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Abstract. In this paper, a new simple shear deformation theory for bending analysis of functionally graded plates is
developed. The present theory involves only three unknown and three governing equation as in the classical plate theory, but it is
capable of accurately capturing shear deformation effects, instead of five as in the well-known first shear deformation theory and
higher-order shear deformation theory. A shear correction factor is, therefore, not required. The material properties of the
functionally graded plates are assumed to vary continuously through the thickness, according to a simple power law distribution
of the volume fraction of the constituents. Equations of motion are obtained by utilizing the principle of virtual displacements
and solved via Navier's procedure. The elastic foundation is modeled as two parameter elastic foundation. The results are
verified with the known results in the literature. The influences played by transversal shear deformation, plate aspect ratio, side-
to-thickness ratio, elastic foundation, and volume fraction distributions are studied. Verification studies show that the proposed
theory is not only accurate and simple in solving the bending behaviour of functionally graded plates, but also comparable with
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the other higher-order shear deformation theories which contain more number of unknowns.
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1. Introduction

Functionally graded plates are widely used in the
aerospace, aircrafts, automotive industry, marine and other
structural applications because of advantageous features
such as to eliminates the interface problems of conventional
composite materials and thus the stress distribution
becomes smooth (Li et al. 2008). In company with the
increase in the application of functionally graded plates in
engineering structures, a variety of plates theories have
been developed to predict its behavior. A critical review of
more recent works on the development of plates theories
can be found in (Ghugal and Shimpi 2002, Sayad and
Ghugal 2016). These plate theories can be divided into three
following categories, classical plate theory (CPT), first-
order shear deformation plate theory (FSDT) and higher-
order plate theory (HSDT). The CPT ignores shear
deformation effects and provides reasonable results for thin
plates and gives acceptable results for functionally graded
(FG) thin structures (plates) only (Abrate 2008, Arefi 2015,
Pradhan and Chakraverty 2015a, Darilmaz 2015). However,
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it underestimates deflection and overestimates buckling
load and frequency of moderately thick or thick plates
(Ghugal and Shimpi 2002). The FSDT accounts for the
transverse shear deformation effect by the way of linear
variation of in-plane displacement through the thickness
and gives acceptable results for moderately thick and thin
plates, but needs a shear correction factor which is hard to
find as it depends on the geometries, material properties and
boundary conditions of each problem (Ferreira et al. 2009,
Adda Bedia et al. 2015, Bellifa et al. 2016, Bouderba et al.
2016). A shear correction factor is required to compensate
for the difference between actual stress state and assumed
constant stress state (Castellazzi et al. 2013). Hosseini-
Hashemi et al. (2010) studied the free vibration of
moderately thick rectangular FG plates resting on elastic
foundations. Yaghoobi and Yaghoobi (2013) investigated
the buckling analysis of FG sandwich plates resting on an
elastic foundation based on the first-order shear
deformation plate theory and under thermo-mechanical
loads. Meksi et al. (2015) studied the bending and the free
vibration of FG plates using a novel simple first-order shear
deformation plate theory based on neutral surface position
and supported by either Winkler or Pasternak elastic
foundations. Chen et al. (2017) studied the thermal buckling
and vibration of FG sandwich plates, including the effects
of transverse shear deformation and rotary inertia. The
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HSDTs account for shear deformation effects by higher-
order variations of in-plane displacements or both in-plane
and transverse displacements through the thickness, and do
not required any shear correction factor and satisfy zero
shear stress conditions at top and bottom surfaces of plates
(Bourada et al. 2012, Bessaim et al. 2013, Ahouel et al.
2016, Ait Amar Meziane et al. 2014, Ait Atmane et al.
2015, Mahi et al. 2015, Ait Yahia et al. 2015, Attia et al.
2015, Belabed et al. 2014, Larbi Chaht et al. 2015,
Belkorissat et al. 2015, Bounouara et al. 2016, Bousahla et
al. 2016, Bennoun et al. 2016, Beldjelili et al. 2016,
Draiche et al. 2016, Bellifa et al. 2017, Benchohra et al.
2017, El-Haina et al. 2017, Menasria et al. 2017, Meksi et
al. 2017, Bouafia et al. 2017, Besseghier et al. 2017,
Klouche et al. 2017, Zidi et al. 2017, Khetir et al. 2017).
Zenkour (2006) studied the static behavior of a rectangular
FG plate under simply supported condition and subjected to
uniform transverse load based on the sinusoidal shear
deformation theory. Pradhan and Chakraverty (2015b)
expressed the trial functions as the linear combinations of
simple algebraic polynomials to study free vibration of
thick rectangular plates based on new inverse trigonometric
shear deformation theories. Ait Atmane et al. (2010)
analyzed free vibration of simply supported FG plates
resting on a Winkler-Pasternak elastic foundation by a new
hyperbolic shear deformation theory. Benyoucef et al.
(2010) examined the static response of simply supported FG
plates resting on an elastic foundation using a new
hyperbolic displacement model. Bouderba et al. (2013)
studied the thermo-mechanical bending response of FG
plates resting on elastic foundations using a refined
trigonometric shear deformation theory. Said et al. (2014)
studies the bending response of functionally graded plates
resting on a Winkler-Pasternak elastic foundation by
employing the physical neutral surface concept. Taibi et al.
(2015) presented a simple shear deformation theory for
thermo-mechanical behaviour of functionally graded
sandwich plates on elastic foundations. In (Li et al. 2016) a
new refined plate theory for wave propagation analysis of
simply supported functionally graded plate with only four
unknown functions was developed. Bending behaviour of
laminated composite flat panel under hygro-thermo-
mechanical loading was presented by Kar et al. (2015)
using higher-order plate theory (HSDT). Mehar and
Panda (2016) investigated the non-linear bending behavior
of functionally graded carbon nanotube reinforced
composite (FG-CNTRC) flat panel under the thermo-
mechanical load based on the higher order shear
deformation theory. The same membrane analogy was later
applied to the analyses of functionally graded carbon
nanotube reinforced composite (FG-CNTRC) plates and
shells under thermal and mechanical load (Mehar et al.
2016, Mehar and Panda 2017a, b, Mehar et al. 2017,
Mahapatra et al. 2017). This work aims to develop a new
simple shear deformation theory for the bending response of
FG plates resting on a Winkler-Pasternak elastic foundation.
The most interesting feature of this theory is that it accounts
for a parabolic variation of the transverse shear strains
across the thickness and satisfies the zero traction boundary
conditions on the top and bottom surfaces of the plate

