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1. Introduction 

 

Sandwich structures are one of the most functional 

forms of advanced composite structures developed by 

engineers. The main concept of sandwich composite 

structures is its high specific strength and bending stiffness 

to weight ratio (Belouettar et al. 2009). With its many 

advantages, composite sandwich structures have been 

widely used in a variety of engineering application 

including automotive, aerospace, mechanical, ships and 

other industrial applications (Vel et al. 2005). This 

composite material also draws a lot of interest in the 

construction industry and is now beginning to be in use for 

civil engineering projects as industrial buildings, vehicular 

bridges, solar power stations, nuclear reactor structures and 

petrochemical structures (Bennoun et al. 2016, Bounouara 

et al. 2016, Kolahchi et al. 2017a, b, Kolahchi 2017, El-

Haina et al. 2017, Amar et al. 2017). Sandwich 

constructions consist of two outer strong layers and an inner 

relatively thick, lightweight core material (Vinson 2001). 

Sandwich structure has become even more attractive to the 

introduction of advanced composite materials for the face 

sheets like functionally graded ceramic–metal materials 

(Wang and Shen 2012). The considerable advantages 
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offered by functionally graded materials (FGMs) over 

conventional materials are to eliminates the interface 

problems of conventional composite materials and thus the 

stress distribution becomes smooth (Li et al. 2008). 

Subsequently, a number of studies have been performed to 

analyze the static, vibration, and buckling of functionally 

graded structures due to the increased relevance of the 

FGMs structural components in the design of engineering 

structures (Tounsi et al. 2013, Kar and Panda 2014, 2015, 

Yaghoobi et al. 2014, Swaminathan and Naveenkumar 

2014, Bousahla et al. 2014, Sofiyev and Kuruoglu 2015a, 

Akbaş 2015, Attia et al. 2015, Darilmaz 2015, Darilmaz et 

al. 2015, Bourada et al. 2015, Kolahchi et al. 2015, Mahi et 

al. 2015, Sofiyev and Osmancelebioglu 2017, Brischetto 

2017, Benadouda et al. 2017, Khetir et al. 2017, Menasria 

et al. 2017). Plates supported elastic foundations are 

generally encountered in many engineering applications, 

such as bottom plates of hydraulic structures and surface 

plates of the airport (Ke-rang 1990). From the literature 

review, it is found that there are many studies of plates 

supported by elastic foundation and these studies have 

attracted the attention of many investigators. Al-Hosani et 

al. (1999) proposed a fundamental solution and boundary 

integral equations for thick Reissner plates resting on a 

Winkler elastic foundation by considering the effect of 

transverse normal stresses resulting from the foundation 

reaction on the plate surface. Darilmaz (2009) proposed a 

four-node hybrid stress element for analysing arbitrarily 

shaped plates resting on a two parameter elastic foundation. 

Baltacioglu et al. (2011) proposed a method of discrete 
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singular convolution for the large deflection analysis of 

laminated composite plates resting on nonlinear elastic 

foundations. A few researchers have utilized classical plate 

theory (CPT) to studies vibration and static behavior of thin 

functionally graded (FG) plates. He et al. (2001) reported 

the finite element formulation based on thin plate theory to 

control the shape and vibration of FGM plate with 

integrated piezoelectric sensors and actuators under 

mechanical load. Woo et al. (2006) provided an analytical 

solution for the nonlinear free vibration behavior of FG 

square thin plates using the von Karman theory. Abrate 

(2008) has presented result of free vibration of simply 

supported and clamped rectangular thin plates using the 

CPT. Zhang and Zhou (2008) studies the free vibration, 

buckling and on the basis of the physical neutral surface. 

The classical plate theory ignores the transverse shear strain 

and is suitable only to studies thin plates. However, it is not 

appropriate for the moderately thick and thick plates, which 

require that the transverse and normal strain should be taken 

into account. First-order shear deformation theory considers 

the transverse shear deformation effects and gives 

acceptable results for thick and thin plates, but needs a 

shear correction factor which is hard to find as it depends 

on the geometries, material properties and boundary 

conditions of each problem (Ferreira et al. 2009). Liu and 

Liew (1999) analyzed free vibration of rectangular plates 

with mixed boundary conditions using the first-order shear 

deformation theory (FSDT). The nonlinear static and 

dynamic responses of functionally graded ceramic–metal 

plates using the FSDT and the von Karman strain were 

examined by Praveen and Reddy (Praveen and Reddy 

1998). Najafov et al. (2014) investigated the stability of 

exponentially graded (EG) cylindrical shells with shear 

stresses on a Pasternak foundation based on the first-order 

shear deformation theory (FSDT). Sofiyev et al. (2015b) 

studied the free vibration of sandwich cylindrical shells 

covered by functionally graded coatings and resting on the 

Pasternak elastic foundation considering combined 

influences of shear stresses and rotary inertia are examined. 

