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1. Introduction 
 

Steel-concrete composite truss beam (SCCTB) is made 

up of steel truss and concrete slab. Steel truss and concrete 

slab are connected through stud connectors so that the two 

can bear the applied load together. It will help to take full 

advantage of compressive performance of concrete slab, 

shear and tensile performance of steel truss. SCCTB has a 

large bending stiffness and excellent seismic performance, 

so it is suitable for large-span bridge structures. The stud 

connectors between steel truss and concrete slab cannot be 

absolutely rigid. Even for a full composite design, the 

deflection obtained by ignoring the interface slip effect will 

be underestimated as compared to the experimental 

measurements. This indicates that the mechanical property 

of SCCTB is influenced by the slip effect (Nie et al. 2004, 

Nie et al. 2007, Ding et al. 2016, Liu et al. 2016, Zhou et 
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al. 2016). 

At present, the researches on the mechanical properties 

of SCCTB are limited in technical literature domain. Giltner 

and Kassimali (2000) developed a method of equivalent 

beam to replace the trusses with the beam elements, which 

reduces the size of the computer model required for 

analysis. Machacek and Cudejko (2009, 2010, 2011) has 

conducted experimental study and theoretical analysis of 

the interface longitudinal shear force distribution of 

SCCTB. Bouchair et al. (2012) proposed a calculation 

method to control interface relative slip by using shear stud 

connectors. Bujnak and Bouchair (2014) has compared the 

result from finite element numerical calculation method 

with the experimental results. They found that the local 

effects of concentrated longitudinal shear forces should be 

appropriately examined in SCCTB having the welded 

headed studs, located at the steel-concrete interface. Several 

effects on shear connection behaviour are also studied, for 

e.g., Chan and Fong (2011a) has done some experimental 

study and theoretical analysis, and concluded that the use of 

effective length method in linear analysis and design 

method is less convenient and accurate than the second-

order analysis. On the basis of literature (Chan and Fong 

2011a), Fong et al. (2011b) further proved that the second-

order analysis method was not only an accurate design 

method, but also avoid the uncertain approximate value of 

the effective length. Duratna et al. (2013) analyzed the  
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Abstract.  In order to study the natural vibration characteristics of steel-concrete composite truss beam (SCCTB), the influence 

of multiple factors such as interface slip, shear deformation and moment of inertia are considered. Afterwards, based on the 

Hamilton principle the vibration control differential equation and natural boundary conditions of SCCTB are deduced. By 

solving SCCTB differential equations of vibration control, an analytical calculation method is proposed for analyzing the natural 

vibration characteristics of SCCTB. The natural frequencies of SCCTBs with different degrees of shear connection and effective 

lengths are calculated by using the analytical method, and the results are compared against those obtained from ANSYS finite 

element numerical calculation method. The results show that the analytical method considering the influence factors such as 

interface slip, shear deformation and moment of inertia are in good agreement with those obtained from ANSYS finite element 

numerical calculation method. This evidences the correctness of the analytical method and show that the method proposed 

exhibits improvement over the previously developed theories for the natural vibration characteristics of SCCTB. Finally, based 

on the analytical method, the influence factors of SCCTB natural vibration characteristics are analyzed. The results indicate that 

the influence of interface slip stiffness on SCCTB's natural frequency is more than 10% and therefore cannot be neglected. 

Moreover, shear deformation has an effect of more than 35% on SCCTB’s natural frequency and the effect cannot be ignored 

either in this case too. 
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Fig. 1 SCCTB cross-sectional size and coordinate system 

 

 

behavior of SCCTB based on a finite element model and the 

parametric study including the diameter of the shear 

connectors, the degree of connection, the top chord section, 

and the material characteristics. The results showed that the 

shear connection in SCCTB reduces its deflection by 

approximately 50% in comparison to the steel truss. 

Further, a significant influence of the top chord section on 

the shear forces in the shear connectors was also observed. 