FGM plats

Shear laye

Winkier laver

Fig. 1 Coordinate system and geometry for rectangular FG
plates on Pasternak elastic foundation

without using shear correction factors. The proposed theory
contains fewer unknowns and equations of motion than the
first-order shear deformation theory. Indeed, unlike the
previous mentioned theories, the number of variables in the
present theory is same as that in the CPT. Equations of
motion are obtained by utilizing the principle of virtual
displacements. In this study, analytical of bending solutions
are obtained for a simply supported isotropic and FG plate
and accuracy is verified by comparing the obtained results
with those reported in the literature.

2. Theoretical formulation

Consider a solid rectangular plate of length a, width b
and thickness h made of functionally graded material with
the coordinate system as shown in Fig. 1. It is assumed to
be rested on a Winkler-Pasternak type elastic foundation
with the Winkler stiffness of k, and shear stiffness of k.
The material properties of the FGM plate, such as Young’s
modulus E is assumed to be function of the volume fraction
of constituent materials. Let the FG plate be subjected to a
transverse load q(x,y). Unlike the previous mentioned
theories, the number of unknown functions involved in the
present theory is only three as in CPT.

2.1 Kinematics of the present plate model

The displacement field satisfying the conditions of
transverse shear stresses (and hence strains) vanishing at a
point (x, y, h/2) on the outer (top) and inner (bottom)
surfaces of the plate, is given as follows (Houari et al. 2016,
Mouffoki et al. 2017)

d*w,
ox®

W%y, 2) =Ue(x,y) - 220 _ 5 1 (2)
OX

ow, o

3
1
v(x,y,z)=v0(x,y)—zE—,B f(2) ayV‘;o .

W(X,y,2) = Wo (X, y)

where U, Vo and w, are three unknown displacement
functions of midplane of the plate and g is a parameter of
the present displacement model. f(z) is a shape function
representing the distribution of the transverse shear strains
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and shear stresses through the thickness of the plate and is
given as (Nguyen et al. 2014, Nguyen et al. 2015)

2\ 167°
f(z)=h arctan(hj STy )

The nonzero linear strains related to displacement field
in Eq. (1) are
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2.2 Constitutive relations

The plate is graded from aluminium (bottom) to alumina
(top). The mechanical properties of FGM are determined
from the volume fraction of the material constituents.
Young’s modulus, E, is assumed to vary in the thickness
direction based on the Voigt’s rule over the whole range of
the volume fraction. The effective material properties of
FGM with two constituents can be expressed as (Fahsi et al.
2017, Sekkal et al. 2017, Tounsi et al. 2013, Boukhari et al.
2016, Bourada et al. 2015, Meradjah et al. 2015, Hamidi et
al. 2015, Hebali et al. 2014, Zidi et al. 2014, Bousahla et al.
2014, Fekrar et al. 2014)

k
22+hj ©)

E(z)= Em +(Ec - Em)[

where (E,,) and (E.) are the corresponding properties of the
metal and ceramic, respectively, and k is the volume
fraction exponent which takes values greater than or equal
to zero. The value of k equals to zero represents a fully

ceramic plate. The above power-law assumption reflects a
simple rule of mixtures used to obtain the effective
properties of the ceramic-metal plate.