Sofiyev et al. (2016) analyzed the vibration and stability of 

axially loaded functionally graded (FG) sandwich 

cylindrical shells with and without shear stresses and rotary 

inertia resting Pasternak foundation. Based on the 

orthotropic Mindlin plate, Kolahchi et al. (2016) 

investigated the temperature-dependent nonlinear dynamic 

stability for a functionally graded CNT reinforced visco-

plate resting on an orthotropic elastomeric foundation. Chen 

et al. (2017) investigated the thermal buckling and vibration 

of initially stressed sandwich plates with functionally 

graded material (FGM) face sheets, including the effects of 

transverse shear deformation and rotary inertia. The higher-

order shear deformation theories (HSDTs) have been 

developed and do not require any shear correction factor. 

These theories include higher-order terms in the 

approximation of the in-plane displacement fields and 

satisfy zero shear stress conditions at top and bottom 

surfaces of plates. Reddy (2000) has presented result of the 

static behavior of functionally graded rectangular plates 

based on a third-order shear deformation plate theory. 

Cheng and Batra (2000) derived the field equations for a 

simply supported functionally graded plate by utilizing the 

first-order shear deformation theory or the third-order shear 

deformation theory and simplified them for a simply 

supported polygonal plate to that of an equivalent 

homogeneous Kirchhoff plate. Yaghoobi and Yaghoobi 

(2013) investigated the buckling analysis of symmetric 

sandwich plates with FG face sheets resting on an elastic 

foundation based on the first-order shear deformation plate 

theory and under to mechanical, thermal and thermo-

mechanical loads. Ferreira et al. (2006) studied the free 

vibration of functionally graded plates based on the first and 

the third-order shear deformation plate theories using the 

Mori–Tanaka homogenization method and the global 

collocation method with multiquadratic radial basis 

functions. Bellifa et al. (2016) studied the bending and the 

free vibration of functionally graded plates using a novel 

simple first-order shear deformation plate theory based on 

neutral surface position. Some studies on response of FG 

sandwich plates have been carried out using higher-order 

shear deformation theories. Zenkour (2005a, b) investigated 

bending, vibration and buckling problem of sandwich plates 

with FG faces and homogeneous hardcore using different 

shear deformation theories. Ait Amar Meziane et al. (2014) 

analyzed the buckling and free vibration of exponentially 

graded sandwich plates under various boundary conditions 

using an efficient and simple refined theory. Benyoucef et 

al. (2010) examined the static response of simply supported 

functionally graded plates resting on an elastic foundation 

using a new hyperbolic displacement model. Zenkour and 

Sobhy (2010) studied the critical buckling temperature for 

FGM sandwich plates using a sinusoidal shear deformation 

plate theory to derive the appropriate elastic stability 

equations. Ebrahimi and Habibi (2016) utilized the finite 

element method is to predict the deflection and vibration of 

porous FG plates made within the framework of the third 

order shear deformation plate theory. Recently, Tounsi and 

his co-workers (Hadji et al. 2011, Houari et al. 2011, 

Merdaci et al. 2011, Bouderba et al. 2013, Zidi et al. 2014, 

Ait Yahia et al. 2015, Boukhari et al. 2016, Hadj Henni et 

al. 2017) developed a new refined and robust plate theory 

for bending response, buckling, vibration and wave 

propagation of simply supported FG plate with only four 

unknown functions. In Houari et al. (2016) and Tounsi et al. 

(2016) a new simple shear deformation theory for the 

bending and free vibration response of FG plates with only 

three unknown functions was developed. As opposed to five 

or even greater numbers in the case of other higher shear 

deformation theories, this theory is variationally consistent, 

does not require shear correction factor, and accounts for 

parabolic distribution of the transverse shear strains, and 

satisfies the zero traction on the surfaces of the plate 

without using shear correction factor. Most recently, Tounsi 

and his co-workers (Hebali et al. 2016, Merdaci et al. 2016, 

Krenich et al. 2017, Meftah et al. 2017) developed another 

novel refined plate theory for mechanical behaviour of 

simply supported plate with only four unknown. These 

theories have a new displacement field which introduces 

undetermined integral variables. It should be noted that the 

thickness stretching effect is ignored in these new four-

variable plate theories and other  hear deformation plates 
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theories. The importance of the thickness stretching effect 

in FG plates has been pointed and discussed out in the work 

of Carrera et al. (2011) using appropriate finite element 

approximations. Quasi-3D theories are higher order shear 

deformation theories (HSDTs) with higher-order variations 

through the thickness for the transverse displacement. There 

are many papers proposed in the literature concerned with 

investigation of the different behaviors of the FGM 

structures by using the quasi-3D theories. Kant and 

Swaminathan (2002) proposed a quasi-3D theory with all 

displacement components expanded as a cubic variation 

through the thickness for static response of laminated 

composite and sandwich plates. Neves et al. (2011) and 

Neves et al. (2012a, b) have presented an original 

hyperbolic sine shear deformation theory for the bending 

and free vibration analysis of FG plates. Houari et al. 

