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1. Introduction 

 

Functionally graded materials (FGMs) are considered as 

one of the modern generation of composite materials. The 

advantage of using advanced functionally graded materials 

is that they can survive in high thermal gradient 

environment, while maintaining their structural integrity. 

The concept of the FGM was proposed in 1980 by Japanese 

material scientists, as documented well in Ref. (Koizumi 

1993). A typical FGM is made from a mixture of a ceramic 

and a metal. The history of the FGM as well as its 

applications can be found in the report by Jha et al. (2013). 

Having this structure, makes the FGM proper for some 

applications like reactor shells, turbines, building structures 

and many other engineering applications. Most of the 

studies on FGM have been restricted to thermal stress 

analysis, thermal buckling, fracture mechanics and 

optimization. 

Plates supported by elastic foundations have been 

widely adopted by many researchers to model various 

engineering problems during the past decades. To describe 

the interactions of the plate and foundation as more 

appropriate as possible, scientists have proposed various 

kinds of foundation models, Ref. (Kerr 1964). The simplest 

model for the elastic foundation is the Winkler model 

(1867), which regards the foundation as a series of 

separated springs without coupling effects between each 
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other, resulting in the disadvantage of discontinuous 

deflection on the interacted surface of the plate. This was 

later improved by Pasternak (1954) who took account of the 

interactions between the separated springs in the Winkler 

model by introducing a new dependent parameter. From 

then on, the Pasternak model was widely used to describe 

the mechanical behavior of structure-foundation 

interactions (Han and Liew 1997, Omurtag et al. 1997, 

Matsunaga 2000, Filipich and Rosales 2002, Zhou et al. 

2004, Zenkour 2009, Benyoucef et al. 2010, Kiani et al. 

2011, Thai and Choi 2011, Behravan Rad 2012, Behravan 

Rad and Shariyat 2013, Bouderba et al. 2013, Sobhy 2013, 

Khalfi et al. 2014, Liang et al. 2014, Yaghoobi and  

Fereidoon 2014, Yaghoobi et al. 2014, Ait Amar Meziane et 

al. 2014, Bakora and Tounsi 2015, Meksi et al. 2015, 

Tebboune et al. 2015, Hamidi et al. 2015, Bounouara et al. 

2016, Ait Atmane et al. 2016, Yazid et al. 2018). 

Various studies on FGM materials under thermo-

mechanical environment are found in the literature. Praveen 

and Reddy (1998) carried out thermo-elastic analysis of FG 

plates. They investigated the static and dynamic response of 

the FGM plates by varying the volume fraction of the 

ceramic and metallic constituents using the simple power-

law distribution. Reddy and Cheng (2001) studied the three-

dimensional distribution of displacement and stresses of 

smart FG plates. Review on various investigations of FGM 

including thermo-mechanical studies are found in Birman 

and Byrd (2007). In general, the behavior of functionally 

graded (FG) plates/shells under mechanical and thermal 

loadings can be predicted using either three-dimensional 

(3D) elasticity theory or equivalent- single-layer (ESL) 
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theories (Thai and Kim 2015). The simplest ESL model is 

the classical plate theory (CPT), also known as Kirchhoff 

theory (1850), which ignores both shear and normal 

deformation effects. The next theory in the hierarchy of 

ESL models is the first-order shear deformation theory 

(FSDT) developed by Mindlin (1951). The FSDT accounts 

for the shear deformation effect by the way of a linear 

variation of in-plane displacements through the thickness. A 

shear correction factor is therefore required (Youcef et al. 

