT ={NI,NT0f ,M" ={M!T M of,
(13b)
MST { sT 0}
e=1{el e g ke = ko ke
(13c)
ke = ke, ks, ke,
All AlZ 0 B11 BlZ O
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Dll D12 O
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where A;;, B, etc., are the plate stiffness, defined by

Ail Bll Dll Blsl Dlsl H 181
A12 BlZ D12 BfZ DlSZ H 182
A66 BG6 D66 Bgﬁ DGSB H 656

14a
1 (14a)
h/2
= [Cullz. 22w (@ zv@y @) v
“h/2 1-v
2
and
(o) (oo s,
B, Dy Hy, B, Do H 1-v
E(2)
AS — S
5= AL = (m)[:( 2)[ dz (14c)

The stress and moment resultants, N] = NT, MET =

M;’T, M = MST due to thermal loading are defined
respectively by
NT
h/2
M b= ] %a(z)T z dz, (15)
Mg v (2)

The governing equations of equilibrium can be derived
from Eq. (10) by integrating the displacement gradients by
parts and setting the coefficients dug, dvo, ow, and ows zero
separately.

Thus one can obtain the equilibrium equations
associated with the present shear deformation theory

OoN ON ON

5u0:%+—xy=0,5v0: 2+ — =0, (16a)

OX oy OX oy

2Mb_9ZME,  9°M?
($Wb:a X +2 L L _f,+Q=0,

ox? oxoy oy?

o°M:  _0°M;, 0*M; 58S 885Z (16b)
oW, : + +

ox? oxoy oy ox 6y

-f,+Q=0
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Substituting Eq. (12) into Eqg. (16), we obtain the
following equation

A d; U + Aggd Uy + (A12 + Ag )dlZVO
- B11d111Wb - (Blz + 2866 )dlZZWb (173)
- (Blsz + 28;6 )dlzst - Blsldlllws = fl'

Ay Vg + Aggdyy Vg + (Aiz + Agg )dlzuo — By, d W,
- (Blz + 2866 )d112Wb - (Blsz + 23656 112Ws (17b)
- BZSZdZZZWs = fz!

B,1dyyiUo + (BlZ +2Bgg )dlZZUO

+ (Blz +2Bgg )dnzVo + By Vo — Dyl Wy

- 2(D12 + 2D66 )dnzsz - Dzzd 2220 Wy (170)
= Dridyy W, — Z(Dlsz +2Dgq 115, W,

S —
- D22d2222Ws - f3

BSdyly + (By, +2Bg, Jdyol

+ (BZLSZ +2Bgg M 11,Vo + B350V — Dy Wy

- Z(Dlsz +2Dgg Jd112oWy — D30 550 Wy (17d)
—H 3y w, - 2(H, + 2HE MW,

— H 2050 W, + A dyy W + Agdpw, = f,

where {f} = {f,, f,, f;, f,}' is a generalized force vector, dij,
dij and dj;, are the following differential operators

2 3
dij = 0 ’dijl = 0 )
OX;OX OX;0X; OX

0! o . .
Qjm=—"—"—>0; =—., (0, j,I,m=12).
OX; OX ; OX, OX 1, OX;

(18)

The components of the generalized force vector {f}are
given by

ONT ONJ
f,=—2, f,=—2>, 19a
= =5 (192)
2 bT aZMbT
f3:fe+Q—aNIX — .
aXZ ayZ
O2M ST 02M T (19b)
f,=1,+Q- X _ Y
GXZ 8y2

3. Exact solutions for FG plates

Rectangular plates are generally classified in accordance
with the type of support used. We are here concerned with
the exact solution of Eq. (17) for a simply supported FG
plate. To solve this problem, Navier assumed that the
transverse mechanical and temperature loads, Q and T; in
the form of a in the double Fourier series as

{TQ} - {?°}sin(/1 X)sin(u y), (i =1 2,3) (20)

where A =z /a, u=n/b, Qpand t; are constants.