(2013) developed a theory for the thermoelastic bending 

analysis of FGM sandwich plates. Bessaim et al. (2013) 

presented a theory for the bending and free vibration 

analysis of sandwich plates. Belabed et al. (2014) have 

determined the bending and free vibration response for FG 

plate. Hebali et al. (2014) analyzed the static and free 

vibration analysis of functionally graded plates. Hamidi et 

al. (2015) have proposed a sinusoidal plate theory with 5-

unknowns and stretching effect for thermomechanical 

bending of functionally graded sandwich plates. Draiche et 

al. (2016) have presented a refined theory with stretching 

effect for the flexure analysis of laminated composite 

plates. Sekkal et al. (2017) developed a new quasi-3D 

HSDT for buckling and vibration of FG plate. Recently, 

Abualnour et al. (2018) proposed a novel quasi-3D 

trigonometric plate theory for free vibration analysis of 

advanced composite plates. Benchohra et al. (2018) 

presented a new quasi-3D sinusoidal shear deformation 

theory for FG plates. 

This paper aims to improve the plate theory developed 

by Tounsi and his co-workers (Hebali et al. 2016, Merdaci 

et al. 2016, Krenich et al. 2017, Meftah et al. 2017) by 

including the so-called stretching effect. Using the proposed 

theory, both static behavior of FGM sandwich plates resting 

on two-parameter elastic foundations are investigated. This 

theory has only five unknowns, which is even less than the 

other Quasi-3D theories. The most interesting feature of this 

theory is that it accounts for a hyperbolic variation of the 

transverse shear strains across the thickness and satisfies the 

zero traction boundary conditions on the top and bottom 

surfaces of the plate without using shear correction factors. 

The present one has a new displacement field which 

introduces undetermined integral variables. Analytical 

solutions are obtained for FGM sandwich plate, and 

accuracy is verified by comparing the obtained results with 

those reported in the literature. 
 

 

2. Theoretical formulation 
 

2.1 Geometrical configuration 
 

A solid rectangular FG sandwich plate with uniform 

thickness with uniform thickness h, length a, and width b is 

considered in the present study (Fig. 1). The rectangular 

 

Fig. 1 Geometry of rectangular FGM sandwich plate 

with uniform thickness in the rectangular 

Cartesian coordinates 
 

 

 

Fig. 2 The material variation along the thickness of the 

FGM sandwich plate 
 

 

Cartesian coordinate system (x, y, z) is taken such that the x, 

y plane (z = 0) coincides with the mid-plane of the sandwich 

plate. The top and bottom faces of the plate are at z = h / 2, 

and the edges of the plate are parallel to axes x and y. The 

sandwich plate is composed of three elastic layers, namely, 

„„Layer 1‟‟, „„Layer 2‟‟, and „„Layer 3‟‟ from bottom to top 

of the plate. The vertical ordinates of the bottom, the two 

interfaces, and the top are denoted by h0 = ‒h / 2, h1, h2, h3= 

h / 2, respectively. In order to study the effect of the 

thickness variation of the three layers on displacements and 

stresses, a simple notation is used in all the numerical 

examples considered. For example, a notation of 1-2-1 (i.e., 

bottom face-core-top face thickness) is used to represent 

that the top and bottom face sheets have same thickness, 

whereas the core thickness is twice the bottom/top 

thickness. Other cases, viz. 1-0-1, 1-1-1, 2-1-2, 3-1-3 and 2-

2-1, are also considered to realize the various numerical 

examples. 

The face layers of the sandwich plate are made of an 

isotropic material with material properties varying smoothly 

in the z  direction only. The core layer is made of an 

isotropic homogeneous material, as shown in Fig. 2. 
 

2.2 Materials proprieties 
 

A simple power law in terms of the volume fraction of 

the ceramic phase is considered 
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where V(n), (n = 1, 2, 3) represents the volume fraction 

function of layer n; p is the volume fraction index (0 ≤ p ≤ 

+∞), which control the material distribution in the thickness 

direction. 

The effective material properties, like Young‟s modulus 

E, and Poisson‟s ratio v, can be mathematically expressed 

by the rule of mixture as (Marur 1999, Bourada et al. 2011, 

Houari et al. 2013, Bellifa et al. 2017, Besseghier et al. 

2017) 
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where P(n) is the effective material property of FGM of 

layer n. P1 and P2 are the properties of the top and bottom 

faces of layer 1, respectively, and vice versa for layer 3 

depending on the volume fraction V(n), (n = 1, 2, 3). For 

simplicity, Poisson‟s ratio of plate is assumed to be constant 

in this study for that the effect of Poisson‟s ratio on the 

deformation is much less than that of Young‟s modulus 

(Delale and Erdogan 1983). 

