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1. Introduction 

 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced multilayered 

composite materials (sandwich structures) we can achieve 

structures with low weight, high strength and high stiffness 

in many structures of civil, mechanical and space 

engineering. 

Functionally graded materials (FGMs) are hetero-

geneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 
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properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 

composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Ramakris and 

Kunukkas (1973) provided a closed-form analytical solution 

for free vibration of an annular sector plate with radial 

edges simply supported. Mukhopadhyay (1979 and 1982) 

used a semi-analytical method and Srinivasan and 

Thiruvenkatachari (1983 and 1986) used the integral 

equation technique to analyze the vibrations of annular 

sector plates, respectively. Kim and Dickinson (1989) used 

one-dimensional (1-D) orthogonal polynomials and Liew 

and Lam (1993) used two-dimensional (2-D) orthogonal 

polynomials as admissible functions to study the free 

vibration of annular sector plates by the Rayleigh–Ritz 

method. Ramaiah and Vijayakumar (1974) studied the free 

vibration of annular sector plates with simply supported 

radial edges by a combination of the Rayleigh-Ritz method 

and coordinate transformation. Swaminadham et al. (1984) 

compared the natural frequencies of annular sector plates 

from the finite element method and experiments. Seok and 

Tiersten (2004) used a variational approximation procedure 

to analyze the free vibration of cantilevered annular sector 

plates. Houmat (2001) used the hierarchical finite element 

method to study the free vibration of annular sector plates. 

The Lagrange identity method was developed by Marin 

(1994) for the study of the initial boundary value problem 

of thermoelasticity of bodies with microstructure. This 

researcher outlined some estimations on the basis that some 
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uniqueness and continuous dependence theorems in 

bounded and exterior domains could be obtained. Sharma 

and Marin (2013) considered wave propagation in 

micropolarthermoelastic solid half space with distinct 

conductive and thermodynamic temperatures. Reflection of 

plane waves incident obliquely at the free surface of 

micropolar generalized thermoelastic solid half space. 

Marin (2010a) extended the concept of domain of influence 

in order to cover the elasticity of microstretch materials. 

Marin (1997) considered the general results from the theory 

of elliptic equations were applied in order to obtain the 

existence and uniqueness of the generalized solutions for 

the boundary value problems in elasticity of dipolar 

materials with voids. Marin (2010b) studied a cylinder 

made of a microstretch thermoelastic material for which one 

plane end was subjected to plane boundary data varying 

harmonically in time. Results showed that the amplitude of 

the vibrations decays exponentially with the distance to the 

base. Sharma et al. (2005a, b) integrated an analytical 

approach with the Chebyshev polynomials technique to 

study the buckling and free vibration of isotropic and 

laminated composite sector plates based on the first-order 

shear deformation theory. For moderate thickness plates, the 

first-order shear deformable plate theory is commonly used, 

which could provide a result more accurate than that from 

the CPT. Liew and Liu (2000) used the differential 

quadrature method to analyze the free vibration of thick 

annular sector plates. Wu and Liu (2016) developed a state 

space differential reproducing kernel (DRK) method in 

order to study 3D analysis of FG circular plates. Park et al. 

(2016) used modified couple stress based third-order shear 

deformation theory for dynamic analysis of sigmoid 

functionally graded materials (S-FGM) plates. Bapu Rao et 

al. (1977) and Guruswamy and Yang (1979) used the finite 

element method to analyze the vibrations of thick annular 

sector plates. Benson and Hinton (1976) and Cheung and 

Chan (1981) used the finite strip method to carry out static 

and dynamic analyses of thick annular sector plates. 

Mizusawa (1991) used the finite element method to study 

the natural frequencies of thick annular sector plates. Xiang 

et al. (1993) applied the Ritz method to study the free 

vibration of thick annular sector plates. Leissa et al. (Leissa 

et al. 1993 and McGee et al. 1995) considered the effect of 

stress singularities on the vibration analysis of thick annular 

sector plates and presented the corner functions to improve 

the convergence of the numerical solutions. Zhou et al. 

(2009) used the Chebyshev-Ritz method to study the free 

vibration of thick annular sector plates, Nie and Zhong 

(2008) investigated the free and forced vibration analysis of 

FGM annular sector plates with simply-supported radial 

edges by using a semi-analytical approach. Arefi (2015) 

suggested an analytical solution of a curved beam with 

different shapes made of functionally graded materials 

(FGMs). Bennai et al. (2015) developed a new refined 

hyperbolic shear and normal deformation beam theory to 

study the free vibration and buckling of functionally graded 

(FG) sandwich beams under various boundary conditions. 

Bouchafa et al. (2015) used refined hyperbolic shear 

deformation theory (RHSDT) for the thermoelastic bending 

analysis of functionally graded sandwich plates. 

Bouguenina et al. (2015) studied FG plates with variable 

thickness subjected to thermal buckling. Tahouneh (2016) 

presented a 3-D elasticity solution for free vibration 

analysis of continuously graded carbon nanotube-reinforced 

(CGCNTR) rectangular plates resting on two-parameter 

elastic foundations. The volume fractions of oriented, 

straight single-walled carbon nanotubes (SWCNTs) were 

assumed to be graded in the thickness direction.  Moradi-

Dastjerdi and Momeni-Khabisi (2016) studied Free and 

forced vibration of plates reinforced by wavy carbon 

nanotube (CNT). The plates were resting on Winkler-

Pasternak elastic foundation and subjected to periodic or 

impact loading. Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Several researches have recently investigated the elastic 

properties of multiwalled carbon nanotube (MWCNT) and 

their composites (Fidelus et al. 2005, Ghavamian et al. 

2012). Gojny et al. (2005) focused on the evaluation of the 

different types of the CNTs applied, their influence on the 

mechanical properties of epoxy-based nanocomposites and 

the relevance of surface functionalization. Therefore, the 

study of the mechanical performance of CNT-based 

composites and the discovery of possible innovative 

applications has recently attracted the interest of many 

researchers. 