Following the Navier solution procedure, we assume the
following solution form for u,, Vo, W, and wg that satisfies
the boundary conditions

U, U cos(A x)sin(u y)

Vo | ]V sin(dx)cos(uy) ’1
w, [ W, sin(2 x)sin(uz y) [’ (21)
W, W, sin(A x)sin(x y)

where U, V, W,, and W, are arbitrary parameters to be
determined subjected to the condition that the solution in
Eq. (21) satisfies governing Egs. (17). One obtains the
following operator equation

[shaj={F}, (22)

where {A} = {U, V, W,, W} and [S] is the symmetric
matrix given by

Sy Sy, Sy Sy
[s]= S12 Sz Sy Su (23)
Sz Szs Sgs Sy
St Sau Sas Su
in which
Sy = _(A11/12 + Aeeluz)!
S, =—Au (A12 + Agg ): (24a)
Sis = A[ByyA® + (B, +2Bygg) 12%],
Si = A[BLA* + (B}, +2Bg;) 1*],
__( 24 A 2)
Spp = \AgA” + Ay i” ),
Sz = 1l(By, +2Bgg) 42 + Byl
Sps = ul(BS; +2Bg;) A* + By u?],
S, — DyuA* +2(Dy, +2Dgs ) A2 1® + Dzz/lA]
33 - ’
+ Ky + Ko A% + Kou? (24b)
S - DAY +2(D5, +2Dg ) A u'?
* D, u K KA+ K2 |
o (M 2R+ 2HE) 4 R
AL AL K+ KA+ K

The components of the generalized force vector {F} =
{F., F,, F3, F,} are given by

=4 (ATt1 + BTt2+aBTt3),

F, = ,u(ATtl + BTt2+aBTt3),

F,=-Q - h(/?,2 + ;12)(BTt1 + DTt2+aDTt3 )
F, = -Qp —h(# + 12)(*BTt,+°DTt,+°F e, ),

(25)
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Fig. 4 Variation of dimensionless shear stress (T,,) through-the-thickness of a rectangular P-FG plate (k = 2) for

different types of elastic foundation

where
{AT,BT, D" |= 7hj/ E(Z) a(), EEZ} z, (26a)
[+BT,°D" )= 71/ E(z )a(z)g(z){l Zfaz,  (26D)
E(z)

[BT DT, *FT )= jl (@22} dz (260)

in which

2=2/hy(2)=w(z)/h andg(z)——sm(ﬂhzj

4. Results and discussion

In this section, numerical examples are presented and
discussed for verifying the accuracy of the present theory in
bending analysis of P-FGM rectangular plates resting on
non-uniform elastic foundations in thermal environment.
Comparisons are made with various plate theories available
in the literature. The description of various displacement
models is given in Table 2.

The P-FGM plate is taken to be made of Titanium and

Table 2 Displacement models

Table 3 Material properties used in the FG plate
(see Tounsi et al 2013)

Metal Titanium Ceramic Zirconia

Properties

(Ti-6A1-4V) (2r02)
E (GPa) 66.2 17
a(lofe/ C°j 103 7.11
v 13 13

Model Theory LfJunnlér:i%ng
CPT Classical plate theory 3
FSDT First-order shear deformation theory 5
(Reissner 1945 and Mindlin 1951)
Parabolic shear deformation theory
PSDT (Reddy 2000) 5
Trigonometric shear deformation theory
TSDT (Zenkour 2009) S
Present  Present refined shear deformation theory 4

Zirconia with the following material properties “Table 3”:

The reference temperature is taken by T, = 25°C (room
temperature). Numerical results are presented in terms of
non-dimensional stresses and deflection. The various non-
dimensional parameters used are

e Center deflection

— 102D\A{a bj
w= ==
a‘gq, (2 2

e Axial stress

— 1 ab h
Ox=———0, === |
10%q, 222

e | ongitudinal shear stress

;xy: 1 Txy 0,0,_—h y
10q, 3

e Transversal shear stress

Z_'xz :_LTXZ O,E,O
10q, 2

e Thickness coordinate

z=z/h, K,= :

a’K, b’K, b h®E.

\] = = , =
D D 120—v2?)
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Table 4 Effect of the volume fraction exponent and linear elastic foundation parameters on the dimensionless

and stresses of an P-FG rectangular plate (a = 10h, b = 2a, g, = 100, t =0, ¢ = 0.3)

