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1. Introduction 

 

Normally, steel structures are very practical in the 

construction industry. Although the fundamental theory of 

structural analysis and linear elastic formulations are 

typically used for analysis and design of these structures, 

they may undergo large deformations under abnormal 

situations before reaching their limit of resistance. 

Therefore, nonlinear analysis must be done to predict the 

real behavior of steel structures. There are two types of 

nonlinearities in structural analysis, namely; material 

nonlinearity and geometric nonlinearity. In this study, 

geometric nonlinear analysis and entire aspects of the 

nonlinear equilibrium path of the plane truss structures are 

considered. To study the real behavior of the truss 

structures, the both pre- and post-buckling regions of 

equilibrium path must be traced including limit points, 

snap-through and snap-back phenomena. Crisfield (1991) 

described important reasons why tracing of the whole 

equilibrium path and its features are essential. Due to the 

importance of this subject, it has been extensively studied 

by many researchers. The interested reader may find more 

information about different kinds of nonlinear finite 

element analysis in Garcea et al. (2009), Pastor et al. 

(2013), Liang et al. (2014), Rezaiee-Pajand et al. (2014), 

Izadpanah and Habibi (2015), Alnaas and Jefferson (2016), 
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Jiang et al. (2016), Wan and Zha (2016), and Rezaiee-

Pajand and Naserian (2017). 

There are several numerical methods to solve nonlinear 

equilibrium equations. Among them incremental-iterative 

solution methods are very popular and widely used to 

follow the equilibrium path. They can be classified as: the 

load-controlled methods (Newton-Raphson methods), 

displacement-controlled methods, generalized displace-

ment-controlled method, arch-length method, and work-

controlled methods (Torkamani and Sonmez 2008).  The 

load-controlled and displacement-controlled methods are 

the fundamental and earliest methods. Many procedures and 

different algorithms have been offered to develop these two 

initial methods. The other incremental-iterative methods are 

considered as advanced methods and have been developed 

based on the two mentioned fundamental methods. Each of 

the iterative-incremental methods has its own benefits and 
limitations (Thai and Kim 2009). 

The load-controlled methods are used to trace load-

deflection curve of engineering structures only prior to the 

critical load. If the applied external load exceeds the load-

carrying capacity of structure, the convergence fails 

(Torkamani and Sonmez 2008). As a result, load-controlled 

methods cannot be used for following the equilibrium path 

of the structures beyond the critical load point (Chen and 

Lui 1991 and Yang and Kuo 1994), however, they are still 

widely used in nonlinear analysis of structures (Saffari and 

Mansouri 2011, Saffari et al. 2012, Mansouri and Saffari 

2012, Mahdavi et al. 2015 and Hamdaoui et al. 2016). 

One of the most popular incremental-iterative solution 

methods to perform nonlinear analysis of structures is the 
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arc-length method which is extensively used since it was 

first introduced by Wempner (1971), Riks (1972) and Riks 

(1979). Ramm (1981), Crisfield (1981), Bathe and Dvorkin 

(1983), Crisfield (1983), Schweizerhof and Wriggers 

(1986), Bellini and Chulya (1987), Forde and Stiemer 

(1987) and others have developed and improved the original 

method in various ways. It is possible to follow the whole 

equilibrium path of structures using the arc - length 

methods. They are categorized as the cylindrical and the 

spherical arc-length methods. Numerical obstacles can be 

observed in both types of these methods in the vicinity of 

limit points with severe snap-back phenomenon (Geers 

1999). Hellweg and Crisfield (1998) proposed an improved 

and modified arc-length method to pass the limit points 

associated with severe snap-back phenomenon. According 

to Geers (1999), the modified arc-length method, proposed 

by Hellweg and Crisfield (1998), has not been successful to 

solve these numerical difficulties, yet. 

In this paper, a dual approach is suggested to solve 

geometrically nonlinear finite element equations of plane 

truss structures. This approach uses classical nonlinear 

finite element formulation to establish an objective function 

and nonlinear programming techniques as a search method. 

Our approach does not establish any stiffness matrix 

derived by linearization and is formed only by using 

classical stress-strain formulation. As a result, errors due to 

the linearization and neglecting some of the nonlinear 

incremental strain components, and higher-order terms will 

be excluded. The proposed algorithm can also trace 

nonlinear region of a load-displacement curve beyond the 

limit point accompanied by exhibiting snap-through and 

 

 

snap-back phenomena. Furthermore, utilizing optimization 

techniques, the convergence of the analysis and reducing 

the number of required repeated analyses are guaranteed. To 

demonstrate the capability of the proposed approach, five 

numerical examples are investigated, and the acquired 

results are compared to modified arc-length method, and the 

outcomes of benchmark problems. 

 

 

2. The incremental-iterative method 
 

There are several methods to trace equilibrium path, 

including load-controlled, displacement-controlled and 

ANM (Asymptotic Numerical Method) techniques (Damil 

and Potier-Ferry 1990, Elhage-Hussein et al. 2000, Baguet 

and Cochelin 2003 and Hamdaoui et al. 2016). Both load-

controlled and displacement-controlled methods will fail in 

the vicinity of turning points that are known as ―snap-

through‖ for load-controlled method and ―snap-back‖ for 

displacement-controlled method (see Figs. 1(a) and (b)). 