Several researchers have reported that mechanical 

properties of polymeric matrices can be drastically 

increased (Montazeri et al. 2010, Yeh et al. 2006) by adding 

a few weight percent (wt%) MWCNTs. Montazeri et al. 

(2010) showed that modified Halpin-Tsai equation with 

exponential Aspect ratio can be used to model the 

experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 

nanotube length cause a decrease in aggregation and Above 

1.5wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 

equation to shows the effect of MWNT shape factor (L/d) 

on the mechanical properties. They showed that the 

mechanical properties of nanocomposite samples with the 

higher shape factor (L/d) values were better than the ones 

with the lower shape factor. The reinforcement effect of 

MWCNTs with different aspect ratio in an epoxy matrix has 

been carried out by Martone et al. (2011). They showed that 

progressive reduction of the tubes effective aspect ratio 

occurs because of the increasing connectedness between 

tubes upon an increase in their concentration. Also they 

investigated on the effect of nanotube curvature on the 
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average contacts number between tubes by means of the 

waviness that accounts for the deviation from the straight 

particles assumption. Though there are research works 

reported on general sandwich structures, very little work 

has been done to consider even the vibration behavior of FG 

sandwich structures (Anderson 2003, Kashtalyan and 

Menshykova 2009, Barka et al. 2016, Chen et al. 2017). Li 

et al. (2008) studied free vibrations of FGSW rectangular 

plates with simply supported and clamped edges. Zenkour 

(2005a, b) presented a two-dimensional solution to study 

the bending, buckling and free vibration of simply 

supported FG ceramic-metal sandwich plates. Kamarian et 

al. (2013) studied free vibration of FGSW rectangular 

plates with simply supported edges and rested on elastic 

foundations using differential quadratic method. Very 

recently, Wang and Shen (2011) investigated the large 

amplitude vibration and the nonlinear bending of a 

sandwich plate with CNTRC face sheets resting on an 

elastic foundation on the basis of a micromechanical model 

and multi-scale approach. Tahouneh and Naei (2015) 

investigated free vibration and vibrational displacements of 

thick laminated curved panels with finite via DQ method. 

The material properties varied continuously through the 

layers’ thickness according to a three-parameter power-law 

distribution. It was assumed that the inner surfaces of the 

functionally graded sheets are metal rich, while the outer 

surfaces of the layers could be metal rich, ceramic rich or 

made of a mixture of two constituents. 

To the author’s best knowledge, there is not any work 

about vibrational analysis of FG-MWCNT sandwich 

structures. The aim of this study is to fill this apparent gap 

in this area by providing the 3-D vibration analysis results 

for FG-MWCNT sandwich sectorial plates with power-law 

distribution of multiwalled carbon nano tubes. The effective 

material properties of the FG-MWCNT plates are estimated 

using a modified Halpin-Tsai equation. Also a parametric 

study is carried out to highlight the influence of MWCNT 

volume fraction in the structure thickness, type of CNT 

distributions and geometrical parameters on vibration 

behavior of FG- MWCNT sandwich sectorial plates. 

 

 

2. Problem description 
 

2.1 Mechanical properties of the structure 
 

Consider a sandwich annular sector plate as shown in 

Fig. 1. This plate is referring to a cylindrical coordinate 

system (r, θ, z), as depicted in this figure. It is assumed the 

 

 

 

Fig. 1 An annular sandwich sector plate with radial edges 

simply supported 

total thickness of structure is “h”. The structure has 

continuous grading of reinforcement through thickness 

direction. In this study, we will discuss about the results in 

the literature on mechanical properties of polymer nanotube 

composites. The Halpin-Tsai equation assumes that the 

filler are straight and uniform dispersion of the filler in the 

polymer matrix. The Halpin-Tsai equation (Halpin and Tsai 

1969, Affdl Halpin and Kardos 1976) has been recognized 

for its ability to predict the modulus values for the fiber-

reinforced composite samples. The effective mechanical 

properties of the CNTRC plate are obtained based on a 

modified Halpin-Tsai equation according to (Montazeri et 

al. 2010, Yeh et al. 2006) 
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The effective Young’s modulus of MWCNT can be 

deduced from Eq. (1) as follows 
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(2) 

 

From the linear region of the fitting line for MWNTs/ 

phenolic composites, the effective Young’s modulus (Ef) of 

MWNT is 953 GPa. In above equations, Ecn and Em are the 

longitudinal elastic moduli of the MWCNT and pure 

polymer; Vcn is the CNT volume fraction; ηL is the 

exponential shape factor; l and d are the length and the 

diameter of CNT and   is CNT orientation efficiency. 
 

cn
aV b

L
l

e
d

 
  2

 
(3) 

 

In which ηL is related to the aspect ratio of 

reinforcement length l and diameter d in the Halpin-Tsai 

equation. a and b are constants, related to the degree of 

MWCNTs aggregation, which account for the nonlinear 

behavior of the Halpin-Tsai equation in the MWCNTs wt% 

range considered (Montazeri et al. 2010, Yeh et al. 2006). 

The resulting effective properties for the randomly oriented 

MWCNT composite are isotropic, despite the CNTs having 

transversely isotropic effective properties. The orientation 

of a straight CNT is characterized by α. 

When CNTs are completely randomly oriented in the 

matrix, the composite is then isotropic. In this article, the 

experimental data for the Young’s modulus of MWCNT/ 

phenolic composites with different mass fraction of 

MWCNTs, reported by Yeh et al. (2006), was used to fit the 

above Halpin-Tsai equation. In Fig. 2, the predicted Young’s 

moduli using Eq. (1) is shown. 