2018, Bellifa et al. 2016, Bouderba et al. 2016, Al-Basyouni 

et al. 2015). To avoid the use of the shear correction factor, 

higher-order shear deformation theories (HSDTs) were 

introduced (Mahi et al. 2015, Houari et al. 2016, Boukhari 

et al. 2016, Benadouda et al. 2017, Sekkal et al. 2017a, Zidi 

et al. 2017, Hachemi et al. 2017, Bellifa et al. 2017a, 

Belabed et al. 2018). In principle, the theories developed by 

this mean can be made as accurate as desired by including a 

sufficient number of terms in the series. Among the HSDTs, 

the third-order shear deformation theory (TSDT) of Reddy 

(1984) is the most widely used one due to its simplicity and 

accuracy. A review of shear deformation theories for 

isotropic and laminated plates was carried out by Ghugal 

and Shimpi (2002) and Khandan et al. (2012). A 

comprehensive review of various analytical and numerical 

models for predicting the bending, buckling and vibration 

responses of FG plates under mechanical and thermal 

loadings was recently carried out by Swaminathan et al. 

(2015). Using the concept of FGM many works have been 

also published to examine the mechanical responses of the 

functionally graded composite material reinforced 

with/without carbon nanotube (Mehar et al. 2016, 2017a, b, 

c, d, Mahapatra et al. 2017a, b, Bellifa et al. 2017b, Mehar 

and Panda 2016a, b, c and 2017a, b, c, Zemri et al. 2015, 

Kar and Panda 2015a, b and 2016a, b, Ahouel et al. 2016, 

Taibi et al. 2015, Belkorissat et al. 2015, Meradjah et al. 

2015, Kar et al. 2015, Bakhadda et al. 2018, Kaci et al. 

2018, Meksi et al. 2018, Zine et al. 2018). In addition, the 

thermal effect on composite structures is investigated 

recently by several researchers (Menasria et al. 2017, El-

Haina et al. 2017, Fahsi et al. 2017, Chikh et al. 2017, 

Mouffoki et al. 2017, Khetir et al. 2017, Besseghier et al. 

2017, Klouche et al. 2017, Bousahla et al. 2016, Beldjelili 

et al. 2016, Mahapatra et al. 2016, Attia et al. 2015, Zidi et 

al. 2014). 

This work presents a bending analysis of power law 

functionally graded material (P-FGM) rectangular plates 

resting on non-uniform elastic foundations in thermal 

environment by using a simple and an efficient refined 

shear deformation theory (RSDT with two models: refined 

trigonometric shear deformation theory (RTSDT) and 

refined parabolic shear deformation theory (RPSDT)). The 

proposed theories contain fewer unknowns and equations of 

motion than the first order shear deformation theory, but 

satisfy the equilibrium conditions at the top and bottom 

surfaces of the plate without using any shear correction 

factors. The displacement field of the proposed theory is 

chosen based on nonlinear variation in the in-plane 

displacements through the thickness. The partition of the 

transverse displacement into the bending and shear 

components leads to a reduction in the number of equations 

of motion, and consequently, makes the new theory much 

more amenable to implementation. The material properties 

of the functionally graded plates are assumed to vary 

continuously through the thickness, according to a simple 

power law distribution of the volume fraction of the 

constituents. The elastic foundation is modeled as non-

uniform foundation. The accuracy of obtained solutions is 

verified by comparing the present results with those 

predicted by solutions available in the literature. 

 

 

2. Theoretical formulation 
 

Consider a functionally graded plate of thickness h, side 

length a in the x-direction, and b in the y-direction resting 

on nonlinear elastic foundations as shown in Fig. 1. 

 

2.1 Basic assumptions and Kinematics 
 

The assumptions of the present theory are as follows: 
 

- The transverse displacements are partitioned into 

bending and shear components. 

- The in-plane displacement is partitioned into 

extension, bending, and shear components. 

- The bending parts of the in-plane displacements are 

similar to those given by classical plate theory 

(CPT). 

- The shear parts of the in-plane displacements give 

rise to the nonlinear variations of shear strains and 

hence to shear stresses through the thickness of the 

plate in such a way that the shear stresses vanish on 

the top and bottom surfaces of the plate. 
 