k Ko J=0 Theory w 0y Tyy Tyy
Model 1 0.68131 0.42424 0.86240 -0.39400
Model 2 0.68135 0.42408 0.86251 -0.38181
PSDT 0.68134 0.42408 0.86253 -0.38180
0 0 TSDT 0.68131 0.42424 0.86240 -0.39400
FSDT 0.68135 0.42148 0.86459 -0.30558
CPT 0.65704 0.42148 0.86459 -
Model 1 0.43145 0.26782 0.51296 -0.23434
Model 2 0.43147 0.26771 0.51299 -0.22708
PSDT 0.43148 0.26769 0.51299 -0.22708
100 0 TSDT 0.43145 0.26779 0.51296 -0.23434
FSDT 0.43147 0.26602 0.51422 -0.18175
CPT 0.42159 0.26964 0.52179 -
0 Model 1 0.09633 0.05895 0.10590 -0.04839
Model 2 0.09632 0.05892 0.10590 -0.04688
PSDT 0.09632 0.05889 0.10590 -0.04687
0 100 TSDT 0.09632 0.05892 0.10589 -0.04837
FSDT 0.09632 0.05851 0.10615 -0.03751
CPT 0.09583 0.06042 0.10958 -
Model 1 0.08903 0.05446 0.09772 -0.04464
Model 2 0.08904 0.05444 0.09772 -0.04325
PSDT 0.08904 0.05441 0.09772 -0.04325
100 100 TSDT 0.08904 0.05444 0.09772 -0.04464
FSDT 0.08903 0.05406 0.09795 -0.03462
CPT 0.08860 0.05584 0.10116 -
Model 1 0.09187 0.05092 0.07305 -0.03503
Model 2 0.09187 0.05090 0.07306 -0.03393
1 100 100 PSDT 0.09187 0.05086 0.07306 -0.03393
TSDT 0.09187 0.05089 0.07305 -0.03502
FSDT 0.09187 0.05052 0.07321 -0.02716
Model 1 0.09187 0.05092 0.07305 -0.03503
Model 1 0.09245 0.05060 0.06718 -0.03220
Model 2 0.09245 0.05057 0.06718 -0.03117
5 100 100 PSDT 0.09245 0.05055 0.06719 -0.03117
TSDT 0.09246 0.05057 0.06718 -0.03221
FSDT 0.09245 0.05022 0.06738 -0.02434
Model 1 0.09299 0.05195 0.06412 -0.02991
Model 2 0.09298 0.05192 0.06413 -0.02891
5 100 100 PSDT 0.09299 0.05189 0.06413 -0.02892
TSDT 0.09299 0.05191 0.06412 -0.02992
FSDT 0.09298 0.05160 0.06440 -0.02205
Model 1 0.09439 0.05761 0.05815 -0.02657
Model 2 0.09439 0.05758 0.05815 -0.02575
0 100 100 PSDT 0.09439 0.05756 0.05815 -0.02574
TSDT 0.09439 0.05758 0.05814 -0.02656
FSDT 0.09439 0.05719 0.05829 -0.02060
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Numerical results are tabulated in Tables 4-6 and plotted
in Figs 2-4 using the present refined shear deformation
theory (RSDT “model 1 and model 2”). We note that the
shear correction factor is taken k = 5/6 in FSDT.

The correlation between the present refined shear
deformation theory (RSDT) and different higher-order and
first-order shear deformation theories and classical plate
theory is illustrated in Tables 4-5.

These Tables give also the effects of the volume fraction
exponent ratio k and type of elastic foundation parameters
on the dimensionless deflection and stresses of FG
rectangular plate. Table 4 gives the effects of the volume
fraction exponent ratio k and linear elastic foundation
parameters on the dimensionless displacements and stresses
of P-FG rectangular plate subjected to a mechanical

load. It can be shown that the deflection and stresses are
decreasing with the existence of the elastic foundations. The
inclusion of the Winkler foundation parameter gives results
more than those with the inclusion of Pasternak foundation
parameters. As the volume fraction exponent increases for
P-FG plates, the deflection will increase. The stresses are
also sensitive to the variation of k.

Tables 5 and 6 present similar results as those given in
Table 4 including the effect of the temperature field. The
obtained results are compared with those predicted by
FSDT, TSDT and PSDT. An excellent agreement is
obtained between the present theory and TSDT (Zenkour
2009) and PSDT (Reddy 2000) for all values of power law
index k and with or without the presence of the elastic
foundation. It is important to observe that the stresses for a

Table 5 Effect of the volume fraction exponent and linear elastic foundation parameters on the dimensionless
and stresses of an P-FG rectangular plate models (a = 10h, b = 2a, g = 100, t =0, ¢ = 0.3)