In order to completely understand the actual capacity of the 

SCCTB to transfer the shear stresses from the bottom plate 

of the truss to the concrete, significant theoretical and 

experimental work has been carried out. The SCCTB is 

typically composed by a steel plate or a precast concrete 

slab working as bottom chord, a system of ribbed or smooth 

steel rebars welded to form the diagonals of the truss and 

coupled rebars used to form the upper chord (Aiello 2008, 

Colajanni et al. 2014, 2015a). Siekierski (2016a) analyzed 

the effects of shrinkage of concrete slab in SCCTB and 

developed a set of linear equations to compute the axial 

forces in members of the flange of truss girder and 

transverse shear forces in SCCTB. Campione et al. (2016), 

Colajanni et al. (2017) studied the evaluation of the shear 

resistance of the connections between the bottom chord and 

concrete slab through the oblique web members of SCCTB 

and developed a mechanical model that could account for 

the particular issues arising in this beam typology. The 

contribution of the steel plate was taken into account in the 

resisting mechanism. The experimental and numerical 

results of the two references were employed for the 

validation of the proposed analytical expressions. Colajanni 

et al. (2015b) had dealt with the flexural response of 

composite trussed beams connected to R.C. columns, and 

focusing on the evaluation of strength, rotational capacity 

and ductility of the end sections of the beam, the plastic 

hinges were usually placed. Siekierski (2016b) developed 

an analytical method, focusing on the evaluation of 

strength, rotational capacity and ductility of the end sections 

of the beam in which the plastic hinges were usually placed 

for the estimation of the natural bending frequency of 

SCCTB. Computed results were compared with frequencies 

recorded during bridge testing, and the results showed that 

taking into consideration the joint action of the truss beams 

and the composite deck, as well as the limited shear 

stiffness provided by diagonal bracing, would significantly 

improve the accuracy of the assessment provided by the 

analytical method. The static behavior of SCCTB was 

analyzed in detail using the linear finite element method by 

(Han et al. 2005). Han (2004) calculated the natural 
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Fig. 2 SCCTB structural design 

 

 

frequencies and mode shapes of SCCTB by subspace 

iterative method, and all kinds of influencing factors 

including pre-stress of cables, boundary condition, 

decentration of plate and rib, span-to-height ratio, added 

mass and node stiffness were analyzed. 

It can be seen from the above literatures that the 

mechanical properties of SCCTB are affected by shear 

deformation and interface slip effect. However, the study on 

natural vibration characteristic of SCCTB with 

comprehensive consideration of shear deformation and 

interface slip effect is very limited. Therefore, by using the 

Hamilton principle, the influence of multiple factors such as 

slip, shear deformation and moment of inertia of SCCTB 

are considered and the natural vibration characteristics of 

SCCTB are analyzed by using the analytical method. 

Finally, the results of the analytical solution are compared 

with those of the ANSYS finite element calculation and the 

correctness of the analytical solution is verified. It will lay 

the theoretical foundation for further development of the 

dynamic characteristics of SCCTB, and can draw some 

meaningful conclusions for engineering design. 

 
 
2. Basic assumptions 

 

The cross-sectional size and coordinate system of 

SCCTB are both shown in Fig. 1, and SCCTB structural 

design is shown in Fig. 2. According to the characteristics 

of SCCTB, the following simplified assumptions can be 

made in order to simplify the calculation. 

The analysis of natural vibration frequency of SCCTB is 

carried out based on assumptions of small deformation and 

both of steel and concrete materials being in elastic stage. 

The longitudinal displacements of the upper chords, 

lower chords and the concrete slab could be expressed as 

the superposition of the longitudinal displacement meeting 

the respective plane cross-section assumption and the 

longitudinal displacement caused by the interface slip, and 

can be expressed as 

       xi c t, , , , , 1,2u x y z t k x t z z x t i       (1) 

       xi s s, , , , , 3,4u x y z t k x t z z x t i       (2) 