The best fit was achieved by taking the model 
 

 

Table 1 Material properties for the pure phenolic the MWCNTs 

Polymer (phenolic) MWCNTs 

Em = 5.13 GPa Ecn = 953 GPa, ρcn = 1.30 g/ml, υcn = 0.29 

ρm = 1.03 g/ml α = 1/6, l = 17.57 μm, d = 23.63 nm, 

υm = 0.34 a = 75, b = 1 
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parameters given in Table 1. Using this prediction model, 

the Young’s modulus of functionally graded 

MWCNT/phenolic composites will be estimated during the 

numerical solutions in the next sections. Also, the mass 

density and Poisson’s ratio of the MWCNT/phenolic 

composite according to rule of mixtures can be calculated, 

respectively, by 
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(4) 

 

where υcn and ρcn are Poisson’s ratio and density, 

respectively, of the CNT and υm and ρm are corresponding 

properties for the matrix.The reinforcement volume fraction 

of FG-MWCNT panel is assumed as follows (Pelletier 

Jacob and VelSenthil 2006) 
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Fig. 2 Prediction of the Young’s modulus of MWCNT/ 

phenolic composites containing various wt% of 

MWCNTs (Yeh et al. 2006) 

 

 

 

Fig. 3 Variations of the volume fraction of reinforcement 

(VMWCNT) through thethickness direction of sandwich 

sectorial plates for different values of “p” 

where Vi and Vo, which have values that range from 0 to 1. 

The exponent “p” governs the through-thickness fiber 

volume fraction profile. The through-thickness variations of 

the volume fractions are depicted in Fig. 3. As shown in 

Fig. 3, the volume fraction of core varies from 0.2 to 0.8 as 

η (η = z/h) varies from –hc/2 and hc/2 while the reinforce-

ment volume fractions of top and bottom faces are 0.8 and 

0.2, respectively. 

 

 

3. Governing equations 
 

In the absence of body forces, the governing equations 

are as follows (Reddy 2013) 
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(6) 

 

Where r, θ, z are axial stress components, τrθ, τθz, τrz 

are shear stress components, ur, uθ, uz are displacement 

components, ρ denotes material density and t is time. The 

relations between the strain and the displacement are 

 

 

(7) 

 

where εr, εθ, εz, γθz, γrθ, γrz are strain components. The 

constitutive equations for material are 
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In Eq. (8), cij are material elastic stiffness coefficients. 

Using the three-dimensional constitutive relations and the 

strain-displacement relations, the equations of motion in 

terms of displacement components for a linear elastic FG 

plate with infinitesimal deformations can be written as 
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where .'
dz

dc
c

ij

ij   

Eqs. (9) and (10) represent the in-plane equations of 

motion along the r and θ-axes, respectively; and Eq. (11) is 

the transverse or out-of-plane equation of motion. 

The related boundary conditions are as follows: 

at z = -0.5 h and 0.5 h 
 

, ,zr z z    0 0 0
 (12) 

 

In this paper three different kinds of boundary 

conditions are considered for circular edges including 

clamped-clamped (c-c), simply supported-clamped (s-c) and 

free-clamped (f-c). The boundary conditions at edges are 

Clamped (r = b) ‒ Clamped (r = a) 

 

at  r = a   
r zu u u  0  

at  r = b   
r zu u u  0  

(13) 

 

Simply supported (r = b) ‒ Clamped (r = a) 

 

at  r = b   z ru u   0  

at  r = a   r zu u u  0  
(14) 

 

Free (r = b) ‒ Clamped (r = a) 

at  r = a   r zu u u  0  

at  r = b   0 rzrr    
(15) 

 

 

4. Solution procedure 
 

Using the geometrical periodicity of the plate, the 

displacement components for the free vibration analysis can 

be represented as 
 

     

     

     

, , , , sin ,

, , , , cos ,

, , , , sin

i t

r rm

i t

m

i t

z zm

U r z t U r z m e

U r z t U r z m e

U r z t U r z m e





 



  

  

  






 

(16) 

 

where m (= 0,1,…, ∞) is the circumferential wave number;
 is the natural frequency and i (=  −1) is the imaginary 

number. It is obvious that m = 0 means axisymmetric 

vibration. At this stage the GDQ [A brief review of GDQ 

method is given in Appendix] rules are employed to 

discretize the free vibration equations and the related 

boundary conditions. Substituting for the displacement 

components from (16) and then using the GDQ rules for the 

spatial derivatives, the discretized form of the equations of 

motion at each domain grid point (rj, zk) with (j = 2, 3,…, Nr 

‒ 1) and (k = 2, 3,…, Nz ‒ 1) can be obtained as 

Eq. (9) 
 

( ) ( ) (
rN

r

k jn rmnk k mjk

n j j

m m
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r r

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n nj j

A u A u u
r r


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1 1

1 1

 
( )

( ) (
r z rN N N

r z rk
k jn kr zmnr jn mnk

n r nj

c m
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r



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1 1 1  
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m m
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
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  

2 2
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z r
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1 1  
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 55

1 1 1  
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
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 
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( ) ( )
z rN N

r
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1 1  
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
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 
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1
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k rmjku   2

 

(17) 

 

Eq. (10) 
 

( ) (
r rN N

r r

k jn mnk rmjk jn rmnk
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m m
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
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+ ) (( ) ( )
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Eq. (11) 
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(19) 

 

where 𝐴𝑖𝑗
𝑟 , 𝐴𝑖𝑗

𝑧  and 𝐵𝑖𝑗
𝑟 , 𝐵𝑖𝑗

𝑟  are the first and second order 

GDQ weighting coefficients in the r- and z- directions, 

respectively. 