 

2.3 Constitutive equations 
 

For elastic and isotropic FGMs, the constitutive 

relations can be written as 
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where (x, y, z, τxy, τyz, τyx) and (εx, εy, εz, γxy, γyz, γyx) are 

the stress and strain components, respectively. Using the 

material properties defined in Eq. (3), stiffness coefficients, 

Qij, can be expressed as 
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Based on the thick plate theory and including the effect 

of transverse normal stress (thickness stretching effect), the 

basic assumptions for the displacement field of the plate can 

be described as 
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The coefficients k1 and k2 depends on the geometry and 

the proposed theory of present study has a hyperbolic 

function in the form 
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It can be observed that the kinematic in Eq. (5) uses 

only five unknowns (u0, v0, w0, θ and φz). Nonzero strains of 

the five variable plate model are expressed as follows 
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It can be observed from Eq. (7) that the transverse shear 

560



 

Bending analysis of advanced composite plates using a new quasi 3D plate theory 

strains (γxz, γyz) are equal to zero at the upper (z = h / 2) and 

lower (z = ‒h / 2) surfaces of the plate. A shear correction 

coefficient is, hence, not required. 

The integrals used in the above equations shall be 

resolved by a Navier type procedure and can be expressed 

as follows 
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where the coefficients A′ and B′ are considered according to 

the type of solution employed, in this case via Navier 

method. Therefore, A′, B′, k1 and k2 are expressed as follows 
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where α and β are defined in Eq. (21). 
 

2.4 Governing equations 
 

The principle of virtual displacements is utilized for the 

bending problem of FG sandwich plates. The principle of 

virtual work in the present case yields (Reddy 2002, Al-

Basyouni et al. 2015, Zemri et al. 2015, Ahouel et al. 2016, 

Saidi et al. 2016, Mouffoki et al. 2017, Zidi et al. 2017, 

Hachemi et al. 2017) 
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where fe is the density of reaction force of foundation. For 

the Pasternak foundation model 
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where kw is the modulus of subgrade reaction (elastic 

coefficient of the foundation) and 𝑘𝑠
1 and 𝑘𝑠

2 are the shear 

moduli of the subgrade (shear layer foundation stiffness). If 

foundation is homogeneous and isotropic, we will get 

𝑘𝑠
1 = 𝑘𝑠

2 = 𝑘𝑠 . If the shear layer foundation stiffness is 

neglected, Pasternak foundation becomes a Winkler 

foundation. 

Substituting Eqs. (4) and (7) into Eq. (12) and 

integrating through the thickness of the plate, Eq. (12) can 

be rewritten as 
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where Ω is the top surface and the stress resultants N, M, 

and S are expressed by 
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where hn and hn‒1 are the top and bottom z-coordinates of 

the nth layer. 

The governing equations of equilibrium can be derived 

from Eq. (11) by integrating the displacement gradients by 

parts and setting the coefficients δu0, δv0, δw0, δθ, and δφz 

zero, separately. The following equations of motion of 

associated with the present shear deformation theory are 

obtained as 
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Using Eq. (4) in Eq. (14), the stress resultants of a 

sandwich plate made up of three layers can be related to the 

total strains by 
 































































































































0

0

0

0

33231323132313

666666

23221222122212

13121112111211

661166

23221222122212

13121112111211

666666

23221222122212

13121112111211

000

0000000

000

000

0000000

000

000

0000000

000

000

z

s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

ss

sss

sssssss

sssssss

s

ss

ss

s

ss

ss

z

s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

k

k

k

k

k

k

ZYYYYXX

HDB

YHHDDBB

YHHDDBB

DDB

YDDDDBB

YDDDDBB

BBA

XBBBBAA

XBBBBAA

N

M

M

M

M

M

M

N

N

N









 

(16a) 

 


























0

0

55

44

0

0

xz

yz

s

s

s
xz

s
yz

A

A

S

S




 (16b) 

 

where 

561



 

Tarek Houari, Aicha Bessaim, Mohammed Sid Ahmed Houari, Mohamed Benguediab and Abdelouahed Tounsi 

 

 dzzfzfzzfzzzgC

HDBDBAA

h

h

ij

s
ij

s
ij

s
ijijij

s
ijij






2/

2/

222 )(),( ),(,,),(,1

,,,,,,

 (17a) 

 

 

  dzCzgzgzfz

ZYYX

ij

h

h

ij
s

ijijij

)()(),(,,1

,,,

'

2/

2/

'





 (17b) 

 

2.3 Equations of motion in terms of displacements  
 

By substituting Eq. (16) into Eq. (15), the equilibrium 

equations can be expressed in terms of displacements (u0, 

v0, w0, θ and φz) as 
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where dij, dijl and dijlm are the following differential 

operators 
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3. Analytical solution of simply supported 
FG sandwich plate 
 

In this work, we are concerned with the exact solutions 

of Eq. (18) for a simply supported nanoplate. Using the 

Navier solution procedure, the following expressions of 

displacements (u0, v0, w0, θ and φz) are taken 
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where 
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(Umn, Vmn, Wmn, Xmn, Zmn) are the unknown maximum 

displacement coefficients. The transverse load q(x, y) is also 

expanded as 
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The coefficients Qmn are given below for some typical 

loads 
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For uniformly distributed load 
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For sinusoidal distributed load; Qmn = q0 in which q0 is 

the intensity of the load. 