According to the literatures (Zhou et al. 2012, Zhou et 

al. 2013, Zhou et al. 2013, Zhou et al. 2015), the following 

equations can be obtained 

 c s 0 s c 0,k A A k A nA           (3) 

where, uxi (i=1,2,3,4) are the longitudinal displacements of 

concrete roof slab, concrete cantilever slab, upper chord and 
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lower chord, respectively; θ(x,t) is cross-section rotation 

function of concrete slab and steel truss; ξ(x,t) is the 

difference between the longitudinal displacements at 

centroids of concrete slab and steel truss; 2b1 and b2 are 

widths of the concrete roof and cantilever slabs 

respectively; t1 and t2 are thicknesses of concrete roof and 

cantilever slabs, respectively; b3, b4, b5, b6, b7 and b8 are 

lengths of the upper chord, lower chord, oblique web 

member, vertical web member, lower horizontal connection 

member and oblique bracing member, respectively; L is the 

effective span of SCCTB; H3, T3, h3 and t3 are the height 

and width of external and inner walls of upper chord; H4, 

T4, h4 and t4 are the height and width of external and inner 

walls of lower chord; H5, T5, h5 and t5 are the height and 

width of external and inner walls of oblique web member; 

H6, T6, h6 and t6 are the height and width of external and 

inner walls of vertical web member; H7, T7, h7 and t7 are the 

height and width of external and inner walls of lower 

horizontal connection member; H8, T8, h8 and t8 are the 

height and width of external and inner walls of oblique 

bracing member; zt, zb and zs are the coordinates in z 

direction of centroids of concrete slab, lower chord and 

steel truss, respectively; n=Es/Ec, where Es is the elastic 

modulus of steel truss and Ec is that of the concrete slab; 

A1=2b1t1; A2=2b2t2; A3=2(H3T3−h3t3); A4=2(H4T4−h4t4); 

A5=2(H5T5−h5t5); A6=2(H6T6−h6t6); A7=H7T7−h7t7; 

A8=H8T8−h8t8; Ac=A1+A2 is the cross-section area of 

concrete slab; Axg=A3+A4 is the sum of cross-section areas 

of upper and lower chords; As=Axg+A5sin3α+A8cos3β is the 

sum of effective cross-section areas of members in steel 

truss; α is the angle between oblique and vertical web 

members; β is the angle between horizontal connection 

member and oblique bracing members; A0=Ac/n+As. 

 
 
3. Vibration control differential equations of SCCTB 
and their solutions 
 

3.1 Expressions for strain and stress of each point 
within cross-section 
 

The axial displacement of the oblique web member can 

be given by 

5 1 cos                  (4) 

 1 4b w                 (5) 

Based on the above expression for longitudinal 

displacement of cross-section, the expressions for strain at 

each point in cross-section of SCCTB can be expressed as 

follows 

 xi c t 1,2k z z i
x x

 


 
   

 
        (6) 

 xi s s 3,4k z z i
x x

 


 
   

 
        (7) 

 5 4 6

fg 2

5 5

b b
w

b b
 


               (8) 

  2

xc s s cosk z z
x x

 
 

  
     

          (9) 

xz w                 (10) 

where, εxi (i=1,2,3,4) are the normal strains of concrete roof 

slab, concrete cantilever slab, upper chord and lower chord, 

respectively; εfg is the normal strain of oblique web 

member; γxz is the shear strain of the chords; εxc is the 

normal strain of oblique bracing member. 

According to assumption, the longitudinal relative slip 

δ(x,t) between slab and truss can be obtained by Eq. (1) 

and Eq. (2) 

  c s,x t h h h                   (11) 

where, h=hc+hs; hc and hs are the distances from the 

centroids of concrete slab and steel truss to the interface, 

respectively. 

According to the above strain model, the stress at each 

point of cross-section of SCCTB can be expressed as 

follows 

 xi c c t 1,2E k z z i
x x

 


  
      

      (12) 

 xi s s s 3,4E k z z i
x x

 


  
      

      (13) 

4 6

fg s 2

5

b b w
E

xb
 

 
  

 
            (14) 

     sl sl, ,x t k x t k h              (15) 

xz s ( )
w

G
x

 


 


              (16) 

Interface slip stiffness can be expressed as (Nie et al. 