The constitutive relations of a FG plate can be expressed

as
Oy C, C, O 0 0 || &
o, C, Cp O 0 0 || &y
T,¢=| 0 0 Cup 0 0 |7y, )
Ty 0 0 0 Ci 0 [||7g
T 0 0 0 0 Cgllrey

where (ay, 0y, Ty, Taa, Tuy) AN (ex, €ys Pyzr Pxr Py) @re the stress

and strain components, respectively. The stiffness
coefficients, Cj;, can be expressed as
E(z
Cu=Cyp= ( )2 , Co=vCy (8a)
1-v
E(z
Cu=Cys5=Cs=G(2) = 2(1(4_3/)1 (8b)

2.3 Governing equations

The governing equations can be obtained using the
principle of virtual displacements. The principle can be
stated in the following form

h/2

I[Gxé' extoy0e, +1,07 +7,07,,
-h/20 (9)
748 7, J2dz - (g - f,)dwd2 =0

o

Substituting Egs. (3), (1) and (6) into Eqg. (9) and
integrating through the thickness of the plate, Eq. (9) can be
rewritten as

[N &2+ N30+ N 575, + M, Sk,

0

+Mok, + Mok, +B(S;om +S,0m,
0 0

+8,07y + Q0 7% +Q,57%)|de2
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o

(10)

where Q is the area of top surface and f, is the density of
reaction force of foundation. For the Pasternak foundation
model
2 2
fe = ka - ksx aa)%V - ksy aayi\;\l (11)
where k,, is the modulus of subgrade reaction (elastic
coefficient of the foundation) and ks and ks, are the shear
moduli of the subgrade (shear layer foundation stiffness). If
foundation is homogeneous and isotropic, we will get kg =
key=ks. If the shear layer foundation stiffness is neglected,
Pasternak foundation becomes a Winkler foundation.
In which the stress resultants N, M, S and Q are defined

by



720 Houari Hachemi et al.
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and Q = [(r) Bo(2)dz, (i=x.y)
-h/2
The governing equations can be obtained from Eq. (10)
by integrating the displacement gradients by parts and
setting the coefficients duy, vy and ow, zero separately.

Thus one can obtain the equilibrium equations associated
with the present shear deformation theory
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2.4 Governing equations in terms of displacements

By substituting Eqg. (3) into Eg. (6) and the subsequent
results into Eq. (12), the stress resultants can be written as
below
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By substituting Eq. (14) into Eqg. (13), the governing
equations can be written in terms of generalized
displacements (uo, Vo and wg) as

ol u0 o° u0 %,

oxoy

GRY o%w,
- 81170_(B12 + 2866)

"0
ox® oxoy?
s 6W
ﬁ(BGG

o s 0w, . 0w,
(B12 Bse) 04 +By 50 =0,
ox3oy? oxoy OX

A11 Aee (Alz + Aﬁs)

(16a)

o v0 o,
oxoy
)GSWO
ox2oy
ow, ow, o°w,
—ﬁ[BéeaX B+ BB ayj

Azz Aee il VO (AlZ + Aﬁe)

d*w,

- BZZW_(BH +2Bgg (16b)

0,

o%u, o%u, &%,
Bu—5 Py (BlZ + 2B66)8X6y ) X

B,, +2B, :

+(By, 56) 2 Py
o% o*w,

+B,, 30 -Dy 40
oy oX

65
aXS

d*w, d*w,
6X28y2_ 22 8y4

&°u GRY

+(B, + B3, )—2-+ (B, + B, |——>

( 12 ee)éxayL; ( 12 66)6X4ay
v, %, %,

+B5,— 6y +Bge axga;z +Bgs ox za;g
0w,

R
-2D¢ 0 _2|DS, +2D;
1756 ( o+ 66)6X 6y4

- 2(D12 + 2D66) ﬂ{Blsl

(16¢)