k Ko J=0 Theory w Oy Txy Tyy
Model 1 2.1762 0.19592 -0.49747 -0.38826
0 0 Model 2 2.1762 0.19572 -0.49735 -0.37679
PSDT 2.1982 0.19106 -0.46854 -0.37714
TSDT 2.1762 0.19592 -0.49742 -0.38826
Model 1 1.3781 -0.30378 -1.6140 0.12170
100 0 Model 2 1.3783 -0.30358 -1.6136 0.11741
PSDT 1.3921 -0.31344 -1.5960 0.12204
TSDT 1.3781 -0.30378 -1.6139 0.12172
0 Model 1 0.30772 -0.97078 -2.9140 0.71573
Model 2 0.30769 -0.97058 -2.9140 0.69301
0 100 PSDT 0.31080 -0.98704 -2.9098 0.70349
TSDT 0.30770 -0.97098 -2.9138 0.71573
Model 1 0.28438 -0.98518 -2.9399 0.72762
100 100 Model 2 0.28443 -0.98488 -2.9400 0.70459
PSDT 0.28729 -1.0016 -2.9362 0.71507
TSDT 0.28443 -0.98538 -2.9397 0.72767
Model 1 0.23888 -0.77448 -2.3876 0.54619
1 100 100 Model 2 0.23889 -0.77421 -2.3876 0.52864
PSDT 0.24161 -0.79081 -2.3854 0.53861
TSDT 0.23889 -0.77461 -2.3872 0.54615
Model 1 0.23604 -0.68577 -2.3165 0.52365
c 100 100 Model 2 0.23604 -0.68551 -2.3167 0.50576
PSDT 0.23872 -0.70196 -2.3152 0.51525
TSDT 0.23605 -0.68590 -2.3167 0.52354
Model 1 0.24427 -0.59074 -2.4012 0.54892
5 100 100 Model 2 0.24425 -0.59060 -2.4015 0.52928
PSDT 0.24692 -0.60679 -2.4000 0.53858
TSDT 0.24426 -0.59086 -2.4010 0.54889
Model 1 0.26417 -0.50004 -2.5031 0.63896
" 100 100 Model 2 0.26413 -0.49952 -2.5031 0.61868
PSDT 0.26667 -0.51623 -2.5006 0.62782
TSDT 0.26417 -0.50018 -2.5029 0.63900




320

Bachir Bouderba

Table 6 Effects of side-to-thickness ratio and type of elastic foundation parameters on the dimensionless
deflection of an P-FG rectangular plate (qo = 100, t = 10, b = 2a, ¢ = 0.3)

k Ko 1=0 Theory foErllaclisz::icon 5 10 = 20 50
Parabolic 6.72940 2.17620 1.03690 0.71780
Model 1 Sinusoidal 6.72940 2.17620 1.03690 0.71780
0 0 Parabolic 6.73010 2.17620 1.03690 0.71780
Model 2 Sinusoidal 6.73010 2.17620 1.03690 0.71780
0 Parabolic 0.74686 0.26413 0.12889 0.08982
Model 1 Sinusoidal 0.95261 0.33594 0.16377 0.11411
100 100 Parabolic 0.74663 0.26416 0.12889 0.08982
Model 2 Sinusoidal 0.95267 0.33594 0.16377 0.11410
Parabolic 6.69020 2.32030 1.22610 0.91966
Model 1 Sinusoidal 6.69020 2.32030 1.22610 0.91966
0 0 Parabolic 6.69130 2.32030 1.22610 0.91966
Model 2 Sinusoidal 6.69130 2.32030 1.22610 0.91966
! Parabolic 0.58343 0.22139 0.11982 0.09048
Model 1 Sinusoidal 0.74998 0.28384 0.15352 0.11590
100 100 Parabolic 0.58345 0.22138 0.11982 0.09048
Model 2 Sinusoidal 0.74998 0.28384 0.15352 0.11590
Parabolic 7.22810 2.51560 1.33420 1.00310
Model 1 Sinusoidal 7.22810 2.51560 1.33420 1.00310
0 0 Parabolic 7.23010 2.51570 1.33420 1.00310
Model 2 Sinusoidal 7.23010 2.51570 1.33420 1.00310
3 Model 1 Parabolic 0.57515 0.22098 0.12032 0.09116
100 100 Sinusoidal 0.74096 0.28401 0.15454 0.11704
Model 2 Parabolic 0.57504 0.22096 0.12032 0.09116
Sinusoidal 0.74089 0.28394 0.15453 0.11705
Model 1 Parabolic 7.68080 2.65230 1.39090 1.03740
Sinusoidal 7.68080 2.65230 1.39090 1.03740
0 0 Model 2 Parabolic 7.68300 2.65250 1.39090 1.03740
Sinusoidal 7.68300 2.65250 1.39090 1.03740
> Model 1 Parabolic 0.59136 0.22618 0.12189 0.09161
Sinusoidal 0.76235 0.29086 0.15663 0.11772
100 100 Model 2 Parabolic 0.59154 0.22618 0.12189 0.09161
Sinusoidal 0.76271 0.29090 0.15662 0.11772
Model 1 Parabolic 9.98890 3.36980 1.71350 1.24960
0 0 Sinusoidal 9.98890 3.36980 1.71350 1.24960
Model 2 Parabolic 9.99000 3.36990 1.71350 1.24960
Sinusoidal 9.99000 3.36990 1.71350 1.24960
* Model 1 Parabolic 0.65904 0.24430 0.12738 0.09355
100 100 Sinusoidal 0.85277 0.31548 0.16439 0.12072
Model 2 Parabolic 0.65877 0.24432 0.12738 0.09355
Sinusoidal 0.85240 0.31546 0.16438 0.12072