Based on the assumptions made in the preceding 

section, the displacement field can be obtained 
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Fig. 1 Coordinate system and geometry for rectangular FG 

plates on non-uniform elastic foundation 
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(a) Model 1 (b) Model 2 

Fig. 2 ANN model effect of type elastic foundation on the dimensionless center deflection (𝑤 ) of a rectangular 

P-FG plate (k = 2) for different side-to-thickness ratio a/h 

Table 1 Different shear shape strain functions 

Model ψ(z) function 
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(a) Model 1 (b) Model 2 

Fig. 3 Variation of dimensionless axial stress (𝜎 𝑥) through-the-thickness of a rectangular P-FG plate (k = 2) for 

different type of elastic foundations 
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where u, v, ware displacements in the x, y, z directions, u0, 

v0 and wb, ws are mid-plane displacements and ψ(z) is a 

shape function that represents the distribution of the 

transverse shear strain and stress through the thickness, as 

presented in Table 1. 

The kinematic relations can be obtained as follows 
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2.2 Constitutive equations 
 

The plate is subjected to a sinusoidally distributed load 

Q(x, y) and a temperature field T(x, y, z). The material 

properties P of the FG plate, such as Young’s modulus E, 

Poisson’s ratio v, and thermal expansion coefficient α are 

given according the formulation 
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where PC and PM are the corresponding properties of the 

ceramic and metal, respectively, and k is the volume 

fraction exponent which takes values greater than or equal 

to zero. 

The linear constitutive relations are 
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where (ζx, ζy, ηxy, ηyz, ηyx) and (εx, εy, γxy, γyz, γyx) are the stress 

and strain components, respectively. Using the material 

properties defined in Eq. (4), stiffness coefficients, Cij, can 

be expressed as 
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where ΔT = T ‒ T0 in which T0 is the reference temperature. 

The applied temperature distribution T(x, y, z) through 

the thickness are assumed, respectively, to be 
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2.3 Governing equations 
 

The governing equations of equilibrium can be derived 

by using the principle of virtual displacements. The 

principle of virtual work in the present case yields (Ait 

Atmane et al. 2015) 

 

0 )(

  
 

    2/

2/

 

  














 

wdfQ

dzd

e

h

h xzxz

yzyzxyxyyyxx







 (8) 

 

where Ω  is the top surface, and fe is the density of 

reaction force of foundation. For the Pasternak foundation 

model (see Behravan Rad 2012, Attia et al. 2018) 
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where K0, J0 are a constant and ϕ is a varied parameter. K1 is 

the Winkler foundation stiffness and K2 is the effect of the 

shear interactions of the vertical elements, and 2 is the 
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Laplace operator in x and y. Note that, if ϕ = 0, the elastic 

foundation becomes Pasternak foundation and if the shear 

layer foundation stiffness is neglected, the Pasternak 

foundation becomes the Winkler foundation, the foundation 

is homogeneous and isotropic. 

Substituting Eqs. (2) and (5) into Eq. (8) and integrating 

through the thickness of the plate, Eq. (8) can be rewritten 

as 
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The stress resultants N, M, and S are defined by 
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Substituting Eq. (5) into Eq. (11) and integrating 

through the thickness of the plate, the stress resultants are 

given as 
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where Aij, Bij, etc., are the plate stiffness, defined by 

 

  dzzzzzzzC

HDBDBA

HDBDBA

HDBDBA

h

h

sss

sss

sss














































2

1

1

)(),( ),(,,,1
2/

2/

22
11

666666666666

121212121212

111111111111




 (14a) 

 

and 
 

211

111111

111111

222222

222222

1

)(
,

,,

,,,

,,

,,,





























 zE
C

HDB

DBA

HDB

DBA

ssssss
 (14b) 

 

 
  ,)(

12

)(2/

2/

2

5544 





h

h

ss dzz
zE

AA 


 (14c) 

 

The stress and moment resultants,
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x MM   due to thermal loading are defined 

respectively by 
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The governing equations of equilibrium can be derived 

from Eq. (10) by integrating the displacement gradients by 

parts and setting the coefficients δu0, δv0, δwb and δws zero 

separately. 