These difficulties usually occur in buckling analysis of steel 

structures. An ideal solution method must be able to 

successfully overcome these difficulties and also be stable 

for all possible nonlinear behaviors, including softening, 

hardening as well as having numerical stability at the limit 

points (see Fig. 1(c)). 

In order to follow the whole equilibrium path, all 

particles of the body should be traced in their motion, from 

the original to the final configuration of the body, which is 

named Lagrangian formulation. In practice, three types of 

Lagrangian kinematic formulation are employed for finite 

 

 

  

(a) Failure of load control (b) Failure of displacement control 

 

 

(c) Characteristics of nonlinear equilibrium path 

Fig. 1 General characteristics of nonlinear systems 
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element analysis of geometrically nonlinear structures 

namely: (1) Total Lagrangian (TL) formulation; (2) Updated 

Lagrangian (UL) formulation; and (3) co-rotational 
formulation (Crisfield 1991, Felippa 2001, Saada 2013 and 

Liang et al. 2016). The TL formulation is selected in this 

study. In the TL description, the initial configuration of the 

element at time 0 is considered as a reference configuration 

and all static and kinematic quantities are referred to this 

configuration. The TL formulation can reflect all kinematic 

nonlinear effects due to large deformations, and large 

strains, but large strain behavior is modeled correctly if 

appropriate constitutive relations are specified. 

In Total Lagrangian incremental analysis approach, the 

equilibrium equation at time 𝑡 + ∆𝑡 is introduced using the 

principle of virtual displacements as follows (Bathe 2006) 

 

0

0

0  
g

t t t t t t

ij ij

V

S d V R   
 

(1) 

 

Where 𝑆𝑖𝑗0
𝑡+∆𝑡 , 𝛿 𝜀𝑖𝑗𝑔0

𝑡+Δ𝑡 , 𝑅𝑡+Δ𝑡 , and 0V are the second 

Piola-Kirchhoff stress components, the Green-Lagrange 

strain components corresponding to virtual displacements, 

the external virtual work at time t, and the volume at time 0, 

respectively. Generally, 𝑅𝑡+Δ𝑡  is dependent on the volume 

of the body and the surface area. In this study, however, the 

external virtual work generated by concentrated forces 

whose intensities and directions are irrelevant to the 
deformations (Bathe 2006). 𝑆𝑖𝑗0

𝑡+∆𝑡 , 𝜀𝑖𝑗𝑔0
𝑡+Δ𝑡 , and 𝛿 𝜀𝑖𝑗𝑔0

𝑡+Δ𝑡  

are decomposed as 
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(3) 

 

𝛿 𝜀𝑖𝑗𝑔0
𝑡+∆𝑡 = 𝛿  𝜀𝑖𝑗𝑔0

𝑡 + 𝜀𝑖𝑗𝑔0   

= 𝛿 𝜀𝑖𝑗𝑔0
𝑡
   

0

+ 𝛿 𝜀𝑖𝑗𝑔0 = 𝛿 𝜀𝑖𝑗𝑔0  (4) 

 

Where 𝑆𝑖𝑗0
𝑡  denote the second Piola-Kirchhoff stress 

components at time t, 𝑆𝑖𝑗0  the increment of second Piola-

Kirchhoff stress components, 𝜀𝑖𝑗𝑔0
𝑡  the second Piola-

Kirchhoff stress components at time 𝑡 , and 𝜀𝑖𝑗𝑔0 the 

increment of Green-Lagrange strain components. 

Additionally, 𝜀𝑖𝑗𝑔0  is decomposed as 

 

0 0 0gij ij ije  
 

(5) 

 

Where 𝑒𝑖𝑗0  and 𝜂𝑖𝑗0  are the linear and nonlinear 

incremental strains referred to the initial configuration. 

They are written as 
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Hence, we have 
 

  𝑆𝑖𝑗0
𝑡 + 𝑆𝑖𝑗0  𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0

= 𝑅𝑡+∆𝑡   

→  𝑆𝑖𝑗0
𝑡 𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0

+  𝑆𝑖𝑗0 𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0

=  𝑅𝑡+∆𝑡    

→  𝑆𝑖𝑗0
𝑡 𝛿 𝑒𝑖𝑗0 𝑑 𝑉0

𝑉0

+  𝑆𝑖𝑗0
𝑡 𝛿 𝜂𝑖𝑗0 𝑑 𝑉0

𝑉0

 

+  𝑆𝑖𝑗0 𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0

= 𝑅𝑡+∆𝑡   

→  𝑆𝑖𝑗0
𝑡 𝛿 𝜂𝑖𝑗0 𝑑 𝑉0

𝑉0

+  𝑆𝑖𝑗0 𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0

 

= 𝑅𝑡+∆𝑡 −  𝑆𝑖𝑗0
𝑡 𝛿 𝑒𝑖𝑗0 𝑑 𝑉0

𝑉0

 

(9) 

 