Substituting Eqs. (21) and (22) into Eq. (18), the 

analytical solutions can be determined by 
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where 
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Table 1 Material properties used in the functionally graded 

sandwich plates 

Properties 
(Al/ZrO2) (Ti‒6Al‒4V/ZrO2) 

Zirconia Aluminum Zirconia Titanium 

E (GPa) 151 70 117 66.2 

v 0.3 0.3 1/3 1/3 
 

 

 

 2
66

2
1111  AAa   

 661212 AAa    

 2
66

2
12

2
1113 2  BBBa   

  2
66

'
2

'
112211114  sss BBkAkBkBka   

1315 Xa   

(26) 

 

 
 

 2
22

2
6622  AAa   

 2
66

2
12

2
2223 2  BBBa   

  2
66

'
2

'
112122224  sss BBkAkBkBka   

2325 Xa   

 
2221

4
22

22
6612

4
1133 )2(2





ssw kkk

DDDDa




 

 
 2

12
2

222

22
66

'
2

'
1

2
12

2
11134 )(2





ss

sss

DDk

DBkAkDDka




 

 2
23

2
1335  YYa   

 

    2
55

2'
12221122

22
66

2'
2

'
1212111144 )(





sss

sss

AAkkHkHk

HBkAkkHkHka




 

(26) 

 

 

Table 2 Non dimensional center displacement 𝑤  and non-dimensional axial stress 𝜎𝑥    of (Al/ZrO2) FG sandwich square plate under 

sinusoidally distributed load (a/h = 10) 

p Theory εz 
𝑤  𝜎𝑥    

2-1-2 1-1-1 2-2-1 1-2-1 2-1-2 1-1-1 2-2-1 1-2-1 

0 

Neves et al. 2012c 0  0.19610 0.19610 0.19610 0.19610 1.99470 1.99470 1.99460 1.99460 

Neves et al. 2012c ≠ 0 0.19490 0.19490 0.19490 0.19490 2.00660 2.00660 2.00650 2.00640 

Bessaim et al. 2013 ≠ 0 0.19486 0.19486 0.19486 0.19486 1.99524 1.99524 1.99524 1.99524 

Akavci 2016 0  0.19605 0.19605 0.19605 0.19605 1.99516 1.99516 1.99516 1.99516 

Akavci 2016 ≠ 0 0.19466 0.19466 0.19466 0.19466 2.0730 2.0730 2.0730 2.0730 

Present 0  0.19606 0.19606 0.19606 0.19606 1.99332 1.99332 1.99332 1.99332 

Present ≠ 0 0.19487 0.19487 0.19487 0.19487 1.99525 1.99525 1.99525 1.99525 

1 

Neves et al. 2012c 0  0.30900 0.29490 0.28380 0.27400 1.47420 1.40670 1.30260 1.30640 

Neves et al. 2012c ≠ 0 0.30700 0.29290 0.28200 0.27220 1.48130 1.41370 1.30920 1.31330 

Bessaim et al. 2013 ≠ 0 0.30430 0.29007 0.27874 0.26915 1.46131 1.39243 1.28274 1.29030 

Akavci 2016 0  0.30627 0.29196 0.28083 0.27093 1.46322 1.39432 1.28879 1.29201 

Akavci 2016 ≠ 0 0.30398 0.28977 0.27847 0.26891 1.52514 1.45397 1.34177 1.34783 

Present 0  0.30635 0.29202 0.28085 0.27093 1.46214 1.39324 1.28769 1.29091 

Present ≠ 0 0.30431 0.29007 0.27875 0.26915 1.46132 1.39244 1.28272 1.29030 

2 

Neves et al. 2012c 0  0.35420 0.33510 0.31860 0.30530 1.69200 1.60170 1.44760 1.45880 

Neves et al. 2012c ≠ 0 0.35190 0.33290 0.31640 0.30320 1.69940 1.60880 1.45430 1.46590 

Bessaim et al. 2013 ≠ 0 0.35001 0.33068 0.31356 0.30060 1.68472 1.59170 1.42887 1.44497 

Akavci 2016 0  0.35222 0.33282 0.31613 0.30261 1.68708 1.59420 1.43723 1.44736 

Akavci 2016 ≠ 0 0.34957 0.33030 0.31319 0.30031 1.75757 1.66237 1.49644 1.51084 

Present 0  0.35237 0.33294 0.31620 0.30262 1.68601 1.59310 1.43607 1.44622 

Present ≠ 0 0.35001 0.33068 0.31356 0.30060 1.68473 1.59171 1.42886 1.44497 

10 

Neves et al. 2012c 0  0.40510 0.38680 0.36370 0.35030 1.93160 1.84850 1.63270 1.67610 

Neves et al. 2012c ≠ 0 0.40260 0.38430 0.36120 0.34800 1.93970 1.85590 1.63950 1.68320 

Bessaim et al. 2013 ≠ 0 0.40153 0.38303 0.35885 0.34591 1.93266 1.84705 1.61792 1.66754 

Akavci 2016 0  0.40390 0.38538 0.36204 0.34817 1.93451 1.84956 1.62871 1.67048 

Akavci 2016 ≠ 0 0.40094 0.38248 0.35823 0.34549 2.01036 1.92481 1.69436 1.74262 

Present 0  0.40426 0.38566 0.36221 0.34830 1.93354 1.84857 1.62753 1.66937 

Present ≠ 0 0.40153 0.38303 0.35885 0.34591 1.93266 1.84707 1.61792 1.66755 
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4. Numerical results and discussions 
 

