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1. Introduction 

 

Anisotropic materials are the property of being 

directionally dependent, which refers to distinct properties 

in different directions. Unlike isotropic materials that have 

material properties identical in all directions, anisotropic 

material’s physical and mechanical properties such as 

(Young’s Modulus, conductivity, absorbance, tensile 

strength, etc.) change with direction along the object. An 

example of the anisotropic material is the light coming 

through a polarizer. Another is composites and wood. 

Anisotropic nanostructures have been employed in many 

parts of nano-electro-mechanical systems (NEMSs, e.g., 

nanogenerator, nanoresonator, chemical sensors, light-

emitting diodes, etc.). Up to now, several types of 

researches have been done on the anisotropic structures 

(Hamidi et al. 2015, Bourada et al. 2016, Houari et al. 

2016, Benahmed et al. 2017, Shahsavari et al. 2018b). To 

refer, time-resolved experiments proposed by (Voisin et al. 

2000), low-frequency Raman scattering by (Shukla and 

Kumar, 2011) and ultrafast pump–probe spectroscopy 

presented by (Ruijgrok et al. 2012). Also, (Mock et al. 

2017) investigated the frequency dependence of four 
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independent CdWO4 Cartesian dielectric function tensor 

elements by generalized spectroscopic ellipsometry within 

mid-infrared and far-infrared spectral regions. Also, Single 

crystal surfaces cut under different angles from a bulk 

crystal, (010) and (001), were studied. A formula for the 

Raman scattering intensity as a function of incoming and 

outgoing polarization and the Raman tensor viewed through 

birefringent crystal (calcite) was presented by (Grundmann 

et al. 2016). Also, the authors discussed the general form of 

the dielectric function of anisotropic crystals based on 

individual dipole oscillators for phonon and electronic 

resonance. In recent years, directional dependence in non-

isotropic structures has been also well studied theoretically 

by several researchers. Wave steering effects in anisotropic 

composite structures based on a finite element scheme was 

presented by (Chronopoulos 2017). Also, a structure of 

arbitrary anisotropy, layering, and geometric complexity 

was modeled through Finite Elements coupled to a periodic 

structure wave scheme. In addition, a generic approach for 

efficiently computing the angular sensitivity of the wave 

slowness for each wave type, direction and frequency was 

presented. (Ziane et al. 2013) studied the free vibration of 

anisotropic structures on the basis of first-order shear 

deformation theory (FSDT). (Mousavi et al. 2016) 

presented the analysis of centrosymmetric anisotropic plate 

structures based on Reddy’s third-order shear deformable 

plate theory with considering strain gradient elasticity. 

Moreover, it was obtained that the gradient theory provides 

the ability to include the size effects in anisotropic plate 
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structures. Finally, analytical solutions were introduced for 

the buckling and bending and of orthotropic Kirchhoff 

plates. Vibration and buckling behavior of thick orthotropic 

plates and laminates considering the simply supported 

boundary conditions was investigated by (Srinivas and Rao 

1970). Also, three-dimensional, linear, small deformation 

theory of elasticity solution was examined for the vibration, 

bending and buckling of thick orthotropic rectangular plates 

and laminates considering simply supported boundary 

conditions. In addition, all the nine elastic constants of 

orthotropy are taken into account. Theories for composite, 

multilayered, anisotropic plates and shells were investigated 

by (Carrera 2002) including the complicating effects that 

have been introduced by anisotropic behavior and layered 

constructions. 

Size effect is an interesting topic due to the current 

applications in modern technology include a variety of 

length scales from a few centimeters to a few nanometers 

(Zbib and Aifantis 2003). The classical continuum theory 

cannot model nanostructures including small size effect. So 

different size-dependent theories, such as micropolar theory 

(Eringen 1967), nonlocal elasticity theory (Eringen and 

Edelen 1972), surface elasticity (Gurtin et al. 1998), strain 

gradient theory (Aifantis 1999), the modified couples stress 

theory (Yang et al. 2002) and the nonlocal strain gradient 

theory (Askes and Aifantis 2009), were presented. In recent 

years, nonlocal elasticity, strain gradient elasticity and 

nonlocal strain gradient elasticity theories have been largely 

used for the modeling of different nanostructures (Bağdatlı 

2015, Chaht et al. 2015, Zenkour and Abouelregal 2015, Li 

et al. 2016a, Karami and Janghorban 2016, Sobhy 2017, 

Ebrahimi and Barati 2017b, Shen et al. 2017, Şimşek 2016, 

Karami et al. 2017a, Shahsavari et al. 2017, 2018a, 

Sahmani and Aghdam 2017, Shahsavari and Janghorban 

2017, Li et al. 2017, Mehralian et al. 2017, Karami et al. 