It should be noted that the term  𝑆𝑖𝑗 𝛿0𝑒𝑖𝑗𝑑
0𝑉

𝑡

𝑉0  is 

known, and the term  𝑆𝑖𝑗 𝛿0𝜂𝑖𝑗𝑑
0𝑉

𝑡

𝑉0  is linear with respect 

to the incremental displacements. But the term 

 𝑆𝑖𝑗 𝛿0𝜂𝑖𝑗𝑑
0𝑉

𝑡

𝑉0  is highly nonlinear with respect to the 

incremental displacements ui, therefore, this term is 

linearized using Taylor series expansion as follows 
 

 𝑆𝑖𝑗0 𝛿 𝜀𝑖𝑗𝑔0 𝑑 𝑉0

𝑉0
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𝜕 𝑆𝑖𝑗0
𝑡
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𝑡
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𝑁𝑒𝑔𝑙𝑒𝑐𝑡
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𝑁𝑒𝑔𝑙𝑒𝑐𝑡

 𝑑 𝑉0  

=  𝐶𝑖𝑗𝑟𝑠0 𝑒𝑟𝑠0 𝛿 𝑒𝑖𝑗0 𝑑 𝑉0
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(10) 

 

Where, 0Cijrs is the incremental stress-strain tensor. It 
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should be stated that nonlinear incremental components of 

strain, and higher order terms have been neglected in Eq. 

(10). Accordingly, the linearized equilibrium equation is 

written as 
 

0 0

0

0 0

0 0 0 0 0

0

0 0

      

  

t
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

 
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(11) 

 

The term  𝐶𝑖𝑗𝑟𝑠0 𝑒𝑟𝑠0 𝛿0𝑒𝑖𝑗𝑑
0𝑉

𝑉0  is used to form 

linear stiffness matrix KL, the term  𝑆𝑖𝑗0
𝑡 𝛿0𝜂𝑖𝑗𝑑

0𝑉
𝑉0  to 

form nonlinear stiffness matrix KNL, and the term 

 𝑆𝑖𝑗0
𝑡 𝛿0𝑒𝑖𝑗𝑑

0𝑉
𝑉0  to form the vector of internal nodal 

forces F. Therefore, the linearized terms are used to 

determine approximated stiffness matrix, internal nodal 

forces, and then incremental displacements, strains and 

stresses. Therefore, the accumulative errors may lead to an 

incorrect solution. Furthermore, it will be deteriorated in the 

case of highly nonlinear behavior. The error due to the 

linearization, neglecting some of the nonlinear incremental 

strain components, and higher-order terms of the original 

TL formulation can be expressed as 
 

0

(1) (1) 0

0  
g

t t t t t t

ij ij

V

Error R S d V     
 

(12) 

 

The superscript (1) indicates approximated value. Eq. 

(12) is considered as ―unbalanced virtual work‖ (Bathe 

2006). In order to further reducing ―unbalanced virtual 

work‖ in incremental-iterative methods, an iterative process 

must be performed until the difference between the external 

virtual work and the internal virtual work satisfies a desired 

convergence value. 
 

 

3. Proposed approach 
 

The external virtual work is relevant to external loading 

and is usually constant for a virtual displacement pattern, 

but the internal virtual work is dependent on real 

displacements. Therefore, to eliminate computational errors 

due to linearization of the nonlinear terms of the 

equilibrium equation, neglecting some of the nonlinear 

incremental strain components and higher-order terms, and 

derivation of the approximated stiffness matrices, the 

nonlinear response at each arbitrary time is directly 

determined by using classical stress-strain formulation, and 

constrained optimization techniques simultaneously. 
 

3.1 Main objective function 
 

In this study, to solve nonlinear equilibrium equation of 

the structures, the following optimization problem is 

defined as an error formula 
 

2
1

2

  W
1

  to  u

e

e

iL i iU

R F
Minimize

R

subjected u u






   

(13) 

Where Re is the vector of concentrated loads (irrelevant 

to the direction and intensity of the nodal displacement 

vector), F is the function of internal nodal forces (dependent 

on the nodal displacements), ui is the global nodal 

displacement, uiL and uiU are the lower and upper bounds of 

displacements, respectively. The lower and upper 

displacements bounds are considered as constraints to 

overcome the common failure of load-controlled and 

displacement-controlled methods at the turning points 

(snap-through and snap-back phenomena, depicted in Fig. 

1). Additionally, since the proposed optimization algorithm 

finds the local minimum solution, defining displacement-

type constraints is necessary to distinguish the pre- and 

post-turning point regions. Otherwise, it may lead to jump 

from the pre- to the post-turning regions in the vicinity of 

limit points. 

To formulate the objective function given in Eq. (13) 

with respect to the global nodal displacements, classical 

stress-strain formulations of nonlinear equilibrium equation 

based on a known displacement field are presented. The 

vector of updated global nodal coordinates Dnew is stated as 
 

newD D U 
 (14) 

 

Where D lists the initial global nodal coordinates, and U 

the vector of global nodal displacements. 

The deformation of the body can be measured by the 

deformation gradient. The deformation gradient describes 

the stretches and rotations that the material fibers have 

undergone from time 0 to t. Generally, the deformation 

gradient X is presented using initial and new geometries as 

written in Eq. (15) 
 

1

1

u u

x y
X

v v

x y

  
  

 
  

     

(15) 

 

Where u and v are displacement functions based on the 

element’s shape functions and global nodal displacements 

in x- and y-directions, respectively. 