In a similar manner the boundary conditions can be 

discretized. For this purpose, using Eq. (16) and then GDQ 

discretization rules for spatial derivatives, the boundary 

conditions at z =-0.5 h and 0.5 h become, 

Eq. (12) 
 

,
z rN N

z r

kn rmjn jn zmnk

n n

A u A u
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1

0
 

(20) 

 

Table 2 Comparison of fundamental frequency parameter 
 Ω = 𝜔𝑎2    𝑝ℎ/𝐷  for flexural vibration of annular sector 

plates with two straight edges simply supported for 

b/a = 0.5 

α (deg)
  

h/a
 

Theories C-C F-C F-S 

195 

0.01 

McGee et al. (1995) 90.0837 21.4263 10.8761 

Zhou et al. (2009) 90.1125 21.4074 10.8522 

Present (Nr = Nz = 9) 90.1102 21.4065 10.8513 

Present (Nr = Nz = 13) 90.1124 21.4075 10.8520 

Present (Nr = Nz = 17) 90.1122 21.4076 10.8525 

Present (Nr = Nz = 19) 90.1123 21.4076 10.8524 

0.2 

McGee et al. (1995) 70.8090 19.9986 10.2268 

Zhou et al. (2009) 71.9146 20.0967 10.2386 

Present (Nr = Nz = 9) 71.9115 20.0954 10.2392 

Present (Nr = Nz = 13) 71.9142 20.0964 10.2380 

Present (Nr = Nz = 17) 71.9143 20.0968 10.2385 

Present (Nr = Nz = 19) 71.9143 20.0968 10.2384 

0.4 

McGee et al. (1995) 48.6618 17.5822 9.3661 

Zhou et al. (2009) 50.0059 17.7636 9.3961 

Present (Nr = Nz = 9) 50.0045 17.7653 9.3945 

Present (Nr = Nz = 13) 50.0059 17.7641 9.3958 

Present (Nr = Nz = 17) 50.0056 17.7638 9.3961 

Present (Nr = Nz = 19) 50.0056 17.7638 9.3962 

210 

0.01 

McGee et al. (1995) 89.9678 20.9496 10.2631 

Zhou et al. (2009) 90.0265 20.9368 10.2418 

Present (Nr = Nz = 9) 90.0253 20.9347 10.2399 

Present (Nr = Nz = 13) 90.0260 20.9363 10.2410 

Present (Nr = Nz = 17) 90.0263 20.9369 10.2416 

Present (Nr = Nz = 19) 90.0264 20.9369 10.2416 

0.2 

McGee et al. (1995) 70.7344 19.6097 9.6643 

Zhou et al. (2009) 71.8406 19.7064 9.6751 

Present (Nr = Nz = 9) 71.8420 19.7040 9.6733 

Present (Nr = Nz = 13) 71.8401 19.7059 9.6745 

Present (Nr = Nz = 17) 71.8407 19.7063 9.6751 

Present (Nr = Nz = 19) 71.8406 19.7063 9.6752 

0.4 

McGee et al. (1995) 48.6117 17.2943 8.8769 

Zhou et al. (2009) 49.9566 17.4733 8.9043 

Present (Nr = Nz = 9) 49.9535 17.4714 8.9026 

Present (Nr = Nz = 13) 49.9555 17.4725 8.9035 

Present (Nr = Nz = 17) 49.9563 17.4736 8.9041 

Present (Nr = Nz = 19) 49.9564 17.4735 8.9041 

270 

0.01 

McGee et al. (1995) 89.6828 19.7282 8.5788 

Zhou et al. (2009) 89.7655 19.7258 8.5635 

Present (Nr = Nz = 9) 89.7634 19.7219 8.5611 

Present (Nr = Nz = 13) 89.7642 19.7245 8.5623 

Present (Nr = Nz = 17) 89.7651 19.7257 8.5630 

Present (Nr = Nz = 19) 89.7653 19.7259 8.5633 

0.2 

McGee et al. (1995) 70.5516 18.6218 8.1304 

Zhou et al. (2009) 71.6588 18.7149 8.1386 

Present (Nr = Nz = 9) 71.6551 18.7117 8.1365 
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Table 2 Continued 

α (deg)
  

h/a
 

Theories C-C F-C F-S 

270 

0.2 

Present (Nr = Nz = 13) 71.6575 18.7139 8.1377 

Present (Nr = Nz = 17) 71.6584 18.7150 8.1386 

Present (Nr = Nz = 19) 71.6586 18.7150 8.1387 

0.4 

McGee et al. (1995) 48.4901 16.5657 7.5461 

Zhou et al. (2009) 49.8361 16.7386 7.5670 

Present (Nr = Nz = 9) 49.8341 16.7370 7.5650 

Present (Nr = Nz = 13) 49.8351 16.7382 7.5664 

Present (Nr = Nz = 17) 90.0837 21.4263 10.8761 

Present (Nr = Nz = 19) 90.1125 21.4074 10.8522 

360 

0.01 

McGee et al. (1995) 90.1102 21.4065 10.8513 

Zhou et al. (2009) 90.1124 21.4075 10.8520 

Present (Nr = Nz = 9) 90.1122 21.4076 10.8525 

Present (Nr = Nz = 13) 90.1123 21.4076 10.8524 

Present (Nr = Nz = 17) 70.8090 19.9986 10.2268 

Present (Nr = Nz = 19) 71.9146 20.0967 10.2386 

0.2 

McGee et al. (1995) 71.9115 20.0954 10.2392 

Zhou et al. (2009) 71.9142 20.0964 10.2380 

Present (Nr = Nz = 9) 71.9143 20.0968 10.2385 

Present (Nr = Nz = 13) 71.9143 20.0968 10.2384 

Present (Nr = Nz = 17) 48.6618 17.5822 9.3661 

Present (Nr = Nz = 19) 50.0059 17.7636 9.3961 

0.4 

McGee et al. (1995) 50.0045 17.7653 9.3945 

Zhou et al. (2009) 50.0059 17.7641 9.3958 

Present (Nr = Nz = 9) 50.0056 17.7638 9.3961 

Present (Nr = Nz = 13) 50.0056 17.7638 9.3962 

Present (Nr = Nz = 17) 89.9678 20.9496 10.2631 

Present (Nr = Nz = 19) 90.0265 20.9368 10.2418 

Present (Nr = Nz = 17) 90.0253 20.9347 10.2399 
 

 