2018a, e, Jandaghian and Rahmani 2017). 

 It has been recently shown that nonlocal differential 

elasticity based model maybe ill-posed. Of course, due to 

the simplification of the nonlocal differential elasticity, 

many works have been focused on the size-dependent 

behaviors based on the nonlocal differential models. More 

recently, it is shown that the nonlocal differential and 

integral elasticity based models may be not equivalent to 

each other. (Zhu and Li 2017d) presented a nonlocal 

integral model to study the twisting static behaviors of 

through-radius FG nanotubes via Eringen’s nonlocal 

integral elasticity. The authors have shown that in 

comparison to the widely-used nonlocal differential model 

in the literature, the nonlocal integral model developed 

there was self-consistent and well-posed. Longitudinal and 

torsional dynamic problems for small-scaled rods were 

modeled by utilizing an integral formula of two-phase 

nonlocal theory by (Zhu and Li 2017b). Among the non-

continuum theories, the nonlocal strain gradient theory 

proposed by (Askes and Aifantis 2009) is preferable to 

considering the size effect as it involves two material length 

parameters. (Askes and Aifantis 2011) presented different 

formats of gradient elasticity and their capability in static 

and dynamic applications. Moreover, it was observed that 

the removal of singularities in statics and dynamics, as well 

as the size-dependent mechanical response predicted by 

gradient elasticity. Analysis of resonance frequencies of FG 

micro and nanoplates based on the nonlocal elasticity and 

strain gradient theory is performed by (Nami and 

Janghorban 2014). They used nonlocal and strain gradient 

theories separately, and concluded that these theories have 

different mechanisms in analysis of nanoplates. (Li et al. 

2015) investigated the wave propagation of FG nanobeams 

based on the nonlocal strain gradient theory, in which the 

stress accounts for not only the nonlocal elastic stress field 

but also the strain gradients stress field. A size-dependent 

Timoshenko beam model, which accounts for through-

thickness power-law variation of a two-constituent 

functionally graded (FG) material, was derived in the 

framework of the nonlocal strain gradient theory by (Li et 

al. 2016b). The longitudinal dynamic problem of a size-

dependent elasticity rod was formulated by utilizing an 

integral form of nonlocal strain gradient theory by (Zhu and 

Li 2017c). In another study, a size-dependent integral 

elasticity model was developed for a small-scaled rod in 

tension based on the nonlocal strain gradient theory by (Zhu 

and Li 2017a). (Karami et al. 2017b) investigated the in-

plane magnetic field effect on the wave propagation of 

rectangular FG nanoplates based on a refined plate theory 

and nonlocal strain gradient theory. Wave analysis of porous 

FG nanoplates under in-plane magnetic field effect via 

nonlocal strain gradient theory and second-order shear 

deformation plate theory were studied by (Karami et al. 

2018d). A size-dependent Euler–Bernoulli beam model was 

formulated and devoted to investigating the scaling effect 

on the post-buckling behaviors of (FG) nanobeams with the 

von Kármán geometric nonlinearity based on the nonlocal 

strain gradient theory by (Li and Hu 2017). (Farajpour et al. 

2016) proposed a higher-order nonlocal strain gradient plate 

model for buckling of orthotropic nanoplates subjected to 

thermal effect. Moreover, the effects of various scale 

parameters together on the buckling behavior of graphene 

sheets were presented in numerical results. (Ebrahimi and 

Barati 2017a) studied the hygrothermal effects on vibration 

characteristics of (FG) viscoelastic nanobeams embedded in 

viscoelastic foundation based on nonlocal strain gradient 

elasticity theory. That modeling of nanobeam was carried 

out via a higher order refined beam theory. The governing 

equations of nonlocal strain gradient viscoelastic nanobeam 

were obtained by using Hamilton’s principle. More recently, 

in order to demonstrate the effectiveness of the nonlocal 

strain gradient theory in nanostructures analysis, (Karami et 

al. 2018b) investigated the wave propagation of graphene 

via a second-order shear deformation theory in conjunction 

with nonlocal strain gradient theory. In their analysis, the 

results have shown good agreement with the experimental 

data, and in another study, (Karami et al. 2018c) studied the 

hygrothermal wave propagation in viscoelastic graphene 

under in-plane magnetic field based on nonlocal strain 

gradient theory. The results for all wave numbers improved 

by adding an extra nonlocal parameter into nonlocal strain 

gradient theory. 