6
~2(p;, + 203 )%—2 D3, 2 i
ox? ay oy
o ow, d®w,
oox® ox‘oy*
otw, ®w, BRI
; 6X66;2 + HSS axza;G + HZSZ ayso

o%w,
0}— f,+q=0

1 2(Hg + HE)-S o

_ASSS (3')/6

3. Analytical solutions

The above governing equations are analytically solved
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for bending problems of a simply supported rectangular FG
plate. Based on Navier solution procedure, the
displacements are assumed as follows (Reddy 1984,
Zenkour 2006)

U], [Unecos(2 X)sin(u y)
Vo (X, ¥) = D" D" Vi SIN(A X) cOS (12 Y) (17)
Wo(x,y)] ™" (Wi, sin(2 x)sin(u y)

where A=mz/a, p=nz/b, (Uyn, Vin, Wmn) are the unknown
maximum displacement coefficients. The transverse load g
is also expanded in the double-Fourier sine series as (Reddy
1984, Zenkour 2006)

006 Y) = 3> on SICA ) s 11 y) (18)

m=1 n=1
The coefficients gy, for the case of uniformly distributed
load (UDL) are defined as follows
_16q,ab (
Au '
where o represents the intensity of the load at the plate
centre.

For the case of a sinusoidally distributed load (SDL), we
have

m,n=135,.....) (19)

mn

m=n=1 and q,, =q, (20)

Substituting Egs. (17) and (18) into Eq. (16), the
analytical solutions can be obtained from
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One can easily obtain the value of the coefficient £ in
the same way as described by Mouffoki et al. (2017).

4. Numerical results

Table 1 Comparison of nondimensional deflection w of
simply supported isotropic thin square plate under
uniformly distributed load (a/h=100)

w
Ky Ks Present Benyoucef et 3D Huangetal. Lametal.
al. (2010) (2008) (2000)
1 3.8000 3.8550 3.8546 3.853
1 3* 0.7610 0.7630 0.7630 0.763
5% 0.1153 0.1153 0.1153 0.115
1 31720 3.2108 3.2105 3.210
3% 3% 0.7300 0.7317 0.7317 0.732
5% 0.1145 0.1145 0.1145 0.115
1 1.4688 1.4765 1.4765 1.476
54 3% 0.5693 0.5704 0.5704 0.570
5% 0.1094 0.1095 0.1095 0.109

In this section, various numerical examples are
presented and discussed to verify the accuracy of the
present theory in predicting the bending responses of simply
supported isotropic and FG plates resting on elastic
foundation. The FG plate is taken to be made of Titanium
and Zirconia with the following material properties:

- Metal (Titanium, Ti-6Al-4V): E,=66.2 GPa; v=1/3

- Ceramic (Zirconia, ZrO2): E;=117 GPa; v=1/3.

The various non-dimensional parameters used are:

_10°D _(ab — 10°D (a b
W= 4W[, Oj, W= 4 W[j
g2 g2 22

— 1 abhy — 1 h
Oy =—5—0¢ =17 |' Ty =7 Ty 00—
10°q, 222 10q, 3

Ty = _lolqOsz(ovgvoj‘ KW = kW a4/D '
K,=k,a?/D. z=2/h

where D=Eh*/12(1-v?) is a reference bending rigidity of the

plate.

In order to validate the present formulations, numerical
results for bending of a isotropic thin plate (k=1, a/h=100,
v=0.3) are compared to that obtained by Lam et al. (2000)
using Green’s functions, the three-dimensional solutions
given by Huang et al. (2008) and the hyperbolic shear
deformation plate theory with five variable given by
Benyoucef et al. (2010). The plate is assumed subjected to
uniform load on the top surface and the results for the
central deflection of the plate are given in Table 1.

For all values of foundation parameters K,,; K; it can be
seen that the results are in close agreement.

Table 2 shows the comparison of nondimensional
deflections and  stresses of  simply  supported
T—6Al-4V/Zr0, rectangular plate on elastic foundation
subjected to mechanical sinusoidal distributed load (a=10 h,
b=2a, q,=100). It can be seen that the results of present
theory are in excellent agreement with those of (RSDPT)
refined sinusoidal shear deformation plates theory with four
variable only given by Bouderba et al. (2013) for all values
of the volume fraction exponent ratio k and elastic
foundation parameters K,,; K.