 For large deformations, different kinds of strain 

measures such as Green-Lagrange, Hencky, and Almansi 

may be employed. All mentioned strains are obtained using 

deformation gradient (Crisfield 1991 and Bathe 2006). 

However, in this research, Green-Lagrange strain measure 

is employed and presented in tensor form as 
 

 
1

2

T

g X X I  
 

(16) 

 

Where I denotes a second order identity tensor. It should 

be stated that the Green - Lagrange strain is the complete 

strain tensor from which no higher-order terms and no 

nonlinear incremental strain components have been 

neglected. The Green-Lagrange strain is measured with 

respect to the initial coordinates of the body (Indeed, with 

respect to the undeformed configuration of the body). For 

each truss element, it can be defined as 
 

( ) ( ) ( ) ( )
( ) 2

( ) ( )

1
( ) ( )

2

i i i i
i new new

g i i

L L L L

L L


 
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(17) 
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Where 𝜀𝑔
(𝑖)

, 𝐿𝑛𝑒𝑤
(𝑖)

, and 𝐿
(𝑖)

 denote the Green-Lagrange 

strain, the new length, and the initial length of the ith 

element, respectively. Now, by using second Piola-

Kirchhoff stress of the ith element (S(i)) as a work-conjugate 

with the Green-Lagrange strain of the ith element, and 

employing an appropriate constitutive law, we have 

 
( ) ( ) ( ) i i i

gS C 
 

(18) 

 

Where C(i) is the constant elasticity modulus of the ith 

element. The internal force of each element can be specified 

as the following equation 
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( ) ( ) ( )

( )
. .( )

i
i i i new

i

L
P S A

L


 
(19) 

 

In Eq. (19), A(i) is the cross-section area of each the ith 

element. Then, the vector of global internal nodal forces of 

the ith element can be described as 
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Where 
 

( ) ( )

( ) ( )

Cos  

Cos  

i i

x x

i i

y y

C

C






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(21) 

 

In Eq. (21), 𝜃𝑥
(𝑖)

 and 𝜃𝑦
(𝑖)

 are the smallest angles 

between the ith element, and the positive x and y global 

axes. Finally, the vector of internal nodal forces of the 

elements should be assembled to obtain the global vector of 

internal nodal forces of the entire structure. 

 

3.2 Direct estimation of limit points 
 

For structures exhibiting softening behavior, the load-

deflection curve becomes flatter when the load magnitude is 

increased. For these structures a critical load value is a load 

at which the structures become unstable and is said to have 
buckled (Bhatti 2006). The load at which this happens is 

called the buckling (limit) load. Common nonlinear analysis 

methods encounter difficulties in the vicinity of the limit 

points because even a small variation in the applied load 

may produce huge amount of displacement increments. 

Therefore, a prior estimation of the limit load may 

circumvent of these difficulties. In addition, the computed 

limit displacements can be used as appropriate lower and 

upper bound displacement constraints. At limit points, the 

global tangential stiffness matrix KT is singular (Planinc and 

Saje 1999). It means that in this state, one of the 

eigenvalues of the tangent stiffness matrix KT will be zero 

or a very small value. As a result, a new objective function 

is defined to directly estimate the buckling load and its 

corresponding limit points as 

1 2   

 to  u

                       R

iL i iU

iL i iU

Minimize W W

Subjected u u

R R



 
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(22) 

 

Where 
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2

2

1
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e

e

T

R F
W

R

W eignvalues K





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(23) 

 

Where ui is the limit displacement points, uiL and uiU are 

the lower and upper bounds of the displacements, Ri is the 

global nodal buckling load, 𝑅𝑖𝐿  and 𝑅𝑖𝑈  are the lower and 

upper bounds of buckling loads, respectively. W2 is 

specified as the smallest absolute eigenvalue of the global 

tangent stiffness matrix. The tangent stiffness matrix of the 

ith element is defined as (Bathe 2006) 

 
( ) ( ) ( )i i i

T L NLK K K 
 

(24) 

 

Where 𝐾𝐿
(𝑖)

 and 𝐾𝑁𝐿
(𝑖)

 denote the linear and nonlinear 

tangent stiffness matrix of the ith element, respectively. 

They are written as 
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(26) 

 

Finally, the global tangent stiffness of the elements 

should be assembled to form the global stiffness matrix of 

the entire structure (KT). It should be noted that the tangent 

stiffness matrix (KT) is obtained by linearization and 

neglecting of some nonlinear components of the strain, and 

higher-order terms. Nevertheless, it is used only in the 

estimation of the limit points to be introduced as 

displacement-type constraints as well as to have a deep 

insight of buckling load levels, and it is not employed in the 

main proposed objective function. 

Indeed, in this objective function, two sets of variables 

are determined simultaneously. They are specified as nodal 

buckling load and its corresponding limit points (nodal 

displacements). 
 

3.3 Optimization method 
 

The task of optimization is the process in which the best 

result under given conditions is acquired. The major aim of 

the optimization process is minimizing the effort required. 