In this paper, radial vibration and wave propagation of 

anisotropic nanoparticles are investigated based on nonlocal 

strain gradient elasticity theory and three dimensional 
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elasticity theory. This comprehensive theory with no 

approximation in displacements has the ability to study 

different models such as size-dependent structures, 

monoclinic and triclinic materials and multi-directional 

functionally graded materials. Present theory has only two 

length scale parameters which seem to be accurate and 

somehow simple for various problems. In order to show the 

accuracy of present model, our results for the radial 

vibration of anisotropic nanoparticles are verified with 

experimental results and great agreement is achieved. 
 

 

2. Review of nonlocal strain gradient theory 
 

It is well known that conventional nonlocal elasticity 

considers long range interaction between atoms without 

considering strain gradient influence. Developed nonlocal 

strain gradient model (Lim et al. 2015) incorporates the 

nonlocality of stress field as well as strain gradients by 

assuming the stress field in the following form 
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here the classical stress 𝜎𝑥𝑥
(0)

 and the higher-order stress 

𝜎𝑥𝑥
(1)

 are related to strain 𝜀𝑥𝑥  and strain gradient 𝜀𝑥𝑥 ,𝑥 , 
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where Cijkl are the elastic constants, 𝜀𝑘𝑙
′  is the nonlocal 

strain tensor, ∇𝜀𝑘𝑙 ,𝑚
′  is the strain gradient tensor, e0a and 

e1a are nonlocal parameters which regards the influence of 

the nonlocal elastic stress field and l material characteristic 

parameter (or strain gradient parameter)  and introduces 

the influence of higher order strain gradient stress field. The 

nonlocal parameters e0a and e1a in the above nonlocal 

functions can be determined by matching the wave 

dispersion relation from experimental data or atomic lattice 

dynamics. When the nonlocal functions α0 (x, x′, e0a) and α1 

(x, x′, e1a) satisfy the developed conditions by Eringen, the 

constitutive relation can be stated as 
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The linear nonlocal differential operator which is written 

as follows is applied to the both sides of Eq. (1), the 

operator can be defined as 
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in above relation 2 is the Laplacian operator in spherical 

coordinate and can be defined as 
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Now considering the terms of order O(2) and 

supposing e1 = e0 = e, the general constitutive relation in 

Eq. (4) can be rewritten as 
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3. Fundamental equations 
 

According to 3D elasticity theory, the displacement 

components in spherical coordinates (r, θ, ϕ) and the time 

can be expressed by (Sadd 2009) 
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Non-zero strains of the suggested model can be 

expressed as follows 
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Substituting above strains in Eq. (1), following relations 

are achieved 
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(10) 

 

where nonlocal parameter μ = (e0a)2 and gradient parameter 

η = l2. e0 is a material constant and a is the internal 

characteristic length. The value of the coefficient e0 depends 

on the crystal structure in lattice dynamics and the nature of 

the physics under investigation. 

The spherical coordinate system is shown in Fig. 1, and 

in spherical coordinates (r, θ, ϕ) the equations of motion are 

(Sadd 2009) 
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Fig. 1 Spherical coordinate system 
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where σ, u, ρ and (Fr, Fθ, Fϕ) denote stress, displacement 

components, density and body forces, respectively in the 

spherical coordinate. 

Generally, in spherical coordinates (r, θ, ϕ) as 

commonly used in physics: radial distance r, polar angle θ 

(theta) and azimuthal angle ϕ (phi). 

The governing equations of spherical anisotropic 

nanoparticle in terms of displacements are obtained by 

inserting Eqs. (7) and (8) into Eqs. (12)-(12) as follows 
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where Xij and Yij are defined in the appendix. 

The relations obtained above  can be used for modeling 

of all kind of anisotropic structures  in spherical coordinate 

such as trigonal, monoclinic, hexagonal and triclinic 

materials. Moreover, these equations can support multi-

directional functionally graded materials including size 

effects. 