Thus one can obtain the equilibrium equations 

associated with the present shear deformation theory 
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Substituting Eq. (12) into Eq. (16), we obtain the 

following equation 
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where {f} = {f1, f2, f3, f4}
t is a generalized force vector, dij, 

dijl and dijlm are the following differential operators 
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The components of the generalized force vector {f}are 

given by 
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3. Exact solutions for FG plates 
 

Rectangular plates are generally classified in accordance 

with the type of support used. We are here concerned with 

the exact solution of Eq. (17) for a simply supported FG 

plate. To solve this problem, Navier assumed that the 

transverse mechanical and temperature loads, Q and Ti in 

the form of a in the double Fourier series as 
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where λ = π / a, μ = π / b, Q0 and ti are constants. 

Following the Navier solution procedure, we assume the 

following solution form for u0, v0, wb and ws that satisfies 

the boundary conditions 
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where U, V, Wb, and Ws are arbitrary parameters to be 

determined subjected to the condition that the solution in 

Eq. (21) satisfies governing Eqs. (17). One obtains the 

following operator equation 
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where {Δ} = {U, V, Wb, Ws}
t and [S] is the symmetric 

matrix given by 
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The components of the generalized force vector {F} = 

{F1, F2, F3, F4}
t are given by 

 

 
 

  
  ., 

, 

, 

, 

321

22

04

321

22

03

3212

3211

tFtDtBhQF

tDtDtBhQF

tBtBtAF

tBtBtAF

TsTsTs

TaTT

TaTT

TaTT

















 

(25) 

316



 

Bending of FGM rectangular plates resting on non-uniform elastic foundations in thermal environment... 

 

 

where 
 

   , 
2

,,1)(
1

)(
,,

2/

2/











h

h

TTT dzzzz
zE

DBA 


 (26a) 

 

    , ,1)()(
1

)(
,

2/

2/







h

h

TaTa dzzzz
zE

DB 


 (26b) 

 

   





2/

2/

 )(,,1)()(
1

)(
,,

h

h

TsTsTs dzzzzz
zE

FDB 


 (26c) 

 

in which 
 











h

z
zandhzzhzz

 
sin

1
)(/)()(,/




  

 

 

4. Results and discussion 
 
In this section, numerical examples are presented and 

discussed for verifying the accuracy of the present theory in 

bending analysis of P-FGM rectangular plates resting on 

non-uniform elastic foundations in thermal environment. 

Comparisons are made with various plate theories available 

in the literature. The description of various displacement 

models is given in Table 2. 

The P-FGM plate is taken to be made of Titanium and 

 

 
Table 2 Displacement models 

Model Theory 
Unknown 

functions 

CPT Classical plate theory 3 

FSDT 
First-order shear deformation theory 

(Reissner 1945 and Mindlin 1951) 
5 

PSDT 
Parabolic shear deformation theory 

(Reddy 2000) 
5 

TSDT 
Trigonometric shear deformation theory 

(Zenkour 2009) 
5 

Present Present refined shear deformation theory 4 
 

 

 
Table 3 Material properties used in the FG plate 

(see Tounsi et al 2013) 

Properties 
Metal Titanium 

(Ti-6Al-4V) 

Ceramic Zirconia 

(ZrO2) 

E (GPa) 66.2 117 






  C610  10.3 7.11 

v 1/3 1/3 
 

 

 

Zirconia with the following material properties “Table 3”: 