 

where k = 1 at z = -0.5 h and k = Nz at z = 0.5 h, and j = 1, 2, 

..., Nr. The boundary conditions at r = b and a stated in (13)-

(15) become, 

Simply supported (S) 
 

, ,zmjk mjku u 0 0
   

, ,zmjk mjku u 0 0
 

( ) ( ) ( ) ( )
rN

r
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n j j

m
c A u c u u

r r
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1

1
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c A u

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1
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(21a) 

 

Clamped (C) 
 

, ,rmjk mjk zmjku u u  0 0 0
 

(21b) 

 

Free (F) 
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rN

r
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m
c A u c u u

r r






  11 12
1

1

 

(21c) 
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z

k kn zmjn

n

c A u
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1
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rN

r

jn mnk rmjk mjk

n

m
A u u u 





  
1

0
 

z rN N
z r

kn rmjn jn zmnk

n n

A u A u
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  
1 1

0
 

(21c) 

 

In the above equations k = 2, ..., Nz‒1; also j = 1 at r = b 

and j = Nr at r = a. 

In order to carry out the eigenvalue analysis, the domain 

and boundary degrees of freedom are separated and in 

vector forms they are denoted as {d} and {b}, respectively. 

Based on this definition, the discretized form of the 

equilibrium equations and the related boundary conditions 

take the following forms, 

Equations of motion (17)-(19) 
 

  
 

 
    db dd

b
K K M d

d


  
     

  

2 0

 

(22) 

 

Boundary conditions (20) and (21a)-(21c) 
 

       bd bbK d K b  0
 

(23) 

 

Eliminating the boundary degrees of freedom in Eq. (22) 

using Eq.(23), this equation becomes 
 

       -K M d 2 0
 

(24) 

 

where [K] = [Kdd] – [Kdb][Kbb]
-1[Kbd]. The above eigen value 

system of equations can be solved to find the natural 

frequencies of the sandwich plates. 
 

 

4. Numerical results and discussion 
 

In this section, the convergence behavior and accuracy 

of the method in evaluating the non-dimensional natural 

frequencies of isotropic and FGM annular sector plates with 

different set of boundary conditions along the circular edges 

are investigated. 

McGee et al. (1995) provided the exact results for sector 

plates with a re-entrant corner, based on the Mindlin plate 

theory. As a first example, the comparative studies of the 

fundamental frequency parameters are given in Table 2. It is 

seen from Table 2 that for thin plates (h/a = 0.01) there is an 

excellent agreement between the present 3-D solutions and 

the classical solutions. For moderately thick plates (h/a = 

0.2) the present 3-D solutions also agree quite well with the 

Mindlin solutions. For very thick plates (h/a = 0.04) the 

discrepancies increase, particularly for c-c plates. It is found 

that only nineteen DQ grid points in each direction (r and z) 

can yield accurate results. A numerical value of Nr = Nz = 19 

is used for the next studies. The same problem has been 

analyzed by Zhou et al. (2009). It is obvious that the error 

of the Mindlin plate theory increases with the increase of 

the plate thickness, especially for very thick plates (h/a ≥ 
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Table 3 The lowest non-dimensional frequency parameter  Ω = 𝜔ℎ   𝑝/𝐶11  for FGMs annular sector plates 

having clamped (r = b) and clamped (r = a) conditions 

α 

(deg)
  h/a b/a 

m 

(circumferential 

wavenumber) 