In the next section, after presenting a verification with 

experimental results for spherical nanoparticles, numerical 

results for the radial vibration and wave propagation of 

more than 10 different anisotropic nanoparticles are shown 

including nonlocal and gradient parameters. 

 

 

4. Results and discussions 
 
One of the important applications in the wave 

propagation analysis is the calculation of elastic constants 
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for materials.  In this paper, we can see the connection 

between the wave propagation and the elastic constants. In 

order to provide results for the wave propagation problem, 

the elastic constants are considered as input information, 

and the frequencies, as well as phase velocities, are outputs. 

Also, MATLAB software is used to calculate the outputs. It 

is worth noting that in the results, the natural frequencies of 

anisotropic nanoparticles are given. 

This section is devoted to explore the influence of 

nonlocal parameter on the radial vibrational, and strain 

gradient parameter on the wave propagation characteristic 

of anisotropic nanoparticles. In order to simplify the 

formulations, the components of displacements in the 

spherical coordinates system can be defined as u = u(r, t) 

which seems to be good approximation for the following 

problems. The accuracy of this approximation will be 

discussed in the following section with experimental results. 

It is mentioned that the elastic constants of more than 10 

different anisotropic nanoparticles such as (Aluminium, 

Carbon, Thorium, Tin, Titanium, Zinc sulfide, Argon, 

Cadmium selenide, Germanium, Gold, Rutile, Hematite, 

Silicon, Silver) used in present paper are given in Table 1 

which can be find here (Teodosiu 1982, Ghavanloo and 

Fazelzadeh 2013). 
 

4.1 Radial vibration of spherical nanoparticles 
with considering nonlocal parameter 

 

The radial vibration of several anisotropic spherical 

nanoparticles in radial direction are studied in this section. 

The nanoparticles are modeled as a solid sphere with radial 

deformations as mentioned in the previous section. Our 

 

 

formulations are also simplified by ignoring the gradient 

parameter and considering just the nonlocality. To solve the 

radial vibration of nanoparticles, it is assumed a harmonic 

variation for the displacement with respect to the time, 

which is common in many cases, as follow 
 

     , expu r t U r i t
 (17) 

 

here ω denotes the angular frequency defined by ω = 2πf. 

Considering Eq. (17), the governing equations obtained in 

the prior section and holding on mentioned above 

approximations, we achieve to the following equation 
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Eq. (18) shows a Bessel equation which the general 

solution of that defined by 
 

   1 2 2 2

1
r v vU A J B r A Y B r
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Table 1 Material properties of different anisotropic nanoparticles (Teodosiu 1982, Ghavanloo and Fazelzadeh 

2013), (C13 = C12, C33 = C22) 

Material 
Chemical 

formula 

Density 

(kg/m3) 

Elastic constants (GPa) 

C11 C12 C23 C22 

Cubic crystallinity 

Aluminium Al 2700 106.43 60.35 60.35 106.43 

Argon Ar 1771 5.29 1.35 1.35 5.29 

Carbon C 3515 1079 124 124 1079 

Germanium Ge 5313 128.35 0.4823 0.4823 128.35 

Gold Au 19283 192.44 162.98 162.98 192.44 

Silicon Si 2331 165.78 63.94 63.94 165.78 

Silver Ag 10500 123.99 93.67 93.67 123.99 

Thorium Th 11700 75.30 48.90 48.90 75.30 

Hexagonal crystallinity 

Cadmium selenide CdSe 5655 83.55 39.30 45.16 70.46 

Titanium Ti 4506 52.80 29.00 35.40 40.80 

Zinc sulfide α ‒ ZnS 4090 139.60 45.50 58.50 123.40 

Tetragonal crystallinity 

Rutile TiO2 4260 483.95 149.57 177.96 271.43 

Tin β ‒ Sn 7265 88.00 37.40 58.50 72.00 

Trigonal crystallinity 

Hematite Fe2O3 5240 227.30 15.42 54.64 242.43 
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in which A1 and A2 are unknown constants, 

𝑣 = 0.5 1− 4𝐵1, and Jv and Yv denotes Bessel functions 

of first and second kinds of order v, respectively. Note that 

displacement need to remain finite at the center of 

nanoparticle, hence we set A2 = 0 in order to remove the 

infinite value of  𝑌𝑣(𝐵2𝑟)/ 𝑟 when r = 0. Nevertheless, 

the resultant equation is 
 

 2

1

v

r

J B r
U A

r


 

(22) 

 

For the case of stress-free boundary condition, σrr = 0 at 

external radius R and therefore 
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r R
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r c R



 


 

(23) 

 

Substituting resultant equation (Eq. (22)) into stress-free 

boundary condition (Eq. (23)), the equation of frequency is 

obtained as follow 
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where ξ = B2r. 