The reference temperature is taken by T0 = 25°C (room 

temperature). Numerical results are presented in terms of 

non-dimensional stresses and deflection. The various non-

dimensional parameters used are 
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Fig. 4 Variation of dimensionless shear stress (𝜏 𝑥𝑧 ) through-the-thickness of a rectangular P-FG plate (k = 2) for 

different types of elastic foundation 
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Table 4 Effect of the volume fraction exponent and linear elastic foundation parameters on the dimensionless 

and stresses of an P-FG rectangular plate (a = 10h, b = 2a, q0 = 100, t = 0, ϕ = 0.3) 

k K0 J = 0 Theory 𝑤  𝜎 𝑥  𝜏 𝑥𝑦  𝜏 𝑥𝑧  

0 

0 0 

Model 1 0.68131 0.42424 0.86240 -0.39400 

Model 2 0.68135 0.42408 0.86251 -0.38181 

PSDT 0.68134 0.42408 0.86253 -0.38180 

TSDT 0.68131 0.42424 0.86240 -0.39400 

FSDT 0.68135 0.42148 0.86459 -0.30558 

CPT 0.65704 0.42148 0.86459 – 

100 0 

Model 1 0.43145 0.26782 0.51296 -0.23434 

Model 2 0.43147 0.26771 0.51299 -0.22708 

PSDT 0.43148 0.26769 0.51299 -0.22708 

TSDT 0.43145 0.26779 0.51296 -0.23434 

FSDT 0.43147 0.26602 0.51422 -0.18175 

CPT 0.42159 0.26964 0.52179 – 

0 100 

Model 1 0.09633 0.05895 0.10590 -0.04839 

Model 2 0.09632 0.05892 0.10590 -0.04688 

PSDT 0.09632 0.05889 0.10590 -0.04687 

TSDT 0.09632 0.05892 0.10589 -0.04837 

FSDT 0.09632 0.05851 0.10615 -0.03751 

CPT 0.09583 0.06042 0.10958 – 

100 100 

Model 1 0.08903 0.05446 0.09772 -0.04464 

Model 2 0.08904 0.05444 0.09772 -0.04325 

PSDT 0.08904 0.05441 0.09772 -0.04325 

TSDT 0.08904 0.05444 0.09772 -0.04464 

FSDT 0.08903 0.05406 0.09795 -0.03462 

CPT 0.08860 0.05584 0.10116 – 

1 100 100 

Model 1 0.09187 0.05092 0.07305 -0.03503 

Model 2 0.09187 0.05090 0.07306 -0.03393 

PSDT 0.09187 0.05086 0.07306 -0.03393 

TSDT 0.09187 0.05089 0.07305 -0.03502 

FSDT 0.09187 0.05052 0.07321 -0.02716 

Model 1 0.09187 0.05092 0.07305 -0.03503 

5 100 100 

Model 1 0.09245 0.05060 0.06718 -0.03220 

Model 2 0.09245 0.05057 0.06718 -0.03117 

PSDT 0.09245 0.05055 0.06719 -0.03117 

TSDT 0.09246 0.05057 0.06718 -0.03221 

FSDT 0.09245 0.05022 0.06738 -0.02434 

5 100 100 

Model 1 0.09299 0.05195 0.06412 -0.02991 

Model 2 0.09298 0.05192 0.06413 -0.02891 

PSDT 0.09299 0.05189 0.06413 -0.02892 

TSDT 0.09299 0.05191 0.06412 -0.02992 

FSDT 0.09298 0.05160 0.06440 -0.02205 

∞ 100 100 

Model 1 0.09439 0.05761 0.05815 -0.02657 

Model 2 0.09439 0.05758 0.05815 -0.02575 

PSDT 0.09439 0.05756 0.05815 -0.02574 

TSDT 0.09439 0.05758 0.05814 -0.02656 

FSDT 0.09439 0.05719 0.05829 -0.02060 
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Numerical results are tabulated in Tables 4-6 and plotted 

in Figs 2-4 using the present refined shear deformation 

theory (RSDT “model 1 and model 2”). We note that the 

shear correction factor is taken k = 5/6 in FSDT. 

The correlation between the present refined shear 

deformation theory (RSDT) and different higher-order and 

first-order shear deformation theories and classical plate 

theory is illustrated in Tables 4-5. 