 
λ 

1 2 3 4 5 

195 

0.1 

0.1 

1 

Nie and Zhong (2008) 0.0663 0.0622 0.0566 0.0505 0.0446 

Present (Nr = Nz = 9) 0.0651 0.0611 0.0553 0.0497 0.0432 

Present (Nr = Nz = 13) 0.0661 0.0620 0.0561 0.0502 0.0440 

Present (Nr = Nz = 17) 0.0664 0.0622 0.0564 0.0505 0.0444 

Present (Nr = Nz = 19) 0.0664 0.0623 0.0564 0.0505 0.0445 

2 

Nie and Zhong (2008) 0.0795 0.0746 0.0677 0.0603 0.0531 

Present (Nr = Nz = 9) 0.0781 0.0712 0.0666 0.0589 0.0519 

Present (Nr = Nz = 13) 0.0791 0.0743 0.0677 0.0601 0.0528 

Present (Nr = Nz = 17) 0.0793 0.0746 0.0679 0.0604 0.0530 

Present (Nr = Nz = 19) 0.0793 0.0747 0.0679 0.0603 0.0530 

0.3 

1 

Nie and Zhong (2008) 0.1041 0.0980 0.0895 0.0801 0.0710 

Present (Nr = Nz = 9) 0.1049 0.0968 0.0888 0.0789 0.0721 

Present (Nr = Nz = 13) 0.1041 0.0981 0.0896 0.0801 0.0712 

Present (Nr = Nz = 17) 0.1039 0.0979 0.0898 0.0799 0.0710 

Present (Nr = Nz = 19) 0.1039 0.0979 0.0897 0.0800 0.0710 

2 

Nie and Zhong (2008) 0.1104 0.1039 0.0948 0.0849 0.0753 

Present (Nr = Nz = 9) 0.1094 0.1030 0.0933 0.0839 0.0741 

Present (Nr = Nz = 13) 0.1103 0.1038 0.0946 0.0845 0.0755 

Present (Nr = Nz = 17) 0.1106 0.1040 0.0950 0.0850 0.0751 

Present (Nr = Nz = 19) 0.1105 0.1039 0.0950 0.0850 0.0752 

0.3 

0.1 

1 

Nie and Zhong (2008) 0.4040 0.3862 0.3611 0.3329 0.3046 

Present (Nr = Nz = 9) 0.4026 0.3842 0.3593 0.3314 0.3035 

Present (Nr = Nz = 13) 0.4038 0.3853 0.3604 0.3322 0.3045 

Present (Nr = Nz = 17) 0.4041 0.3863 0.3609 0.3326 0.3047 

Present (Nr = Nz = 19) 0.4041 0.3863 0.3610 0.3327 0.3048 

2 

Nie and Zhong (2008) 0.5013 0.4781 0.4455 0.4091 0.3730 

Present (Nr = Nz = 9) 0.5001 0.4768 0.4438 0.4081 0.3719 

Present (Nr = Nz = 13) 0.5008 0.4764 0.4449 0.4090 0.3727 

Present (Nr = Nz = 17) 0.5011 0.4780 0.4453 0.4092 0.3730 

Present (Nr = Nz = 19) 0.5011 0.4779 0.4455 0.4092 0.3729 

0.3 

1 

Nie and Zhong (2008) 0.5645 0.5436 0.5137 0.4796 0.4450 

Present (Nr = Nz = 9) 0.5633 0.5425 0.5119 0.4776 0.4466 

Present (Nr = Nz = 13) 0.5641 0.5440 0.5130 0.4790 0.4455 

Present (Nr = Nz = 17) 0.5646 0.5436 0.5134 0.4794 0.4452 

Present (Nr = Nz = 19) 0.5646 0.5435 0.5138 0.4796 0.4452 

2 

Nie and Zhong (2008) 0.6077 0.5840 0.5504 0.5125 0.4744 

Present (Nr = Nz = 9) 0.6061 0.5852 0.5494 0.5120 0.4761 

Present (Nr = Nz = 13) 0.6075 0.5846 0.5500 0.5127 0.4754 

Present (Nr = Nz = 17) 0.6079 0.5843 0.5505 0.5124 0.4748 

Present (Nr = Nz = 19) 0.6079 0.5842 0.5505 0.5124 0.4746 

210 0.1 0.1 1 

Nie and Zhong (2008) 0.0659 0.0619 0.0563 0.0502 0.0443 

Present (Nr = Nz = 9) 0.0651 0.0603 0.0550 0.0509 0.0451 

Present (Nr = Nz = 13) 0.0665 0.0617 0.0555 0.0504 0.0440 

Present (Nr = Nz = 17) 0.0661 0.0621 0.0560 0.0501 0.0445 

Present (Nr = Nz = 19) 0.0660 0.0621 0.0561 0.0501 0.0444 
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0.4). The two-dimensional theories, such as the classical 

plate theory, the first and the higher order shear deformation 

plate theories neglect transverse normal deformations, and 

generally assume that a plane stress state of deformation 

prevails in the plate. These assumptions may be appropriate 

for thin plates but do not give good results for thick plates. 

It is seen from Table 2 that the maximum differences 

between the 3-D solutions and the Mindlin solutions occur 

at the clamped-clamped plates. As the second example, the 

convergence behavior and accuracy of the method for 

lowest   non-dimensional   frequency   parameter   𝜛 =  

 

 
 𝜔ℎ 𝜌/𝐶11  of thick FG annular sector plates with 

clamped-clamped boundary condition at circular edges is 

studied in Table 3. The results are compared with those of 

the three-dimensional elasticity solutions of Nie and Zhong 

(2008) which were obtained using the State space method 

(S.S.M). It is assumed that the material properties vary 

exponentially















)()(

)(,)( h

z

Mh

z

M
ijij ezeczc



 through the 

thickness of the plate. Superscripts M denote the material 

properties of the bottom surface of the plate, λ is the 

Table 3 Continued 

α 

(deg)
  h/a b/a 

m 

(circumferential 

wavenumber) 