2005, Zhou et al. 2016) 

 sl 1 s 1 s u u s s s s, 0.66 ,k k l k nV V A f rl Ln     (17) 

where, ls 
is the longitudinal distance of stud connectors; ns 

is the number of stud connectors in each row; Vu is the shear 

resistance of single stud; fs 
is the tensile strength of stud; r  

is the degree of shear connection; Gs 
is the steel shear 

modulus; ksl is the interface slip stiffness; k1 is the stiffness 

of single stud. 

 
3.2 Strain energy and kinetic energy of SCCTB 
 

The strain energy of SCCTB can be expressed as 

follows 

i xg

5

4

xi xi xz xz

1

5 4

fg fg xc xc

4 8

1
d d

2

d d d

L A A
i

A A

V A A

b b
A A x

b b

   

    




 




   



  

 
8

    (18) 

Substituting Eqs. (6)-(16) into Eq. (18), we can obtain 

as 

2 2 21
2 ( ) d

2 L
V D J I F w x                   (19) 
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3

2 2 2 4

c c c s s xg s s 8

8

b
D E k A E k A E k A

b

 
    

 
       (20) 

   

 

c xg
c c t s s s

3

4

s 8 s b s

8

A A
J k E z z dA k E z z dA

b
k A E z z

b

   

 
  

 

 
     (21) 

   

 

c xg

2 2

c t s s

3

24

8 s b s

8

A A
I E z z dA E z z dA

b
A E z z

b

   

 
  
 

 
      (22) 

2

4 6

s 5 s xg3

5

b b
F E A G A

b
               (23) 

The total kinetic energy with consider of moment of 

inertia can be obtained as 

i eq

8

4
2 2 2

i i s

1

28

s

4

1
d d

2

d d

L A A
i

A

T mw u A A

b
u A x

b

  






  




 



  



     (24) 

where,
8

i

i 1

m m


 ; m1=ρcA1; m2=ρcA2; m3=ρsA3; m4=ρsA4; 

m5=ρsAeq; m6=ρsA6eq; m7=ρsA7eq; m8=ρsA8eq; Aeq, A6eq, A7eq 

and A7eq are the longitudinal equivalent areas of oblique 

web member, vertical web member, lower horizontal 

connection and oblique bracing member, respectively; 

Aeq=A5b5/b4 is the equivalent cross-section area of oblique 

web member; teq=Aeq/b6 is the equivalent cross-section 

thickness of oblique web member; ρc is the concrete 

density; ρs is the steel density. 

By substituting Eqs. (1) and (2) into Eq. (24), the 

total kinetic energy can be obtained as 

 2 2 2

1 1 1

1
2 d

2 L
T mw D J I x           (25) 

2 2 2 28

1 c c c s s xg s s eq s s 8

4

b
D k A k A k A k A

b
          (26) 

   

   

c xg

eq

1 c c t s s s

8 s 8 s

s s s b s

4

d d

d

A A

A

J k z z A k z z A

b k A
k z z A z z

b

 




   

   

 


   (27) 

   

   

c xg

eq

2 2

1 c t s s

2 28

s s 8 s b s

4

d d

d

A A

A

I z z A z z A

b
z z A A z z

b

 

 

   

   

 


   (28) 

where, “  ” and “ ' ” represents the partial derivatives of the 

time t and coordinate x, respectively (similarly hereinafter). 

 

3.3 Vibration control differential equations and 
boundary conditions 

 

The total potential energy of the SCCTB can be 

expressed as 

 

  

1 1

0 0

2 2 2

1 1 1
0

22 2

1
d 2

2

2 d d

t t L

t t
T V t mw D J I

D J I F w x t

  

     

    

         

  
 (29) 

Based on the Hamilton principle (Morassi et al. 2007), 

bending vibration differential equations and natural 

boundary conditions of SCCTB can be expressed as 

sl 1 1 0D k J J D                  (30) 

  0F w mw                (31) 

 sl 1 1 0I J k h J I F w                (32) 

 
0

0
L

D J                 (33) 

 
0

0
L

F w w               (34) 

 
0

0
L

I J                 (35) 

 
3.4 Solution of vibration control differential equations 

of SCCTB 
 

Let 

     1, sinx t x t               (36) 

     1, sinw x t w x t             (37) 

     1, sinx t x t               (38) 

where, ξ1(x), w1(x) and θ1(x) are the amplitude functions. 