In this section, the accuracy of the presented quasi-3D 

hyperbolic plate theory for the bending results of simply 

supported FG sandwich plates resting on elastic foundations 

and under sinusoidal loads is demonstrated by comparing 

the analytical solution with the existing results of quasi-3D 

and 2D shear theories in literature. In addition, the 

influences of shear deformation and thickness stretching on 

the bending response of the FGM sandwich plates are 

investigated. Typical values for metal and ceramics used in 

the FG sandwich plate The FG sandwich plates are made of 

(ZrO2/Al) and (ZrO2/Ti‒6Al‒4V), whose material properties 

are listed in Table 1. 

For convenience, the following dimensionless forms are 

used 
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The first example aims to verify the accuracy of the 

present theory in predicting the bending responses of FG 

sandwich plates. Table 2 contain the non-dimensional 

transverse displacement 𝑤  of the mid-plane and non 

dimensional axial stresses 𝜎𝑥    of the FG sandwich plate 

made of (ZrO2/Al) under sinusoidal loads for different skin-

core-skin ratios and material parameter k. The obtained 

predictions are compared with the 2D and Quasi-3D 

solution of Neves et al. (2012c), Akavci (2016), and the 

quasi- 3D solutions of Bessaim et al. (2013). It should be 

noted that the quasi-3D solutions of Neves et al. (2012c), 

Akavci (2016) and Bessaim et al. (2013) are derived based 

on a hyperbolic variation of both in-plane and transverse 

displacements. The results of 2D solutions the present work, 

Neves et al. (2012c) and Akavci (2016) are provided to 

show the importance of including the thickness stretching 

effect. It can be seen that the dimensionless displacement 

and stresses predicted by the present new quasi-3D 

hyperbolic theory are in excellent agreement quasi-3D 

solutions, particularly with those reported by Bessaim et al. 

 

Table 3 Nondimensional transverse shear stress 𝜏 𝑥𝑧  for square (Al/ZrO2) FG sandwich plate (a/h = 10) 

p Theory εz 
𝜏 𝑥𝑧  

2-1-2 1-1-1 2-2-1 1-2-1 

0 

Neves et al. 2012c 0  0.2538 0.2459 0.2407 0.2358 

Neves et al. 2012c ≠ 0 0.2538 0.2461 0.2411 0.2363 

Bessaim et al. 2013 ≠ 0 0.23794 0.23794 0.23794 0.23794 

Present 0  0.23217 0.23217 0.23217 0.23217 

Present ≠ 0 0.23794 0.23794 0.23794 0.23794 

1 

Neves et al. 2012c 0  0.2744 0.2640 0.2590 0.2489 

Neves et al. 2012c ≠ 0 0.2745 0.2643 0.2594 0.2496 

Bessaim et al. 2013 ≠ 0 0.27050 0.26060 0.25890 0.25196 

Present 0  0.26535 0.25533 0.25337 0.24635 

Present ≠ 0 0.27050 0.26060 0.25890 0.25196 

2 

Neves et al. 2012c 0  0.2758 0.2664 0.2632 0.2515 

Neves et al. 2012c ≠ 0 0.2760 0.2668 0.2636 0.2523 

Bessaim et al. 2013 ≠ 0 0.28792 0.27138 0.26885 0.25776 

Present 0  0.28335 0.26661 0.26359 0.25241 

Present ≠ 0 0.28792 0.27138 0.26885 0.25776 

10 

Neves et al. 2012c 0  0.2669 0.2635 0.2690 0.2559 

Neves et al. 2012c ≠ 0 0.2671 0.2639 0.2692 0.2568 

Bessaim et al. 2013 ≠ 0 0.33210 0.29534 0.29036 0.26850 

Present 0  0.32826 0.29167 0.28561 0.26392 

Present ≠ 0 0.33210 0.29534 0.29036 0.26850 
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2013. Since the present quasi-3D theory and other quasi-3D 

theories include the thickness stretching effect, their 

solutions are very close to each other. However, the 2D 

solutions, which omits this effect, gives inaccurate 

prediction and slightly overestimates the deflection. Also, it 

can be observed from the Table 2 that the quasi-3D 

solutions, obtained lower transverse displacement and 

higher axial stress than the 2D solutions which eliminate the 

 

 

stretching effect and increasing value of the power-law 

exponent p increases the center displacement in all 

sequences. The difference between shear deformation 

theories is less significant when εz = 0 especially for fully 

ceramic plates (p = 0). 