These Tables give also the effects of the volume fraction 

exponent ratio k and type of elastic foundation parameters 

on the dimensionless deflection and stresses of FG 

rectangular plate. Table 4 gives the effects of the volume 

fraction exponent ratio k and linear elastic foundation 

parameters on the dimensionless displacements and stresses 

of P-FG rectangular plate subjected to a mechanical 
 

 

load. It can be shown that the deflection and stresses are 

decreasing with the existence of the elastic foundations. The 

inclusion of the Winkler foundation parameter gives results 

more than those with the inclusion of Pasternak foundation 

parameters. As the volume fraction exponent increases for 

P-FG plates, the deflection will increase. The stresses are 

also sensitive to the variation of k. 

Tables 5 and 6 present similar results as those given in 

Table 4 including the effect of the temperature field. The 

obtained results are compared with those predicted by 

FSDT, TSDT and PSDT. An excellent agreement is 

obtained between the present theory and TSDT (Zenkour 

2009) and PSDT (Reddy 2000) for all values of power law 

index k and with or without the presence of the elastic 

foundation. It is important to observe that the stresses for a 
 

 

Table 5 Effect of the volume fraction exponent and linear elastic foundation parameters on the dimensionless 

and stresses of an P-FG rectangular plate models (a = 10h, b = 2a, q0 = 100, t = 0, ϕ = 0.3) 

k K0 J = 0 Theory 𝑤  𝜎 𝑥  𝜏 𝑥𝑦  𝜏 𝑥𝑧  

0 

0 0 

Model 1 2.1762 0.19592 -0.49747 -0.38826 

Model 2 2.1762 0.19572 -0.49735 -0.37679 

PSDT 2.1982 0.19106 -0.46854 -0.37714 

TSDT 2.1762 0.19592 -0.49742 -0.38826 

100 0 

Model 1 1.3781 -0.30378 -1.6140 0.12170 

Model 2 1.3783 -0.30358 -1.6136 0.11741 

PSDT 1.3921 -0.31344 -1.5960 0.12204 

TSDT 1.3781 -0.30378 -1.6139 0.12172 

0 100 

Model 1 0.30772 -0.97078 -2.9140 0.71573 

Model 2 0.30769 -0.97058 -2.9140 0.69301 

PSDT 0.31080 -0.98704 -2.9098 0.70349 

TSDT 0.30770 -0.97098 -2.9138 0.71573 

100 100 

Model 1 0.28438 -0.98518 -2.9399 0.72762 

Model 2 0.28443 -0.98488 -2.9400 0.70459 

PSDT 0.28729 -1.0016 -2.9362 0.71507 

TSDT 0.28443 -0.98538 -2.9397 0.72767 

1 100 100 

Model 1 0.23888 -0.77448 -2.3876 0.54619 

Model 2 0.23889 -0.77421 -2.3876 0.52864 

PSDT 0.24161 -0.79081 -2.3854 0.53861 

TSDT 0.23889 -0.77461 -2.3872 0.54615 

5 100 100 

Model 1 0.23604 -0.68577 -2.3165 0.52365 

Model 2 0.23604 -0.68551 -2.3167 0.50576 

PSDT 0.23872 -0.70196 -2.3152 0.51525 

TSDT 0.23605 -0.68590 -2.3167 0.52354 

5 100 100 

Model 1 0.24427 -0.59074 -2.4012 0.54892 

Model 2 0.24425 -0.59060 -2.4015 0.52928 

PSDT 0.24692 -0.60679 -2.4000 0.53858 

TSDT 0.24426 -0.59086 -2.4010 0.54889 

∞ 100 100 

Model 1 0.26417 -0.50004 -2.5031 0.63896 

Model 2 0.26413 -0.49952 -2.5031 0.61868 

PSDT 0.26667 -0.51623 -2.5006 0.62782 

TSDT 0.26417 -0.50018 -2.5029 0.63900 
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fully ceramic plate are not the same as that for a fully metal 

plate with elastic foundations. This is because the plate here 

is affected with the inclusion of the temperature field. 