Solving Eq. (24), leads to natural frequencies of the 

nanoparticle. It is important to note that in natural frequency 

the lowest frequency belongs to the breathing mode which 

is related to the characterization of the nanoparticles due to 

the Raman spectroscopy. 

To prove the accuracy of the suggested model, by 

omitting the gradient parameter (η), the numerical results 

are verified with some reported experimental results for 

spherical nanoparticles with cubic, hexagonal, tetragonal 

and trigonal symmetric in Table 2. In this table, the 

fundamental radial frequencies for five different 

nanoparticles from low-frequency Raman spectra (Combe 

et al. 2007, Saviot et al. 2004, Mankad et al. 2012, Portales 

et al. 2001, Gupta et al. 2009) and molecular dynamics 

(MD) simulation (Ng and Chang 2011) are tabulated. It can 

be seen that the results obtained by the existing 

methodology are in great agreement with the results 

presented in the literature. From this table it is also found 

that the nonlocality doesn’t have any important effect in this 

example and can be neglected. After confirming the existing 

solution, the present method is used to study the different 

anisotropic nanoparticles. 

In Table 3, radial vibration of nanoparticles with cubic 

crystallinity is investigated at d = 10 nm. It is observable 

that as nonlocal parameter increases, the value of frequency 

 

Table 2 Fundamental radial frequencies for the anisotropic spherical nanoparticles 

Material 
Diameter 

(nm) 

ω (cm-1) 

Reference Present Previous 

studies e0a = 0.0 (nm) e0a = 0.1 (nm) 

Germanium (Ge) 3.38 40.3062 40.0940 40.25 Experimental 1 

Gold (Au) 

5.8 17.5555 17.5024 18.39 MD simulation 2 

11.5 8.8541 8.8450 9.37 MD simulation 2 

20.2 5.0407 5.0391 5.37 MD simulation 2 

Silicon (Si) 6.8 34.5213 34.4152 34.90 Experimental 3 

Silver (Ag) 

3.0 36.0835 35.7652 34.00 Experimental 4 

3.4 31.8384 31.5731 34.00 Experimental 4 

4.0 27.0627 26.9035 27.60 Experimental 4 

9.8 11.0460 11.0361 11.00 Experimental 5 

Cadmium selenide (Cdse) 4.4 24.5273 24.4742 28.40 Experimental 6 
 

(1) Ref: (Combe et al. 2007), (2) Ref: (Ng and Chang 2011), (3) Ref: (Saviot et al. 2004), 

(4) Ref: (Mankad et al. 2012), (5) Ref: (Portales et al. 2001), (6) Ref: (Gupta et al. 2009) 

Table 3 Vibration of four different nanoparticles versus variations of nonlocal parameters 

Material 

Radial frequencies (THz) 

e0a = 0.05 (nm) e0a = 0.15 (nm) e0a = 0.2 (nm) e0a = 0.25 (nm) e0a = 0.3 (nm) 

Cubic crystallinity 

Aluminium 1.2239 1.2111 1.2016 1.1889 1.1761 

Carbon 1.2680 1.2648 1.2616 1.2584 1.2552 

Gold 0.3070 0.3056 0.3054 0.3038 0.3022 

Silver 0.3234 0.3155 0.3075 0.2996 0.2992 
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reduces. This may occur according to the reduction of 

structural rigidity of particle because of the surface 

 

 

 

compression generated by the nonlocal interactions of 

atoms. 