Table 4 presents values of transverse shear stress 𝜏 𝑥𝑧  

for p = 0, 1, 2, and 10 and different types of sandwich 

plates. The obtained results are compared with the different 

Table 4 Non-dimensional center displacement w


 of FG (Ti‒6Al‒4V/ZrO2) sandwich plate on elastic foundation 

under sinusoidally distributed load (a/h = 10, b = 2a) 

Scheme p Theory εz 
(Kw, Ks) 

0, 0 100, 0 0, 100 100, 100 

1-0-1 

0 

Taibi et al. 2015 0  0,681308 0,405225 0,0836524 0,077194 

Akavci 2016 ≠ 0 0,677195 0,404967 0.0728693 0,067958 

Present 0  0.681329 0.405232 0.0724390 0.067546 

Present ≠ 0 0.678245 0.405328 0.072876 0.067960 

0.5 

Taibi et al. 2015 0  0,886739 0,469985 0,0861015 0,079275 

Akavci 2016 ≠ 0 0.881167 0,470028 0.0747292 0,0695684 

Present 0  0.886715 0.469978 0.0742679 0.0691335 

Present ≠ 0 0.882541 0.470413 0.0747383 0.0695762 

2 

Taibi et al. 2015 0  1,109938 0,526052 0,087816 0.080727 

Akavci 2016 ≠ 0 1,10267 0.526445 0.0760263 0,0706912 

Present 0  1.10979 0.526019 0.0755397 0.0702342 

Present ≠ 0 1.104593 0.526872 0.0760337 0.0706977 

3-1-3 

0.5 

Taibi et al. 2015 0  0,868596 0.464839 0.085927 0.079128 

Akavci 2016 ≠ 0 0,86314 0.464849 0.0745969 0,0694537 

Present 0  0.868577 0.464833 0.0741382 0.0690211 

Present ≠ 0 0.864416 0.465262 0.0746036 0.0694619 

2 

Taibi et al. 2015 0  1,08997 0,519461 0,0876306 0.0805702 

Akavci 2016 ≠ 0 1.07386 0,519785 0.0758855 0,0705695 

Present 0  1.08085 0.519427 0.075402 0.0701153 

Present ≠ 0 1.075741 0.520220 0.0758944 0.0705772 

2-1-2 

0.5 

Taibi et al. 2015 0  0,8604107 0,462484 0,0858464 0.079059 

Akavci 2016 ≠ 0 0.855014 0,462481 0,0745356 0.0694005 

Present 0  0.8603967 0.462480 0.0740781 0.0689690 

Present ≠ 0 0.856336 0.462864 0.074545 0.0694089 

2 

Taibi et al. 2015 0  1066384 0,516062 0,0875334 0.080488 

Akavci 2016 ≠ 0 1,05934 0,516358 0,0758117 0,705056 

Present 0  1.066248 0.516031 0.0753303 0.070053 

Present ≠ 0 1.061188 0.516793 0.0758212 0.0705140 

1-1-1 

0.5 

Taibi et al. 2015 0  0,838977 0,456219 00856283 0,0788745 

Akavci 2016 ≠ 0 0,833746 0,456185 0.0743699 0.0692568 

Present 0  0.838979 0.456220 0.0739157 0.0688281 

Present ≠ 0 0.8350130 0.4565615 0.0743797 0.0692654 

2 

Taibi et al. 2015 0  1,024387 0,506023 0,0872398 0,0872398 

Akavci 2016 ≠ 0 1.01766 0.506246 0,0755889 0,0703128 

Present 0  1.024298 0.506002 0.0751129 0.0698651 

Present ≠ 0 1.019386 0.506675 0.0755999 0.0703225 
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(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 3 The transverse displacement, 𝑤 , through the thickness of symmetric and unsymmetric sandwich square plates (a/h = 10) 

  

(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 4 The axial stress, 𝑤 , through the thickness of symmetric and unsymmetric sandwich square plates (a/h = 10) 

  

(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 5 The transverse shear stress, 𝜏 𝑥𝑧 , through the thickness of symmetric and unsymmetric sandwich square plates (a/h = 10) 
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(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 6 Effect of Winkler and Pasternak modulus parameter on the dimensionless center deflection w


 through the thickness 

of a square FG sandwich plate (p = 5, a/h = 10) 

  

(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 7 Effect of Winkler and Pasternak modulus parameter on the dimensionless axial stress x


 through the thickness of a 

square FG sandwich plate (p = 5, a/h = 10) 

  

(a) The (1-2-1) FG sandwich plate (b) The (2-2-1) FG sandwich plate 

Fig. 8 Effect of Winkler and Pasternak modulus parameter on the dimensionless transverse shear stress xz


 through the 

thickness of a square FG sandwich plate (p = 5, a/h = 10) 
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two (Neves et al. 2012c) and quasi-three dimensional 

theories (Neves et al. 2012c, Bessaim et al. 2013). There is 

a little difference between the results and this is due to the 

different approaches used to predict the response of the FG 

sandwich plate. But, in general, a good agreement between 

the results is found. The transverse shear stress 𝜏 𝑥𝑧  

increases as p increases. 

Fig. 3 show the influence of the volume fraction index p 

on the variation of the out-of-plane displacement (𝑤 ) 

through the thickness direction for both symmetric and 

unsymmetric square FG sandwich plates with side-to-

thickness ratio a/h = 10. The results are plotted by using 

both the present 2D and quasi-3D shear deformation 

theories. It can be seen that the transverse displacement (𝑤 ) 

of metal plates is larger than the corresponding one of 

ceramic plates and in general, the transverse displacement 

increases as the volume fraction index p increases. 