Let 

k
k

kx






                  (39) 

By substituting Eqs. (36)-(38) into Eqs. (30)-(32), we 

can obtain 

   2 2 2 2

sl 1 1 1 sl 1 0D k D J J k h              (40) 

 2 2

1 1 0F m w F               (41) 

 

 

2 2

sl 1 1 1

2 2 2

sl 1 1 0

J k h J F w

I k h I F

   

  

   

    
       (42) 

2 2 2 2

sl 1 1 sl

2 2

1

2 2 2 2 2

sl 1 sl 1

0

0 0

D k D J J k h

F m F U

J k h J F I k h I F

   

  

    

    

  

     

 

(43) 

where, | | represents the determinant of a matrix. 

The solutions of vibration equations can be obtained by 

using the following expressions 

 
6

1 i 1i i

1

exp
i

a x  


              (44) 
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 
6

1 i 2i i

1

exp
i

w a x 


             (45) 

 
6

1 i 3i i

1

exp
i

a x  


             (46) 

 i 1i 2i, ,1 1,2, ,6
T

i              (47) 

2 2

1 sl

1i 2 2

sl 1

J J k h

D k D

 


 

 


 
           (48) 

2i 2 2

F

F m




 



             (49) 

where, {a1, a2,…,a6}
T
 is the integration constant vector, λi is 

the characteristic root of the Eq. (43). 

 
3.5 Solution for the natural vibration frequency 
 

From Eqs. (33)-(35), the common boundary conditions 

of SCCTB can be obtained as: 

(1) Natural boundary condition at simply supported end 

are 

0, 0, 0,
0

x L x L x L
w 

  
             (50) 

(2) Natural boundary condition at fixed end are 

0, 0, 0,
0

x L x L x L
w 

  
            (51) 

From Eqs. (50) and (51), it is clear that there are three 

natural boundary conditions at either end of the SCCTB. 

Substituting Eqs. (44)-(46) into the boundary conditions, 

six equations can be obtained. So the characteristic matrix 

equation of SCCTB with respect to the integration constant 

ia can be expressed as 

   1 2 6, ,..., 0
T

B a a a             (52) 

Only the following is required to obtain the untrivial 

solution of the integration constant vector 

  0B                   (53) 

By using the MATLAB, a numerical calculation 

program is developed for solving the characteristic equation 

determinant, so that the natural vibration frequencies of 

SCCTB ωi (i=1,2,…..) can be obtained. 

 

3.6 Degeneration of vibration equations 
 
In order to study the effect of shear deformation on 

natural vibration properties of SCCTB, in this paper, the 

degeneration is conducted on vibration equations and 

boundary conditions. It can help to obtain the vibration 

equations and boundary conditions without taking the 

influence of shear deformation 

sl 1 1( ) 0D k hw Jw J w D               (54) 

sl 1 1( ) 0Iw J k hw h J mw I w               (55) 

0
( ) 0

L
D Jw               (56) 

sl 1 1 0
( ) 0

L
Iw J k h J I w w              (57) 

0
( ) 0

L
Iw J w               (58) 

The method of solving natural vibration frequency of 

SCCTB without considering the effect of shear deformation 

follows the similar procedure as mentioned above. 