From results presented in Tables 4 to 5, it should be 

 

 

noted that the unknown function in present theory is four, 

while the unknown function in FSDT, PSDT and TSDT is 

five. It can be concluded that the present theory is not only 

accurate but also simple in bending analysis of P-FGM 

Table 6 Effects of side-to-thickness ratio and type of elastic foundation parameters on the dimensionless 

deflection of an P-FG rectangular plate (q0 = 100, t = 10, b = 2a, ϕ = 0.3) 

k K0 J = 0 Theory 
Elastic 

foundation 

a/h 

5 10 20 50 

0 

0 0 

Model 1 
Parabolic 6.72940 2.17620 1.03690 0.71780 

Sinusoidal 6.72940 2.17620 1.03690 0.71780 

Model 2 
Parabolic 6.73010 2.17620 1.03690 0.71780 

Sinusoidal 6.73010 2.17620 1.03690 0.71780 

100 100 

Model 1 
Parabolic 0.74686 0.26413 0.12889 0.08982 

Sinusoidal 0.95261 0.33594 0.16377 0.11411 

Model 2 
Parabolic 0.74663 0.26416 0.12889 0.08982 

Sinusoidal 0.95267 0.33594 0.16377 0.11410 

1 

0 0 

Model 1 
Parabolic 6.69020 2.32030 1.22610 0.91966 

Sinusoidal 6.69020 2.32030 1.22610 0.91966 

Model 2 
Parabolic 6.69130 2.32030 1.22610 0.91966 

Sinusoidal 6.69130 2.32030 1.22610 0.91966 

100 100 

Model 1 
Parabolic 0.58343 0.22139 0.11982 0.09048 

Sinusoidal 0.74998 0.28384 0.15352 0.11590 

Model 2 
Parabolic 0.58345 0.22138 0.11982 0.09048 

Sinusoidal 0.74998 0.28384 0.15352 0.11590 

3 

0 0 

Model 1 
Parabolic 7.22810 2.51560 1.33420 1.00310 

Sinusoidal 7.22810 2.51560 1.33420 1.00310 

Model 2 
Parabolic 7.23010 2.51570 1.33420 1.00310 

Sinusoidal 7.23010 2.51570 1.33420 1.00310 

100 100 

Model 1 
Parabolic 0.57515 0.22098 0.12032 0.09116 

Sinusoidal 0.74096 0.28401 0.15454 0.11704 

Model 2 
Parabolic 0.57504 0.22096 0.12032 0.09116 

Sinusoidal 0.74089 0.28394 0.15453 0.11705 

5 

0 0 

Model 1 
Parabolic 7.68080 2.65230 1.39090 1.03740 

Sinusoidal 7.68080 2.65230 1.39090 1.03740 

Model 2 
Parabolic 7.68300 2.65250 1.39090 1.03740 

Sinusoidal 7.68300 2.65250 1.39090 1.03740 

100 100 

Model 1 
Parabolic 0.59136 0.22618 0.12189 0.09161 

Sinusoidal 0.76235 0.29086 0.15663 0.11772 

Model 2 
Parabolic 0.59154 0.22618 0.12189 0.09161 

Sinusoidal 0.76271 0.29090 0.15662 0.11772 

∞ 

0 0 

Model 1 
Parabolic 9.98890 3.36980 1.71350 1.24960 

Sinusoidal 9.98890 3.36980 1.71350 1.24960 

Model 2 
Parabolic 9.99000 3.36990 1.71350 1.24960 

Sinusoidal 9.99000 3.36990 1.71350 1.24960 

100 100 

Model 1 
Parabolic 0.65904 0.24430 0.12738 0.09355 

Sinusoidal 0.85277 0.31548 0.16439 0.12072 

Model 2 
Parabolic 0.65877 0.24432 0.12738 0.09355 

Sinusoidal 0.85240 0.31546 0.16438 0.12072 
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rectangular plates resting on non-uniform elastic 

foundations in thermal environment. 