Table 4 The effects of gradient parameter and wave number on the wave frequency in spherical nanoparticles  

(ω = ω×1013) 

Material 

Wave frequency ( Rad/Sec) 

kr = 5×108 kr = 1×109 

l = 0.0 l = 0.5 l = 1.0 l = 0.0 l = 0.5 l = 1.0 

 Cubic crystallinity 

Aluminium 0.3900 0.4049 0.4473 0.6738 0.7624 0.9848 

Argon 0.1074 0.1112 0.1222 0.1855 0.2093 0.2693 

Carbon 1.0884 1.1261 1.2349 1.8803 2.1186 2.7218 

Germanium 0.3053 0.3165 0.3486 0.5275 0.5958 0.7678 

Gold 0.1962 0.2042 0.2266 0.3390 0.3846 0.4985 

Silicon 0.5239 0.5432 0.5983 0.9050 1.0223 1.3177 

Silver 0.2135 0.2220 0.2459 0.3688 0.4180 0.5412 

Thorium 0.1576 0.1637 0.1811 0.2723 0.3083 0.3986 

 Hexagonal crystallinity 

Cadmium selenide 0.2265 0.2360 0.2627 0.3844 0.4420 0.5830 

Titanium 0.1972 0.2060 0.2306 0.3307 0.3842 0.5128 

Zinc sulfide 0.3505 0.3642 0.4032 0.5964 0.6813 0.8915 

 Tetragonal crystallinity 

Rutile 0.5597 0.5885 0.6679 0.9105 1.0921 1.5118 

Tin 0.2514 0.2584 0.2789 0.4382 0.4802 0.5914 

 Trigonal crystallinity 

Hematite 0.4253 0.4388 0.4782 0.7312 0.8180 1.0401 
 

Table 5 The effects of gradient parameter and wave number on the phase velocity in spherical nanoparticles 

(ω / kr = ω / kr×104) 

Material 

Phase velocity 

kr = 5×108 kr = 1×109 

l = 0.0 l = 0.5 l = 1.0 l = 0.0 l = 0.5 l = 1.0 

 Cubic crystallinity 

Aluminium 0.7800 0.8098 0.8946 0.6738 0.7624 0.9848 

Argon 0.2148 0.2224 0.2444 0.1855 0.2093 0.2693 

Carbon 2.1768 2.2522 2.4698 1.8803 2.1186 2.7218 

Germanium 0.6106 0.6330 0.6972 0.5275 0.5958 0.7678 

Gold 0.3924 0.4084 0.4532 0.3390 0.3846 0.4985 

Silicon 1.0478 1.0864 1.1966 0.9050 1.0223 1.3177 

Silver 0.4270 0.4440 0.4918 0.3688 0.4180 0.5412 

Thorium 0.3152 0.3274 0.3622 0.2723 0.3083 0.3986 

 Hexagonal crystallinity 

Cadmium selenide 0.4530 0.4720 0.5254 0.3844 0.4420 0.5830 

Titanium 0.3944 0.4120 0.4612 0.3307 0.3842 0.5128 

Zinc sulfide 0.7010 0.7284 0.8064 0.5964 0.6813 0.8915 

 Tetragonal crystallinity 

Rutile 1.1194 1.1770 1.3358 0.9105 1.0921 1.5118 

Tin 0.5028 0.5168 0.5578 0.4382 0.4802 0.5914 

 Trigonal crystallinity 

Hematite 0.8505 0.8777 0.9563 0.7312 0.8180 1.0401 
 

207



 

Behrouz Karami, Maziar Janghorban and Abdelouahed Tounsi 

 

 

 

 

4.2 Wave propagation in spherical nanoparticles 
with considering gradient parameter 

 

In this section, wave propagation analysis of different 

 

 

 

 

anisotropic nanoparticles in spherical coordinates is 

investigated. Approximations used in above section are also 

considered with one exception. To capture the small-scale 

effects, the gradient parameter is included and the 

Table 6 The effects of spherical nanoparticles diameter and wave number on the wave frequency (ω = ω×1013) 

Material 

Wave frequency (Rad/Sec) 