 
λ 

1 2 3 4 5 

210 

0.1 

0.1 2 

Nie and Zhong (2008) 0.0766 0.0719 0.0653 0.0581 0.0512 

Present (Nr = Nz = 9) 0.0751 0.0705 0.0641 0.0573 0.0500 

Present (Nr = Nz = 13) 0.0760 0.0717 0.0650 0.0581 0.0508 

Present (Nr = Nz = 17) 0.0765 0.0720 0.0655 0.0583 0.0511 

Present (Nr = Nz = 19) 0.0765 0.0721 0.0654 0.0583 0.0510 

0.3 

1 

Nie and Zhong (2008) 0.1039 0.0978 0.0892 0.0799 0.0708 

Present (Nr = Nz = 9) 0.1025 0.0969 0.0883 0.0787 0.0681 

Present (Nr = Nz = 13) 0.1033 0.0979 0.0892 0.0807 0.0693 

Present (Nr = Nz = 17) 0.1038 0.0976 0.0895 0.0801 0.0701 

Present (Nr = Nz = 19) 0.1037 0.0977 0.0895 0.0800 0.0706 

2 

Nie and Zhong (2008) 0.1090 0.1027 0.0937 0.0839 0.0744 

Present (Nr = Nz = 9) 0.1099 0.1039 0.0944 0.0849 0.0757 

Present (Nr = Nz = 13) 0.1095 0.1033 0.0939 0.0842 0.0749 

Present (Nr = Nz = 17) 0.1091 0.1028 0.0936 0.0839 0.0744 

Present (Nr = Nz = 19) 0.1092 0.1029 0.0935 0.0839 0.0745 

0.3 

0.1 

1 

Nie and Zhong (2008) 0.4002 0.3827 0.3580 0.3302 0.3023 

Present (Nr = Nz = 9) 0.4018 0.3815 0.3598 0.3318 0.3003 

Present (Nr = Nz = 13) 0.4007 0.3824 0.3587 0.3308 0.3018 

Present (Nr = Nz = 17) 0.4001 0.3829 0.3581 0.3303 0.3023 

Present (Nr = Nz = 19) 0.4000 0.3829 0.3582 0.3304 0.3023 

2 

Nie and Zhong (2008) 0.4832 0.4608 0.4294 0.3943 0.3594 

Present (Nr = Nz = 9) 0.4813 0.4622 0.4277 0.3931 0.3577 

Present (Nr = Nz = 13) 0.4826 0.4611 0.4288 0.3940 0.3587 

Present (Nr = Nz = 17) 0.4834 0.4605 0.4295 0.3944 0.3594 

Present (Nr = Nz = 19) 0.4833 0.4606 0.4296 0.3944 0.3595 

0.3 

1 

Nie and Zhong (2008) 0.5630 0.5421 0.5123 0.4784 0.4439 

Present (Nr = Nz = 9) 0.5618 0.5404 0.5105 0.4799 0.4424 

Present (Nr = Nz = 13) 0.5629 0.5415 0.5117 0.4790 0.4434 

Present (Nr = Nz = 17) 0.5633 0.5422 0.5121 0.4785 0.4439 

Present (Nr = Nz = 19) 0.5633 0.5421 0.5121 0.4784 0.4440 

2 

Nie and Zhong (2008) 0.5990 0.5756 0.5428 0.5056 0.4682 

Present (Nr = Nz = 9) 0.5977 0.5771 0.5441 0.5041 0.4702 

Present (Nr = Nz = 13) 0.5984 0.5760 0.5433 0.5050 0.4690 

Present (Nr = Nz = 17) 0.5990 0.5756 0.5429 0.5055 0.4683 

Present (Nr = Nz = 19) 0.5991 0.5755 0.5429 0.5057 0.4683 
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material property graded index. One can see that an 

excellent agreement exists between the converged results of 

the presented approach and the other one. 

In this section, we characterize the response of FG-

MWCNT sandwich plate with graded reinforcement volume 

fractions in the plate’s thickness. The non-dimensional 

natural frequency is as follows 

 

 

 

 

 

 

)1(12     , 232
iiiii hEDDha    (25) 

 

where ρi, Ei and υi are mechanical properties of MWCNTs. 

Fig. 4 and Tables 4 and 5 show the influence of the 

constituent volume fractions “p” on the first two non-

dimensional natural frequencies of the FG-MWCNTs 

 

 

 

 

 

 

  

Fig. 4 Variation of the first and second non-dimensional natural frequency parameter of FG-MWCNTs sandwich 

plates versus “p” (h/a = 0.2, b/a = 0/2, α= 195°) 

  

Fig. 5 The influence of the sector angle on the first and second non-dimensional natural frequency parameter of 

FG-MWCNTs sandwich plates (b/a = h/a = 0/2, p = 1) 

  

Fig. 6 Variation of the first and second non-dimensional natural frequency parameter of FG-MWCNTs sandwich 

plates versus h/a (b/a = 0.2, p = 1, α= 195°) 
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Table 4 The effect of exponent parameter (p) on the first non-

dimensional natural frequency parameter of sandwich 

sectorial plate with MWCNT core 

(h/a = b/a = 0.2, α = 195°) 

Exponent 

parameter (p) 
C-C S-C S-S F-C 

0 55.2328 55.8419 50.9614 30.6560 

1 43.7386 31.4231 28.6768 21.0010 

5 42.8250 30.1736 27.5365 18.9202 

10 41.8943 31.2161 28.4878 19.6124 

15 41.3404 29.9666 27.3475 19.4640 

20 41.0149 29.3240 26.7611 19.3280 

25 40.7408 28.5314 26.0378 19.1920 
 

 

 

Table 5 The effect of exponent parameter (p) on the second non-

dimensional natural frequency parameter of sandwich 

sectorial plate with MWCNT core 

(h/a = b/a = 0.2, α = 195°) 

Exponent 

parameter (p) 
C-C S-C S-S F-C 

0 59.6124 62.7963 57.3079 57.8480 

1 45.7028 36.5068 33.3161 28.2560 

5 45.1718 34.4219 31.8565 23.5360 

10 46.4109 37.7063 34.4108 28.0025 

15 46.7706 38.9273 35.5250 31.0800 

20 47.1361 39.7769 36.3004 33.6960 

25 47.3587 40.1482 36.6393 35.2320 
 

 

 

Table 6 The effect of sector angle (α) on the first non-dimensional 

natural frequency parameter of sandwich sectorial plate 

with MWCNT core (p = 1, h/a = b/a = 0.2) 

α (deg) C-C S-C S-S F-C 

0 59.6124 62.7963 57.3079 57.8480 

1 45.7028 36.5068 33.3161 28.2560 

5 45.1718 34.4219 31.8565 23.5360 

10 46.4109 37.7063 34.4108 28.0025 

15 46.7706 38.9273 35.5250 31.0800 

20 47.1361 39.7769 36.3004 33.6960 

25 47.3587 40.1482 36.6393 35.2320 
 

 

 

sandwich sector plates with different types of boundary 

condition. 

It is observed with increasing power-law exponent “p” 

the first two non-dimensional natural frequencies decrease 

sharply for small value of “p” (p < 1) and then for p > 15 it 

reaches a constant value for different types of boundary 

condition. It should be noted that second derivative of the 

curves in Fig. 3 is positive for p < 1 and negative for p > 1. 