Since the required effort in any practical problem may be 

described as a function of certain decision variables, 
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optimization may be represented as the procedure of finding 

the states that produce the minimum amount of a function 

(Rao 2009). A nonlinear optimization problem subjected to 

inequality constraints is defined as 
 

minimize       W(u )  ; i=1 to n

subjected to;  ( ) 0 ;  j=1 to m

i

j ig u 
 

(27) 

 

Where W(ui) denotes the objective function (w1 and/or 

(w1 + w2) in this study), ui the design variables (global nodal 

displacements), gj(u) the inequality constraints in terms of 

the global nodal displacements, n the number of nodal 

displacements, and m the number of inequality constraints. 

It should be noted that in this research, W(ui) and gj(u) are 

nonlinear and linear functions in terms of the global nodal 

displacements, respectively. 

According to the nature of the problem, a number of 

procedures have been developed to solve different types of 

optimization problems. In this study, Sequential Quadratic 

Programming (SQP) method is used to solve constrained 

optimization problem. This method is efficient, reliable, and 

generally applicable (Rao 2009). Generally, the SQP 

method can be specified by the following steps (Arora 

2012); 
 

Step 1. Introducing initial vector of global nodal 

displacements U0, and set the number of current iteration k 

= 0. Choosing an initial value for penalty parameter R0 (i.e., 

R0 = 1), and two small values of ϵ1 > 0 and ϵ2 > 0 that 

describe the allowable convergence parameter and 

constraint violation values, respectively. 
 

Step 2. Determination of the both objective and 

inequality constraint functions, and their gradient values at 

Uk (where Uk is the vector of global nodal displacements at 

the kth iteration). 
 

Step 3. Computation of the maximum constraint 

violation Vk at the vector of global nodal displacements U(k) 

as; 

 1 2max 0 ;  g , , ,k mV g g
 

(28) 
 

Where 𝑔𝑚  is the mth inequality constraint violation. 
 

Step 4. The objective function W(ui) is approximated 

with a new Quadratic Programming (QP) subproblem 

subjected to the linearized inequality constraints as Eq. (29). 

It should be stated that the linearized inequality constraints 

employed in the QP problem agree well with the linearized 

displacement-type constraints defined in Eq. (27). Hence, 

the linear approximation of the inequality constraints is not 

required. As a result, the rate of convergence is increased. 

Now, the QP subproblem is minimized to find the search 

direction vector d, and the vector of Lagrange multipliers 

λ(k) 

1
minimize       

2

  to    

T T

T

f c d d H d
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 

  

(29) 

 

Where 𝑓  is the quadratic approximation of the error 

formula defined in Eq. (13), and also we have 
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(37) 

 

Where H is the Hessian matrix of the Lagrangian 

function L. 
 

Step 5. Checking the convergence (stop) criterion 
 𝑑 2 ≤ ϵ1 ( 𝑑 2 is norm of the search direction), and the 

maximum constraint violation 𝑉𝑘 ≤ ϵ2.  If they are 

satisfied, U(k) is the solution. Otherwise, continue. 
 

Step 6. If k = 0, then H(0) = I (where I is the identity 

matrix). If k > 0, updating the Hessian matrix using 

modified Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
formula (Powell 1978). 

 

Step 7. Introducing a descent function by adding a 

penalty for constraint violations to the current value of the 

objective function. In this study, Pshenichny’s descent 

function is employed due to its efficiency and robustness 

(Belegundu and Arora 1984b, a). The Pshenichny’s descent 

function Φ at the point U(k) is computed as 
 

k k kf RV  
 (38) 

 

Where fk is the amount of objective function at the point 

U(k), R the current value of penalty parameter obtained by 

Eq. (39), and Vk the maximum constraint violation defined 

in Eq. (28). 
 

max( , )k kR R r
 (39) 
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Where 
 

( )

1

m
k

k i

i

r 

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(40) 

 

Step 8. Set U(k+1) = U(k) + αkd
(k) to update the global 

nodal displacements, where α = αk is an appropriate step 

size along the search direction. It is acquired by minimizing 

the Pshenichny’s descent function along the search direction 

d(k) in a way that a sufficient decrease in the descent 

function is obtained. 
 

Step 9. Updating the iteration number k = k + 1, and go 

to step 2. 
 

 

4. Nonlinear solution algorithm 
 

The application of the proposed approach developed in 

this study is facilitated by the following algorithm: 
 

(1) Introduce mechanical and geometrical properties 

of the structure 

(2) Introduce the buckling (critical) loads and their 

corresponding nodal displacements obtained from 

Eq. (22) or based on the structure’s inherent 

(3) Introduce a desired tolerance for convergence 

criteria 

(4) Choose an arbitrary load step λ and define 

computed buckling load as Rbuckling. And then, R(i+1) 

= R(i) + λ ≤ Rbuckling 

(5) Introduce the first lower and upper bounds of nodal 

displacements uiL and uiU as the displacement-type 

constraints  

(6) Introduce the initial nodal displacement vector U 

for the optimization problem defined in Eq. (13) 

(7) Update the geometry of the global nodal 

coordinates using Eq. (14) 

(8) Calculate the new length of each element 𝐿𝑛𝑒𝑤
(𝑖)

 

(9) Calculate Green-Lagrange strain of each element 

using Eq. (17) 

(10) Calculate second Piola-Kirchhoff stress S(i) for 

each element of the structure using Eq. (18) 

(11) Compute the internal force of each element P(i) 

using Eq. (19) 

(12) Compute the vector of global internal nodal forces 

of each element F(i) using Eq. (20) 

(13) Assemble the vector of global internal nodal forces 

of the entire structure. 