fully ceramic plate are not the same as that for a fully metal
plate with elastic foundations. This is because the plate here
is affected with the inclusion of the temperature field.

From results presented in Tables 4 to 5, it should be

noted that the unknown function in present theory is four,
while the unknown function in FSDT, PSDT and TSDT is
five. It can be concluded that the present theory is not only
accurate but also simple in bending analysis of P-FGM
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rectangular  plates resting on non-uniform elastic
foundations in thermal environment.

Table 6 gives the effects of side-to-thickness ratio and
the type of elastic foundation parameters on the
dimensionless deflection of P-FG rectangular plate under
thermo-mechanical loads using the present refined shear
deformation theory (RSDT “model 1 and model 27”). It is
clear that the center deflection decreases as the side-to-
thickness ratio a/h increases. In addition, all displacements
are decreasing with the existence of the elastic foundations.
The inclusion of the Winkler foundation parameter gives
results more than those with the inclusion of Pasternak
foundation parameters.

The effect of foundation stiffness and type of elastic

foundation and side-to-thickness ratio on the dimensionless
deflection of P-FG rectangular plate (k = 2) is shown in Fig.
2. It can be seen that the increase of side-to-thickness ratio
a/h leads to a decrease of the center deflection of the P-FG
plate. The axial stress, &,, are plotted in Fig. 3. It can be
seen that the maximum compressive stresses occur at a
point near the top surface and the maximum tensile stresses
occur, of course, at a point near the bottom surface of the P-
FG plate.
Finally, Fig. 4 depict the through-the-thickness
distributions of the shear stress 7,, in the FG rectangular
plates under the thermal loads (qo = 100, t; =0 and t; = t3 =
10). The volume fraction exponent of the P-FG plate is
taken as k = 2. The maximum values of T,, occur at Z =
0.1 of the P-FG plate, not at the plate center as in the
homogeneous case.

5. Conclusions

A refined shear deformation plate theory is used in
bending analysis of FGM rectangular plates resting on non-
uniform elastic foundations in thermal environment. This
theory contains only four unknown functions and then four
governing equations are only obtained. Moreover, it does
not need a shear correction factor. The theory satisfies the
zero traction boundary conditions at the plate’s surfaces.
The accuracy of the suggested theory (model
1:RTSDT,model 2: RPSDT) is verified by making some
comparisons between the results obtained by the CPT,
FSDT, TSDT and PSDT theories and the exact published
ones. The results of the shear deformation theories are
compared together.

e The gradients in material properties play an
important role in determining the response of the FG
plates.

e However, the inclusion of the foundation parameters
may give displacements and stresses with higher
magnitudes.

e Based on Navier’s type solution, the equations of
motion are solved analytically.

e The mixture of the ceramic and metal with
continuously varying volume fraction can eliminate
interface problems of sandwich plates and thus the
stresses distributions are smooth.

e All comparison studies demonstrated that the

deflections and stresses obtained using the present
refined theory (with four unknowns) and other
higher-order shear deformation theories (five
unknowns) are almost identical.

In addition, unlike any other theory, the theory presented
gives rise to only four governing equations resulting in
considerably lower computational effort when compared
with the other higher-order theories reported in the literature
having more number of governing equations.

Hence, it can be said that the proposed theory is accurate
and simple in bending analysis of FGM rectangular plates
resting on non-uniform elastic foundations in thermal
environment. Finally, this work can be extended in future
by considering the case of various boundary conditions and
the stretching effect (Abualnour et al. 2018, Benchohra et
al. 2018, Bouhadra et al. 2018, Bouafia et al. 2017, Sekkal
et al. 2017b, Abdelaziz et al. 2017, Bennoun et al. 2016,
Draiche et al. 2016, Bourada et al. 2015, Larbi Chaht et al.
2015, Bousahla et al. 2014, Fekrar et al. 2014, Hebali et al.
2014, Ait Amar Meziane et al. 2014, Belabed et al. 2014,
Bessaim et al. 2013).
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