 

 

4. Computational examples 
 

By taking into account two groups of SCCTBs with 

different spans as examples, where each group of SCCTBs 

contains five degrees of shear connections. The natural 

vibration frequencies of SCCTB were calculated by 

employing the analytical method and ANSYS finite element 

method. The mechanical and geometric parameters of 

SCCTBs are as follows: ρs=7900 kg∙m-3, μs=0.30, μc=0.20, 

ρc=2400 kg∙m-3, t1=0.14 m, t2=0.14 m, b1=0.40 m, b2=0.25 

m, b3=0.20 m, b4=0.25 m, b5=0.470 m, b6=0.40 m, b7=0.80 

m, b8=0.84 m, H3=0.04 m, H4=0.04 m, H5=0.043 m, 

H6=0.022 m, H7=H8=0.022 m, h3=h4=0.034 m, h5=0.037 m, 

h 6=h 7=h 8=0.017 m,  T3=T4=0.04 m,  T5=0.043 m, 

T6=T4=T8=0.022 m, t3=t4=0.034 m, t5=0.037 m, t6=0.017 m, 

t7=t8=0.017 m, Es=2.0×1011 N∙m-2, Ec=4.5×1010 N∙m-2, 

Gs=7.69×1010 N∙m-2, The span of SCCTB in Group 1 is 

L1=10 m while in Group 2 is L2=20 m. In order to verify the 

practicability of the above theoretical model, ANSYS finite 

element method was used for the simulation analysis. 

SOLID65 element was used to simulate the concrete slab. 

The SOLID65 element can simulate the nonlinear property 

of concrete. The element behaves as a linear elastic material 

until the stress reaches the tension or compression strength. 

After cracking, the tension stress of the concrete element is 

set to zero in the direction normal to the crack plane. The 

shear transfer coefficient βt for open cracks and βc for 

closed cracks determines the amount of shear transferred 

across the cracks. The value of the shear transfer coefficient 

ranges from 0.0 to 1.0, with 0.0 representing no shear 

transfer at a crack section and 1.0 representing full shear 

transfer. SHELL43 element was employed to simulate the 

chords. In order to ensure adequate studs between the 

chords and concrete slabs, the SHELL43 elements were 

subdivided into the same meshes as the concrete slabs. 

LINK8 element was used to simulate the web members, 

lower horizontal connections and oblique bracings. The 

LINK8 element is a spar which may be used in a variety of 

engineering applications. Depending upon the application, 

the element may be thought of as a truss element, a cable 

element, a link element, a spring element, etc. The three-

dimensional spar element is a uniaxial tension-compression 

element with three degrees of freedom at each node. As in a 

pin-jointed structure, no bending of the element is 

considered. The element is defined by two nodes, the cross-

sectional area, an initial strain, and the material properties. 

Therefore, based on small deformation assumption, the 

LINK8 element can be employed to simulate the oblique 

web member, vertical web member, lower horizontal 

connection member and oblique bracing member. The 

COMBIN14 element was used to simulate the stud  
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connectors, a group of which was used as the equivalent of 

one single stud to avoid the calculation of non-convergence 

caused by the stress concentration of stud s. The 

COMBIN14 element is a spring-damper element，which 

has longitudinal or torsional capability in 1D, 2D, or 3D 

applications. The longitudinal spring-damper option is a 

uniaxial tension-compression element with up to three 

degrees of freedom at each node. No bending or torsion is 

considered. The torsional spring-damper option is a purely 

rotational element with three degrees of freedom at each 

node. No bending or axial loads are considered. The elastic 

modulus of the spring element was calculated by using Eq. 

(17). The vertical interactions at the interface between the 

concrete slab and steel beam were achieved by coupling the 

 

 

free degrees in the vertical direction of the nodes at the 

same position, i.e., ignoring the vertical separation between 

concrete slab and steel truss beam. The simulation results 

are compared against the theoretical results, as shown in 

Tables 1-2. 

It can be seen from Tables 1-2 and Figs. 3-4 that: the 

computational theory proposed in this paper and ANSYS 

finite element method in the calculation of the first 6-order 

natural vibration frequencies of the two groups of SCCTB 

are in good agreement with each other. Moreover, the error 

does not exceed 4.2%, which proves the accuracy of the 

theory method applied in this paper. 