kr = 5×108 kr = 1×109 

d = 5.0 d = 15.0 d = 20.0 d = 5.0 d = 15.0 d = 20.0 

 Cubic crystallinity 

Aluminium 0.6030 0.4010 0.3812 1.1800 0.9345 0.9149 

Argon 0.1634 0.1020 0.1046 0.3198 0.2563 0.2513 

Carbon 1.6453 1.1119 1.0593 3.2195 2.5945 2.5453 

Germanium 0.4676 0.3131 0.2979 0.9151 0.7280 0.7153 

Gold 0.3076 0.2026 0.1923 0.6021 0.4717 0.4612 

Silicon 0.8027 0.5373 0.5112 1.5708 1.2526 1.2274 

Silver 0.3331 0.2201 0.2090 0.6520 0.5125 0.5014 

Thorium 0.2446 0.1622 0.1542 0.4788 0.3780 0.3699 

 Hexagonal crystallinity 

Cadmium selenide 0.3559 0.2337 0.2210 0.7025 0.5515 0.5391 

Titanium 0.3146 0.2040 0.1921 0.6221 0.4835 0.4720 

Zinc sulfide 0.5449 0.3597 0.3407 1.0686 0.8451 0.8270 

 Tetragonal crystallinity 

Rutile 0.9070 0.5850 0.5461 1.8417 1.4201 1.3835 

Tin 0.3802 0.2514 0.2401 0.7030 0.5641 0.5536 

 Trigonal crystallinity 

Hematite 0.6445 0.4296 0.4090 1.2318 0.9914 0.9726 
 

Table 7 The effects of geometrical dimensions and wave number on the phase velocities (ω / kr = ω / kr×104) 

Material 

Phase velocity 

kr = 5×108 kr = 1×109 

d = 5.0 d = 15.0 d = 20.0 d = 5.0 d = 15.0 d = 20.0 

 Cubic crystallinity 

Aluminium 1.2060 0.8020 0.7624 1.1800 0.9345 0.9149 

Argon 0.3268 0.2040 0.2092 0.3198 0.2563 0.2513 

Carbon 3.2906 2.2238 2.1186 3.2195 2.5945 2.5453 

Germanium 0.9352 0.6262 0.5958 0.9151 0.7280 0.7153 

Gold 0.6152 0.4052 0.3846 0.6021 0.4717 0.4612 

Silicon 1.6054 1.0746 1.0224 1.5708 1.2526 1.2274 

Silver 0.6662 0.4402 0.4180 0.6520 0.5125 0.5014 

Thorium 0.4892 0.3244 0.3084 0.4788 0.3780 0.3699 

 Hexagonal crystallinity 

Cadmium selenide 0.7118 0.4674 0.4420 0.7025 0.5515 0.5391 

Titanium 0.6292 0.4080 0.3842 0.6221 0.4835 0.4720 

Zinc sulfide 1.0898 0.7194 0.6814 1.0686 0.8451 0.8270 

 Tetragonal crystallinity 

Rutile 1.8140 1.1700 1.0922 1.8417 1.4201 1.3835 

Tin 0.7604 0.5028 0.4802 0.7030 0.5641 0.5536 

 Trigonal crystallinity 

Hematite 1.2890 0.8592 0.8180 1.2318 0.9914 0.9726 
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nonlocality is ignored. For studying wave propagation, it is 

assumed that the waves are not reached the boundary 

conditions, well-known as bulk waves with the application 

in non-destructive tests. So following example will be 

discussed without considering the boundary conditions 

(simply supported, free, clamped, etc.) similar to many 

other studies on macro and nanostructures. For this purpose, 

the displacements in the radial direction are assumed as 

follow 
 

   , exp ru r t A i k r t     
(25) 

 

where A is the coefficients of wave amplitude, kr is the 

wave numbers of wave propagation along radial direction, 

and ω is the frequency. Substituting Eq. (25) into governing 

Eqs. (14)-(16) with considering our approximations, 

including one length scale parameter (gradient parameter), a 

closed-form solution for the frequencies versus wave 

numbers, known as dispersion relation, are achieved in the 

following form 
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Phase velocity can be calculated using the obtained 

frequency as well as wave number, as follow 
 

p

r

c
k




 
(28) 

 

Next, the frequencies and phase velocities for different 

anisotropic nanoparticles such as Cubic crystallinity, 

Hexagonal crystallinity, Tetragonal crystallinity, Trigonal 

crystallinity are provided in Tables 4-7. 

In Table 4, the variations of wave frequencies for 

different anisotropic spherical nanoparticles with respect to 

various gradient parameters are shown at d = 10 nm. 