Fig. 4 contain plot of the axial stress 𝜎𝑥    for various 

values of volume fraction index p through-the-thickness of 

rectangular FGM sandwich plate for both symmetric and 

unsymmetric square FG sandwich plates with side-to-

thickness ratio a/h = 10. The maximum compressive 

stresses occur at a point on the top surface and the 

maximum tensile stresses occur, of course, at a point on the 

bottom surface of the FGM sandwich plate. 

The homogeneous ceramic plate or metal plate yields 

the maximum compressive stresses at the bottom surface 

and the minimum tensile stresses at the top surface of the 

sandwich plate. 

In Fig. 5 we have plotted the through-the-thickness 

distributions of the transverse shear stress the maximum 

value occurs at a point on the mid-plane of the plate for 

symmetric or homogeneous plates. It can be observed that 

the transverse shear stresses for non-symmetric FG 

sandwich plates are not parabolic and increasing the volume 

fraction index p leads to increase of the transverse shear 

stress in the skin of the plate which can increase the 

resistance of sandwich plates to face sheet debonding. 

The second example to prove the validity of present 

Quasi-3D hyperbolic plate theory for bending response of a 

simply supported (Ti‒6Al‒4V/ZrO2) FG sandwich plate 

resting on elastic foundation, the obtained numerical results 

presented in Table 4 and compared with the 2D solutions of 

Taibi et al. (2015) and the quasi-3D solutions of Akavci 

(2016). Additional results are plotted in Figs. 6–8 using the 

present Quasi-3D hyperbolic plate theory with (εz ≠ 0). 

Table 4 contain dimensionless center deflection w


 for 

an FG sandwich plate subjected to mechanical loads 

without elastic foundation or resting on one- or two-

parameter elastic foundations for different values of volume 

fraction index p and several kinds of FG sandwich plates. It 

can be seen that the present results are in agreement with 

the published results for a simply supported FG sandwich 

plate on elastic foundation. As the volume fraction index p 

increases for FG plates, the deflection w


 will increase. 

Also, the inclusion of the Winkler foundation parameter 

gives results more than those with the inclusion of 

Pasternak foundation parameters. It can be shown that the 

deflections are decreasing with the existence of the elastic 

foundations. Since the quasi-3D model of the present 

formulation includes the thickness stretching effect, the 

non-dimensional center deflection w


 are slightly decreased 

with respect to other center deflection documented in Table 

4 obtained by 2D solutions. Thus, the inclusion of thickness 

stretching effect makes the FG sandwich plates stiffer. 

The effect of foundation stiffness and side-to-thickness 

ratio on the dimensionless deflection w


for both symmetric 

and unsymmetric FG sandwich square plate (k = 5, a/h = 

10) is shown in Fig. 6. It is seen from Fig. 6 that as the 

elastic foundation increase the center dimensionless 

deflection w


 of the FG sandwich plates decreases. Figs. 7 

and 8 plot the influences of foundation stiffness on the 

dimensionless axial stress x


 and the transverse shear 

stress xz


 through-the-thickness of the symmetric and 

unsymmetric FG sandwich square plate (k = 5, a/h = 10). It 

is seen from the figures that the axial normal and transverse 

shear stresses decrease gradually with the increasing value 

of foundation stiffness. 

 

 

5. Conclusions 
 

A novel Quasi-3D hyperbolic shear deformation plate 

theory is developed for bending response of FG sandwich 

plates resting on elastic foundation. By considering further 

simplifying suppositions to the existing Quasi-3D theory, 

with incorporation of an undetermined integral term, the 

present theory has only five unknowns, which is even less 

than the other shear and normal deformation theories, and 

hence, make this model simple and efficient to employ. 

Equations of motion are obtained by utilizing the 

Hamilton's principles and then are solved using Navier's 

procedure. The accuracy of the present work is ascertained 

by comparing it with existing solutions and excellent 

agreement was observed. Results show that the inclusion of 

thickness stretching effect (εz ≠ 0) makes a nanoplates 

stiffer, and hence, leads to decrease of the transverse 

displacement. In conclusion, it can be said that the present 

theory is not only accurate but also simple in predicting 

displacements and stresses of FG sandwich plates without 

elastic foundation or resting on one- or two-parameter 

elastic foundations. The formulation lend sit self 

particularly well to study several problems related to the 

hygro-thermo-mechanical deformation of laminated and FG 

structures as is studied by Tounsi and his co-workers 

(Bouderba et al. 2016, Beldjelili et al. 2016, Bousahla et al. 

2016, Chikh et al. 2017), also by including the size-

dependent effect for analysis of mechanical behaviour of 

micro/structure (Adda Bedia et al. 2015, Belkorissat et al. 

2015, Larbi Chaht et al. 2015, Kolahchi and Bidgoli 2016, 

Arani and Kolahchi 2016, Bouafia et al. 2017), which will 

be considered in the near future. 
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