It is obvious for p = 1, the second derivative is equal to 

zero. Therefore, in Fig. 4 the curves have a first decreasing 

branch, followed by an increasing part, and finally they 

become constant for p > 15, because the volume fraction of 

Table 7 The effect of sector angle (α) on the second non-

dimensional natural frequency parameter of sandwich 

sectorial plate with MWCNT core (p = 1, h/a = b/a = 0.2) 

α (deg) C-C S-C S-S F-C 

20 84.6793 85.0374 77.6051 72.1680 

60 77.3705 73.1850 66.7886 61.9200 

100 66.6357 60.0902 54.8384 46.8960 

140 54.9017 47.5952 43.4354 36.6480 

200 45.1433 35.3858 32.2931 27.5120 

240 43.6815 33.2224 30.3188 24.6320 

300 42.7051 32.2585 29.4391 23.5520 
 

 

 
Table 8 The effect of thickness-to-outer radius ratio (h/a) on the 

firstnon-dimensional natural frequency parameter of 

sandwich sectorial plate with MWCNT core 

(b/a = 0.2, p = 1, α = 195°) 

h/a C-C S-C S-S F-C 

0.1 70.8611 65.8808 60.1228 57.8240 

0.15 53.6911 44.6393 40.7378 36.0800 

0.2 43.7386 31.4231 28.6768 21.0010 

0.25 37.4405 22.8337 20.8381 13.3040 

0.3 34.8824 19.4137 17.7169 11.0011 

0.35 33.0552 18.0428 16.4658 9.9760 

0.1 70.8611 65.8808 60.1228 57.8240 
 

 

 
Table 9 The effect of thickness-to-outer radius ratio (h/a) on the 

second non-dimensional natural frequency parameter of 

sandwich sectorial plate with MWCNT core 

(b/a = 0.2, p = 1, α = 195°) 

h/a C-C S-C S-S F-C 

0.1 78.5125 76.4694 69.7860 66.7840 

0.15 58.8130 52.7503 48.1399 45.0320 

0.2 45.7028 36.5068 33.3161 28.2560 

0.25 40.1756 29.4596 26.8849 19.7040 

0.3 37.9829 26.4894 24.1742 17.1440 

0.35 36.5269 24.2046 22.0891 15.6080 

0.1 78.5125 76.4694 69.7860 66.7840 
 

 

 

the reinforcement gets approximately constant along the 

thickness of the plate. 

The influences of the sector angle on the fundamental 

frequency parameter of FG-MWCNTs sandwich sector 

plates with different circular edge conditions are shown in 

Fig. 5 and also in Tables 6 and 7. It is obvious that by 

increasing the sector angle, the frequency parameter 

decreases. The variation of h/a ratio with the frequency 

parameters of Clamped-Clamped, Simply Supported-

Clamped, Simply Supported-Simply Supported and Free-

Clamped FG-MWCNTs sandwich annular sector plates are 

shown in Fig. 6 and also in Tables 8 and 9. It is observed 

that for both first and second frequency parameters and for 

different boundary conditions, the frequency parameter 
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Fig. 7 Mode shape plots of annular sandwich sector plates 

with Clamped-Clamped boundary conditions at the 

circular edges (h/a = b/a = 0.2, α = 90°, p = 1) 
 

 

 

Fig. 8 Mode shape plots of annular sandwich sector 

plates with Simply Supported-Clamped boundary 

conditions at the circular edges (h/a = b/a = 0.2, 

α = 90°, p = 1) 
 
 

 

 

 

Fig. 10 Mode shape plots of annular sandwich sector 

plates with Free-Clamped boundary conditions at 

the circular edges (h/a = b/a = 0.2, α = 90°, p = 1) 

increases with the increase of h/a ratio and then it becomes 

unaltered for great amounts of thickness-to-outer radius 

ratio. 

It is observed that (Tables 4-9) with increasing the 

rigidity of the structure the frequency parameter increases. 

For an overall comprehension on 3-D vibration of 

annular sector plates, some mode shape contour plots for 

different types of boundary conditions are depicted in Figs. 

7-10. 
 

 

5. Conclusions 
 

In this research work, free vibration of functionally 

graded multi-walled carbon nanotubes sandwich annular 

sector plates is investigated based on three-dimensional 

theory of elasticity. Three complicated equations of motion 

for the plate under consideration are semi-analytically 

solved by using 2-D differential quadrature method. Using 

the 2-D differential quadrature method in the r- and z-

directions, allows one to deal with FG plates with arbitrary 

thickness distribution of material properties and also to 

implement the effects of boundary conditions at the circular 

edges of the plate efficiently and in an exact manner. The 

fast rate of convergence and accuracy of the method are 

investigated through the different solved examples. The 

effects of different geometrical parameters such as the 

thickness-to-outer radius ratio and boundary conditions on 

the performance of the natural frequency parameters of FG-

MWCNT sandwich plates are investigated. Modified 

Halpin-Tasi equation is used to evaluate the Young’s 

modulus of the MWCNT/epoxy composite samples by the 

incorporation of an orientation as well as an exponential 

shape factor in the equation. The exponential shape factor 

modifies the Halpin-Tsai equation from expressing a 

straight line to a nonlinear one in the MWNTs wt% range 

considered. 

The main contribution of this work is to present useful 

results for continuous grading of MWCNT reinforcement in 

the thickness direction of the plate. From this study some 

conclusions can be made as following: 

 

 It is observed with increasing power-law exponent 

“p” the first two non-dimensional natural 

frequencies decrease sharply for small value of “p” 

(p < 1) and then for p > 15 it reaches a constant 

value for different types of boundary condition. It 

should be noted that second derivative of the 

curves in Fig. 3 is positive for p < 1 and negative 

for p > 1. It is obvious for p = 1, the second 

derivative is equal to zero. Therefore, in Fig. 4 the 

curves have a first decreasing branch, followed by 

an increasing part, and finally they become 

constant for p > 15, because the volume fraction of 

the reinforcement gets approximately constant 

along the thickness of the plate. 

 It is obvious that by increasing the sector angle, the 

frequency parameter decreases. 
 

Results show that for both first and second frequency 

parameters and for different boundary conditions, the 

 

Fig. 9 Mode shape plots of annular sandwich sector 

plates with Simply Supported-Simply Supported 

boundary conditions at the circular edges 

(h/a = b/a = 0.2, α = 90°, p = 1) 
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frequency parameter increases with the increase of h/a ratio 

and then it becomes unaltered for great amounts of 

thickness-to-outer radius ratio. 
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