Entirely, the wave frequency rises for the all anisotropic 

nanoparticles as the gradient parameter and wave number 

grows. This result shows the differences between the 

behaviors of models based on nonlocality and strain 

gradient. From this table, it can be concluded that the wave 

frequencies of nanoparticles are not sensitive with the 

variations of gradient parameter at small wave numbers but 

in higher wave numbers, the variations of wave frequencies 

are more noticeable. Furthermore, it can be seen that for 

small wave numbers, the Hematite has the highest wave 

frequency, independent of the values of gradient parameter 

but with increasing the wave numbers, this no longer 

occurs. Furthermore, the Carbon has the highest wave 

frequency at kr = 1×109 and length scale parameter between 

0.0 to 1.0 nm. Additionally, in this investigation, it is 

observed that the Argon has the lowest wave frequency for 

different gradient parameters and wave numbers for cubic 

crystallinity. 

In Table 5, the variation of phase velocities for different 

anisotropic spherical nanoparticles with respect to various 

gradient parameters are shown at d = 10 nm. The phase 

velocities have a direct relation with gradient parameter but 

an inverse relation with wave number. It is noteworthy that 

for high values of wave numbers, the phase velocity 

difference becomes more significant for each value of 

gradient parameter. Also, it can be concluded that the 

effects of gradient parameter on the increase of the phase 

velocities are more than the influences of wave number in 

reduction of them. For example, the phase velocity of 

Hematite with trigonal crystallinity firstly, with increases 

the wave number will decrease, but at length scale 

parameter l = 1×10-9 the phase velocity increases as the 

wave number grows. Additionally, in this investigation, it is 

observed that the Carbon has the highest phase velocity in 

the various gradient parameter and wave number for cubic 

crystallinity. 

The variations of wave frequencies for different 

anisotropic spherical nanoparticles with respect to 

variations of diameter are shown at length scale parameter l 

= 1×10-9
 in Table 6. It is seen that for all anisotropic 

nanoparticles, all the wave frequencies reduce as the 

diameter of nanoparticle grows. Moreover, it should be 

noted that this decreasing trend is more obvious in higher 

wave numbers. Furthermore, it is very important to mention 

that the effect of nanoparticles diameter changes in different 

nanostructures are different. Also, it can be concluded that 

most changes of wave frequencies are occurred when the 

diameter of Carbon nanoparticle is increasing. 

In Table 7, the trend of phase velocities for different 

anisotropic spherical nanoparticles with respect to 

variations of geometrical dimension are examined at length 

scale parameter l = 1×10-9. It is shown that the phase 

velocities reduce for all of the anisotropic nanoparticles as 

the diameter of nanoparticle and wave number grow. Also, 

it can be concluded that the effects of increasing the 

diameter in decreasing the phase velocities are more 

obvious at the higher wave numbers. Furthermore, again it 

is obtained that the lowest and highest value of phase 

velocities are related to cubic crystallinity. 
 

 

5. Conclusions 
 

This paper was concerned with the modeling, vibration, 

and wave propagation analysis of anisotropic nanoparticles 

according to the nonlocal strain gradient theory. The 

proposed generalized theory introduced two scale 

parameters for the prediction of mechanics of nanoparticles 

much accurately. The formulation of spherical nanoparticle 

was based on a three dimensional elasticity theory. To 

verify our model, our results for the radial vibration of 

spherical nanoparticles were compared with experimental 

results and great agreement was achieved. Several 

numerical examples with considering different parameters 

such as geometrical dimension and material properties were 

discussed on the radial vibration and wave propagation of 

spherical nanoparticles. From the best knowledge of 

authors, it was the first time that three-dimensional 
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elasticity theory and nonlocal strain gradient theory were 

used together with no approximation to derive the 

governing equations in spherical coordinate. According to 

the numerical results of the described study, the following 

conclusions are notable, 
 

 The magnitude of radial frequencies reduces by 

increasing nonlocal parameter, especially at lower 

values of the radius. 

 It is indicated that with an increase of strain gradient 

parameters, the anisotropic nanoparticle becomes 

stiffer and the wave frequency enlarges. 

 It is seen that the influence of the radius of 

nanoparticles on wave characteristics of anisotropic 

nanoparticles is significant for higher values of wave 

number. 

 The wave number possesses increasing and 

decreasing effects on the wave frequencies and 

phase velocities of nanoparticles, respectively. 
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According to the complex governing equations for nonlocal strain gradient three-dimensional elasticity theory in spherical 

coordinate most of the parameters are in the appendix. Here, Xij = εij and Yij = 2εij, (i, j = r, θ, ϕ). 
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