The interface slip effect on the SCCTB’s natural 

vibration frequencies decreases with the increase in the  

Table 1 Comparison of calculation results of natural vibration frequency of SCCTB with a span of 10 m 

Degree of shear 

connection 
Computing methods 

Natural vibration frequency (Hz) 

1st 2nd 3rd 4th 5th 6th 

0.45 

General composite 

truss beam theory 
9.39 24.82 47.89 78.61 116.64 162.16 

Method considering 

influence of shear deformation 
8.91 22.91 42.17 65.56 92.14 120.94 

ANSYS finite element 

method 
9.07 22.80 41.74 65.34 93.49 126.15 

Effect of shear deformation (%) 5.35 8.33 13.58 19.90 26.59 34.08 

Calculation error (%) -1.78 0.50 1.03 0.33 -1.45 -4.12 

0.8 

General composite 

truss beam theory 
9.71 25.46 48.70 79.41 117.60 163.11 

Method considering 

influence of shear deformation 
9.23 23.39 42.81 66.20 92.62 121.42 

ANSYS finite element 

method 
9.33 23.14 42.09 65.66 93.78 126.41 

Effect of shear deformation (%) 5.17 8.84 13.75 19.95 26.97 34.34 

Calculation error (%) -1.12 1.11 1.71 0.82 -1.24 -3.95 

1.0 

General composite 

truss beam theory 
9.87 25.78 49.17 79.89 118.08 163.75 

Method considering 

influence of shear deformation 
9.39 23.71 43.12 66.36 92.93 121.58 

ANSYS finite element 

method 
9.45 23.30 42.27 65.83 93.94 126.55 

Effect of shear deformation (%) 5.08 8.72 14.02 20.38 27.05 34.68 

Calculation error (%) -0.72 1.75 2.02 0.80 -1.07 -3.93 

1.5 

General composite 

truss beam theory 
10.19 26.42 50.13 81.00 119.35 165.02 

Method considering 

influence of shear deformation 
9.71 24.19 43.60 67.00 93.25 121.74 

ANSYS finite element 

method 
9.70 23.67 42.68 66.23 94.30 126.89 

Effect of shear deformation (%) 5.11 8.73 14.45 20.39 27.49 35.04 

Calculation error (%) 0.06 2.22 2.16 1.15 -1.12 -4.06 

2.0 

General composite 

truss beam theory 
10.50 27.05 50.92 82.11 120.47 166.30 

Method considering 

influence of shear deformation 
10.03 24.67 44.24 67.63 93.89 122.38 

ANSYS finite element 

method 
9.89 23.96 43.04 66.59 94.64 127.20 

Effect of shear deformation (%) 4.76 9.68 15.11 21.41 28.08 35.54 

Calculation error (%) 1.41 2.94 2.79 1.56 -0.63 -3.54 

Average value of calculation error (%) -0.43 1.71 2.02 0.98 -1.03 -3.84 

Effect of interface slip (%) 8.95 5.09 3.12 1.91 1.23 0.83 
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natural vibration frequency. On the other hand, the 

SCCTB’s shear deformation effect increases with the 

increase in natural vibration frequency. The analysis 

indicates that the low-order vibration mode curve of 

SCCTB is mainly composed of cross-section rotation 

deformation, while the shear deformation only plays a small 

part in the low-order vibration mode curve. 

The interface slip effect on SCCTB’s low-order natural 

vibration frequencies is greater than 10%. The shear 

deformation effect on SCCTB’s low-order natural vibration 

frequencies is found to be small, while that of the high-

order natural vibration frequencies is found more than 35%. 

The overall analysis indicates that the influence of interface 

slip and shear deformation on natural vibration frequencies 

of SCCTB cannot be neglected. 