(14) Perform optimization process and update the nodal 

displacement vector U 

(15) Repeat step 7 to 15 until the convergence criterion 

is met 

(16) Convergence criterion is not met at the buckling 

load. But the buckling load and its corresponding 

nodal displacements were already estimated using 

Eq. (22). After that, the upper and lower bounds of 

displacements are changed, and then R(i+1) = R(i) + 

λ. 

(17) Repeat step 6 to 15 until the convergence criterion 

is met 

(18) Dependent on the structure’s inherent and its 

 

Fig. 2 Flowchart of the proposed algorithm 

 

 

number of limit points, increasing and decreasing of 

the load may occur until the desired load or 

displacement is reached. 
 

The whole analytical procedure is demonstrated as a 

flowchart in Fig. 2. 

 

 

5. Numerical verifications 
 

In this section, five plane truss structures are presented 

and studied to verify the efficiency and accuracy of the 

proposed approach. The results of these examples obtained 

by proposed method are compared to the outcomes of 

theoretical solution, modified arc-length method (Crisfield 

1981 and Ramm 1981) using higher-order stiffness matrix, 

and other results reported in the literature. For all five truss 

structures, elastic geometrically nonlinear analysis is 

performed considering large deflections within the TL 

formulation framework. It should be stated that material 

nonlinearity, member and local buckling effects are not 

regarded in the examples. 
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Fig. 3 Shallow truss (Torkamani and Shieh 2011) 

 

 
Table 1 Geometric and mechanical characteristics of the shallow 

truss 

Property Value 

Modulus of elasticity of each member E = 2.06×107 N/cm2 

Length of each member L = 11 m = 1100 cm 

Circular cross-section of each member A = 169 cm2 

Rise angle α = 3.623° 
 

 

 

Example 1: shallow truss 
This structure is a two member truss that was previously 

investigated by Papadrakakis (1983) using dynamic 

relaxation method and also by Torkamani and Shieh (2011) 

using arc-length method. Fig. 3 shows the undeformed and 

deformed configuration of the truss with solid and dash 

lines, respectively. 

The theoretical solution of this benchmark truss can be 

derived from Eq. (41) 
 

1
2 2

2

2 2
( ) 1 1

EA u uh
P h u

L L L

 
   

              

(41) 

 

Where, u is the vertical displacement of node B and h is 

the height of the truss before applying any load. The 

geometrical and mechanical properties of this example are 

presented in Table 1. 

To follow the whole equilibrium path of the structure, 

two different cases are investigated. In Case 1, perfect 

model is regarded, but in Case 2, the cross-sectional area of 

the member BC is set to 10% smaller than the member AB 

to study the influence of geometrical imperfection. Fig. 4 

 

 

 

(a) Vertical displacement (Case 1) 
 

 

(b) Vertical displacement (Case 2) 
 

    

(c) Horizontal displacement (Case 2) 

Fig. 4 Load-displacement curves of shallow truss 

 

 

depicts the vertical and horizontal load-displacement curve 

of node B. 

In Fig. 4(a), the results obtained by proposed method (P- 

M) are compared to those of theoretical solution (T-S) 

 

 

Table 2 Analysis outcomes of the shallow truss 

Case Analysis type 
First limit point Second limit point 

Limit load (KN) uB (cm) Limit load (KN) uB (cm) 

Case 1 

T-S 338.79 29.39 -338.79 109.6 

P-M 338.5 29.37 -338.5 109.6 

Difference (%) 0.09 0.07 0.09 0 

Case 2 

P-M 321 29.3 -321 109.64 

A-L 321.3 28.67 -321.2 110.5 

Difference (%) 0.09 2 0.06 0.78 
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Fig. 5 Three member truss 
 

 

derived by Eq. (41) for Case 1. In Figs. 4(b), (c), the results 

acquired by proposed method (P-M) are compared with 

modified arc-length method (A-L). The limit points 

obtained by proposed method, theoretical solution, and 

modified arc-length method are presented in Table 2. 

It can be seen that the results acquired by proposed 

method have very good agreement with those generated by 

theoretical solution, and modified arc-length method. A 

typical snap-through and snap-back phenomena are 

exhibited in this example. 
 

Example 2: Three member truss 
In this example, a slightly more complex plane truss 

configuration is regarded. Another truss member is placed 

vertically on the top of the mentioned shallow truss. Fig. 5 

shows the undeformed configuration of the truss. Both 

hinge points b and d are constrained to eliminate any 

horizontal displacement and thus they are only able to move 

vertically. 

In fact, this problem has two degrees of freedom, and 

they are chosen to be the vertical displacements of nodes b 

and d. The influence of changing cross-sectional area of the 

member bd is studied in four cases to investigate the snap- 
 

 

 

 

 

Fig. 6 Load-displacement curves of three member truss 
 

 

through and snap-back phenomena. The geometrical and 

mechanical properties of the truss members are presented in 

Tables 3 for 4 different cases. 