Table 6 gives the effects of side-to-thickness ratio and 

the type of elastic foundation parameters on the 

dimensionless deflection of P-FG rectangular plate under 

thermo-mechanical loads using the present refined shear 

deformation theory (RSDT “model 1 and model 2”). It is 

clear that the center deflection decreases as the side-to-

thickness ratio a/h increases. In addition, all displacements 

are decreasing with the existence of the elastic foundations. 

The inclusion of the Winkler foundation parameter gives 

results more than those with the inclusion of Pasternak 

foundation parameters. 

The effect of foundation stiffness and type of elastic 

foundation and side-to-thickness ratio on the dimensionless 

deflection of P-FG rectangular plate (k = 2) is shown in Fig. 

2. It can be seen that the increase of side-to-thickness ratio 

a/h leads to a decrease of the center deflection of the P-FG 

plate. The axial stress, 𝜎 𝑥 , are plotted in Fig. 3. It can be 

seen that the maximum compressive stresses occur at a 

point near the top surface and the maximum tensile stresses 

occur, of course, at a point near the bottom surface of the P-

FG plate. 

Finally, Fig. 4 depict the through-the-thickness 

distributions of the shear stress  𝜏 𝑥𝑧  in the FG rectangular 

plates under the thermal loads (q0 = 100, t1 = 0 and t2 = t3 = 

10). The volume fraction exponent of the P-FG plate is 

taken as k = 2. The maximum values of 𝜏 𝑥𝑧  occur at 𝑧 ≅ 

0.1 of the P-FG plate, not at the plate center as in the 

homogeneous case. 

 

 

5. Conclusions 
 

A refined shear deformation plate theory is used in 

bending analysis of FGM rectangular plates resting on non-

uniform elastic foundations in thermal environment. This 

theory contains only four unknown functions and then four 

governing equations are only obtained. Moreover, it does 

not need a shear correction factor. The theory satisfies the 

zero traction boundary conditions at the plate’s surfaces. 

The accuracy of the suggested theory (model 

1:RTSDT,model 2: RPSDT) is verified by making some 

comparisons between the results obtained by the CPT, 

FSDT, TSDT and PSDT theories and the exact published 

ones. The results of the shear deformation theories are 

compared together. 
 

 The gradients in material properties play an 

important role in determining the response of the FG 

plates. 

 However, the inclusion of the foundation parameters 

may give displacements and stresses with higher 

magnitudes. 

 Based on Navier’s type solution, the equations of 

motion are solved analytically. 

 The mixture of the ceramic and metal with 

continuously varying volume fraction can eliminate 

interface problems of sandwich plates and thus the 

stresses distributions are smooth. 

 All comparison studies demonstrated that the 

deflections and stresses obtained using the present 

refined theory (with four unknowns) and other 

higher-order shear deformation theories (five 

unknowns) are almost identical. 
 

In addition, unlike any other theory, the theory presented 

gives rise to only four governing equations resulting in 

considerably lower computational effort when compared 

with the other higher-order theories reported in the literature 

having more number of governing equations. 

Hence, it can be said that the proposed theory is accurate 

and simple in bending analysis of FGM rectangular plates 

resting on non-uniform elastic foundations in thermal 

environment. Finally, this work can be extended in future 

by considering the case of various boundary conditions and 

the stretching effect (Abualnour et al. 2018, Benchohra et 

al. 2018, Bouhadra et al. 2018, Bouafia et al. 2017, Sekkal 

et al. 2017b, Abdelaziz et al. 2017, Bennoun et al. 2016, 

Draiche et al. 2016, Bourada et al. 2015, Larbi Chaht et al. 

2015, Bousahla et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Ait Amar Meziane et al. 2014, Belabed et al. 2014, 

Bessaim et al. 2013). 
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