 

 

5. Conclusions 
 

Based on the concept of transformed section and 

displacement superposition, the calculation method of 

SCCTB’s natural vibration frequency is developed. The 

derivation of the calculation method in this paper is 

theoretically appropriate. Through the theoretical 

calculation and finite element numerical simulations of 10 

SCCTBs with different degrees of shear connection and 

effective spans as examples, the following conclusions are 

obtained: 

• Comprehensively, by considering the influence of 

shear deformation, interface slip and moment of inertia, 

the theoretically calculated results of SCCTB’s natural 

vibration frequencies are found to be in good agreement  

Table 2 Comparison of calculation results of natural vibration frequency of SCCTB with a span of 12 m 

Degree of shear 

connection 
Computing methods 

Natural vibration frequency (Hz) 

1st 2nd 3rd 4th 5th 6th 

0.45 

General composite 

truss beam theory 
6.52 17.34 33.41 54.74 81.32 112.98 

Method considering 

influence of shear deformation 
6.36 16.39 30.55 47.89 68.11 90.39 

ANSYS finite element 

method 
6.50 16.43 30.19 47.31 67.62 91.07 

Effect of shear deformation (%) 2.50 5.82 9.38 14.28 19.40 25.00 

Calculation error (%) -2.11 -0.27 1.21 1.25 0.71 -0.75 

0.8 

General composite 

truss beam theory 
6.84 17.82 34.05 55.53 81.95 113.78 

Method considering 

influence of shear deformation 
6.68 16.86 31.03 48.37 68.58 90.86 

ANSYS finite element 

method 
6.72 16.74 30.52 47.62 67.91 91.32 

Effect of shear deformation (%) 2.38 5.66 9.74 14.80 19.49 25.22 

Calculation error (%) -0.56 0.79 1.68 1.60 1.00 -0.50 

1.0 

General composite 

truss beam theory 
7.00 18.14 34.37 55.86 82.43 114.26 

Method considering 

influence of shear deformation 
6.68 17.03 31.19 48.69 68.91 91.18 

ANSYS finite element 

method 
6.82 16.88 30.69 47.78 68.06 91.46 

Effect of shear deformation (%) 4.76 6.54 10.20 14.70 19.63 25.31 

Calculation error (%) -2.01 0.85 1.63 1.91 1.25 -0.30 

1.5 

General composite 

truss beam theory 
7.16 18.62 35.17 56.81 83.39 115.37 

Method considering 

influence of shear deformation 
7.00 17.50 31.82 49.33 69.54 91.66 

ANSYS finite element 

method 
7.02 17.20 31.07 48.16 68.41 91.79 

Effect of shear deformation (%) 2.27 6.36 10.50 15.16 19.91 25.87 

Calculation error (%) -0.23 1.77 2.45 2.43 1.64 -0.13 

2.0 

General composite 

truss beam theory 
7.48 19.09 35.80 57.60 84.34 116.33 

Method considering 

influence of shear deformation 
7.16 17.82 32.30 49.81 70.02 92.29 

ANSYS finite element 

method 
7.16 17.46 31.39 48.50 68.74 92.09 

Effect of shear deformation (%) 4.44 7.14 10.84 15.65 20.45 26.03 

Calculation error (%) 0.08 2.09 2.91 2.71 1.86 0.22 

Average value of calculation error (%) -0.99 1.04 1.87 1.98 1.30 -0.29 

Effect of interface slip (%) 10.15 6.23 3.97 2.51 1.65 1.12 
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(b) L=12 m 

Fig. 3 Relationship between contribution of shear 

deformation and the mode orders of flexural natural 

vibration 

 

 

with the finite element numerical results, which proves 

the correctness of the developed method. 

• The shear deformation effect of SCCTB’s low-order 

natural vibration frequencies is small.  

• The SCCTB’s shear deformation effect increases with 

the increase in natural vibration frequency. The 

calculation result of SCCTB’s natural vibration 

frequency would be much larger than the actual result, 

when the shear deformation is not taken into account. 

• The interface slip effect of SCCTB's natural vibration 

frequencies decreases with the increase in natural 

vibration frequency, and the interface slip effect on the 

low-order natural vibration frequencies is found to be 

more than 10%. Therefore, the effect of interface slip on 

the natural vibration frequencies of SCCTB cannot be 

ignored. 

• SCCTB’s low-order vibration mode curves are mainly 

composed of cross-section rotation deformations, while 

shear deformation plays a small part in the low-order 

vibration mode curves. 
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