Fig. 6 shows the vertical load-displacement curve of 

node d. 

The results obtained by proposed method (P-M) and 

modified arc-length (A-L) method are compared in this 

figure. The limit points generated by proposed method and 

modified arc-length method are presented in Table 4. 

It can be seen that the results acquired by proposed 

method have good agreement with those obtained by 

modified arc-length method. For all cases, the limit loads 

derived by proposed method and modified arc-length 

method are 338.5 KN and 339.3 KN, respectively. The 

difference of limit loads generated by mentioned methods is 

0.24%. A typical snap-through and snap-back phenomena 

are exhibited in this example. 
 

Example 3: Four member truss 
In this example, a variation of shallow truss is 

considered. Two truss members are attached horizontally on 

the top of the mentioned shallow truss. Fig. 7 shows the 

undeformed configuration of the four member plane truss. 
 

 

 

 

Table 3 Properties of the three member truss 

Case 
Circular cross-section 

of member bd (Abd (cm2)) 

Circular cross-section of 

members ab and bc 

Aab =  Abc (cm2) 

Modulus of elasticity 

E (N/cm2) 
L (cm)

 
α 

Case 1 0 

169 2.06×107 1100 3.623° 
Case 2 1.69 

Case 3 0.845 

Case 4 0.4225 
 

Table 4 Properties of the three member truss 

 Analysis type 
First limit point Second limit point 

Case 1 Case 2 Case 3 Case 4 Case 1 Case 2 Case 3 Case 4 

Vd (cm) 

P-M 29.37 40.2 51.43 74.9 109.6 99 88 68.9 

A-L 29.4 39.92 50.2 70.4 109.37 98.6 87.8 64.5 

Difference (%) 0.1 0.7 2.4 6 0.2 0.4 0.23 6.4 
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Fig. 7 Four member truss 

 

 

The only  degree of freedom is the vertical displacement of 

node b. 

The influence of adding new members to the previous 

one is investigated in 6 cases. The geometrical and 

mechanical properties of the truss members are given in 

Table 5 for all 6 cases. 

Fig. 6 shows the vertical load-displacement curve of 

node b. 

The results acquired by proposed method (P-M) and 

modified arc-length (A-L) method are depicted in this 

figure for all 6 cases. The limit points derived by two 

mentioned methods are presented in Table 6. 

It can be seen that the results acquired by proposed method 

agree well with those obtained by modified arc-length 

method. A typical snap-through phenomenon is exhibited in 

cases 1-4. It is noticeable that the more cross-sectional area 

is allocated to the members db and be, the more smooth 

load-displacement curve is achieved. 

 

Example 4: The reticulated (Thompson) strut 
The reticulated strut were analyzed for the first time by 

Thompson and Hunt (1973) and after that, by Kondoh and 

Atluri (1985) and Torkamani and Shieh (2011) to investigate 

 

 

 

 

Table 6 Analysis outcomes of four member truss 

C* A-T* 
First limit point Second limit point 

P (KN) vb (cm) P (KN) vb (cm) 

C-1* 

P-M 338.5 29.4 -338.5 109.6 

A-L 339.3 29.85 -339.3 109.37 

D* (%) 0.24 1.5 0.24 0.2 

C-2* 

P-M 343.2 30 -155.1 100.9 

A-L 343.4 29.82 -158.3 99.4 

D* (%) 0.06 0.6 2 1.5 

C-3* 

P-M 351.52 31.1 99.2 85.1 

A-L 351.57 29.74 97.47 84.46 

D* (%) 0.01 4.3 1.7 0.75 

C-4* 

P-M 365.44 34.13 286.8 69.11 

A-L 366.58 35.24 286.24 68.66 

D* (%) 0.31 3.1 0.2 0.65 

C-5* 

P-M - - - - 

A-L - - - - 

D* (%) - - - - 

C-6* 

P-M - - - - 

A-L - - - - 

D* (%) - - - - 
 

*C: Case 1; A-T: Analysis type; C-1: Case 1; C-2: Case 2; C-3: 

Case 3; C-4: Case 4; C-5: Case 5; C-6: Case 6; D: Difference 

 

 

different aspects of nonlinear analysis of the mentioned 

structure. The configuration of this structure is shown in 

 

 

 

 

Table 5 Properties of the four member truss 

Case 

Circular cross-section 

of member bd and be 

(Abd and Abe (cm2)) 

Circular cross-section of 

members ab and bc 

Aab =  Abc (cm2) 

Modulus of elasticity 

E (N/cm2) 
α 

Case 1 0 

169 2.06×107 3.623° 

Case 2 10 

Case 3 30 

Case 4 55 

Case 5 90 

Case 6 140 
 

 

Fig. 8 Load-displacement curves of four member truss 
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Fig. 9. 

This structure consists of 35 members. The geometrical 

and mechanical properties of the truss members are given in 

Table 7. 

This strut is subjected to a compressive load P at node 

19. The load-displacement curve for the vertical displace-

ment of node 10 is depicted in Fig. 10. 

The buckling loads and the corresponding nodal 

displacements acquired by Kondoh and Atluri (1985),  

 

 
Table 7 Geometric and mechanical characteristics of the 

Thompson strut 

Property Value 

Modulus of elasticity of each member E = 68.964×105 N/cm2 

Circular cross-section of member 1-21 A = 54.84 cm2 

Circular cross-section of member 22-35 A = 51.61 cm2 
 

 

 

 

Fig. 10 Load-displacement curve for Thompson’s strut 

 

 
Table 8 Analysis outcomes of the Thompson strut 

Solution method 

Limit point 

Limit load 

(KN) 

Limit displacement 

(cm) 

P-M 7014 7 

Kondoh and Atluri (1985) 7063 7.22 

Difference (%) 0.69 3 

P-M 7014 7 

Torkamani and Shieh (2011) 6916 8 

Difference (%) 1.4 12.5 
 

 

 

Torkamani and Shieh (2011), and proposed method (P-M) 

are presented in Table 8. 
 

 

 

Fig. 11 The arch-truss structure 

(Torkamani and Shieh 2011) 
 
 

Table 9 Nodal coordinates of the arch-truss structure (Kondoh and 

Atluri 1985) 

Nodal number X Coordinate (cm) Y Coordinate (cm) 

19,1 ± 3429 0 

18,2 ± 3048 50.65 

17,3 ± 2667 3475 

16,4 ± 2286 83.82 

15,5 ± 1905 65.3 

14,6 ± 1524 110.85 

13,7 ± 1143 87.99 

12,8 ± 762 128.5 

11,9 ± 381 100.65 

10 0 134.6 
 

 
 

Table 10 Cross-sectional areas of members of the arch-truss 

structure (Kondoh and Atluri 1985) 

Member’s number Cross-section area (cm2) 

1-10,35 51.61 

11,12 64.52 

13-16 83.87 

17,18 96.77 

19-22 103.23 

23,24 161.29 

25,26 193.55 

27,28 258.06 

29-32 290.32 

33,34 309.68 
 

 

Fig. 9 The Thompson strut (Torkamani and Shieh (2011) 
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Fig. 12 Load-displacement curve of arch-truss structure 

for node (10) in vertical direction 
 

 

Table 11 Analysis outcomes of the arch-truss structure 

Solution method 

Limit point 

Limit load 

(KN) 

Limit displacement 

 (cm) 

P-M 25.2 38 

Kondoh and Atluri (1985) 25.89 38.1 

Difference (%) 2.6 0.3 

P-M 25.2 38 

Torkamani and Shieh (2011) 25.11 29.5 

Difference (%) 0.4 22.3 
 

 

 

The generated results show good agreement for both 

limit load and its corresponding limit displacement. 
 

Example 5: The Arch truss structure 
The undeformed configuration of a 35-member plane 

arch-shape truss is shown in Fig. 11. 

A vertical concentrated load P is applied at the node 10 

of this truss. This structure was analyzed for the first time 
by Rosen and Schmit (1979), after that, Kondoh and Atluri 

(1985), and Torkamani and Shieh (2011) studied different 

aspects of the nonlinear analysis of the mentioned truss 

structure. In this problem, all of the members have a 

circular cross section and an identical modulus of elasticity 

of E = 68.964×105 N/cm2. The nodal coordinates of the 

structure and the cross-sectional areas for all of the 

members are presented in Tables 9 and 10, respectively. 

Fig. 12 depicts the load-displacement curve of node 10 

in the vertical direction corresponding to the applied load P. 

The limit loads and the corresponding limit 

displacements generated by proposed method, Kondoh and 

Atluri (1985), and Torkamani and Shieh (2011) are 

presented in Table 11. 

It can be seen that the outcomes of the proposed method 

are close to those of Kondoh and Atluri (1985) that used 

effective way of forming the tangent stiffness matrix of the 

truss and modified arch-length method, but the solution of 

the Torkamani and Shieh (2011) that used higher-order 

stiffness matrix and arch length method has become entirely 

divergent after the limit point. 
 

 

6. Conclusions 
 

In this research, a novel dual approach was developed to 

perform the geometrically nonlinear analysis of plane truss 

structures. For this purpose, an objective function was 

formed based on the classical stress-strain formulations, 

considering the entire higher-order terms. The proposed 

optimization problem was solved by SQP algorithm within 

the displacement-type constraints. The nonlinear 

equilibrium path of the plane truss structures was fully 

followed using the proposed method. It was shown that 

directly estimation of the critical loads and their 

corresponding limit points is possible by this method, and it 

is also applicable for problems having multiple limit points 

and exhibiting snap-through and snap-back phenomena. In 

addition, the present algorithm does not calculate any 

approximated stiffness matrix to form the main objective 

function, therefore, the errors caused by linearization of the 

equilibrium equation, and neglecting some of the nonlinear 

incremental strain components and higher-order terms will 

be eliminated from the obtained solution. Validity, 

efficiency and robustness of the suggested method was 

proved by means of the five numerical examples. It was 

confirmed that the present method can precisely predict the 

elastic pre- and post-buckling behavior of the plane truss 

structures. 
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