It can be observed that the non-dimensional deflection
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Table 2 Effect of the volume fraction exponent and elastic
foundation parameters on the dimensionless and stresses of
an FGM rectangular plate under sinusoidal load. (a=10 h,
b=2a, q,=100)

k Ko K;

theory w Oy Ty Ty

0 0 Present 0.65311 0.42224 0.87508 0.40152
RSDPT* 0.68131 0.42424 0.86240 0.39400

Present 0.39508 0.25542 0.52936 0.24289
RSDPT?* 0.40523 0.25233 0.51296 0.23435

0 100 Present 0.083211 0.053797 0.11149 0.051157
RSDPT? 0.083654 0.052093 0.10589 0.048377

100 100 Present 0.076819 0.049665 0.102928 0.047227
RSDPT?# 0.077197 0.048071 0.097724 0.044643

0.5 100 100 Present 0.078404 0.047337 0.086092 0.040310
' RSDPT? 0.078729 0.045788 0.081728 0.038066

1100 100 Present 0.079017 0.046427 0.076996 0.037089
RSDPT? 0.079321 0.044892 0.073054 0.035023

2 100 100 Present 0.079467 0.046129 0.070882 0.034086
RSDPT? 0.079758 0.044595 0.067185 0.032215

5 100 100 Present 0.079872 0.047319 0.067740 0.031644
RSDPT? 0.080150 0.045736 0.064125 0.029922

Present 0.080953 0.029613 0.061372 0.028160

1001
100100 RSDPT?# 0.081190 0.050559 0.058148 0.026565

#Taken from Bouderba et al. (2013)

100 0

z |

Fig. 2 Effect of Winkler modulus parameter K, on the
dimensionless center deflection (W) of a square FG plate
(k=2) for different side-to-thickness ratio a/h=10with K=10

and stresses are decreasing with the existence of the elastic
foundations Ky; Ks. The inclusion of the Winkler foundation
K, parameter gives results more than those with the
inclusion of Pasternak foundation parameters K. The
deflection will increase as the volume fraction exponent k
increases. The stresses are also influenced to the variation
of the volume fraction exponent k, which means that the
plate can be optimally design according to given working
conditions by tailoring the graded material properties.

Figs. 2-9 show the effect of foundation stiffness on the
dimensionless deflection, normal, shear and longitudinal
tangential stress (k=2) in a square FG plate under a
sinusoidally distributed load. They depict the variation of

Fig. 3 Effect of Pasternak shear modulus parameter K on
the dimensionless center deflection (W ) of a square FG
plate (k=2) for different side-to-thickness ratio a/h=10 with
K,=100

Fig. 4 Variation of dimensionless axial stress (&, ) through-

the-thickness of a square FG plate (k=2) for different values
of Winkler modulus parameter K,, with K;=10 and a/h=10

the center deflection W with the side-to-thickness a/h and
shows across the-thickness distributions of the shear stress
7,,, the in-plane longitudinal normal stress &,, and the

X y
longitudinal tangential stress Ty -

Figs. 2 and 3 show the effect of foundation stiffness and
side-to-thickness ratio a/h on the dimensionless deflection
of FG square plate (k=2).The deflection decreases with the
increase of a/h ratios. It is maximum for the metallic plate
and minimum for the ceramic plate. The deflections
decrease gradually as either K, or K increases. Decreases
of deflection indicate that increasing the foundation
stiffness will certainly enhance the deformation rigidity of
the plate.

As plotted in Figs. 4 and 5, the in-plane longitudinal
normal stress & is compressive in the plate up toz

X
=0.051, and then it becomes tensile. The maximum
compressive stress occurs at a point on the bottom surface
of FG plate, but the maximum tensile one at a point on the
top surface. In addition, it can be seen that the elastic
foundation has a significant effect on the maximum values
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Fig. 5 Variation of dimensionless axial stress (&, ) through-
the-thickness of a square FG plate (k=2) for different values
of Pasternak shear modulus parameter K with K, =100 and
a/h=10

Fig. 6 Variation of dimensionless longitudinal tangential
stress (fxy) through-the-thickness of a square FG plate

(k=2) for different values of Winkler modulus parameter K,
with K=10 and a/h=10

of the axial stress, &, .
Also, it is observed that the effect of Pasternak shears
modulus parameter is more significant than Winkler

modulus parameter and the axial stress &, increases

gradually with decreasing K,, or K.

Figs. 6 and 7 depict the through-the-thickness
distributions of the longitudinal tangential stress Ty in the
FG square. In this case, the tensile and compressive values
of the longitudinal tangential stress, 7, is maximum at a
point on the bottom and top surfaces of the FG plate,
respectively.

It is clear that the minimum value of zero for the axial
stress &, and the longitudinal tangential stress z,, occurs
at z=0.051.

Figs. 8 and 9 show the distributions of the shear stresses
in the square FG plate under sinusoidal distributed load. It

is seen that the transverse shear stress 7,, are not parabolic
in the FG plate and the stresses increases gradually as either
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Fig. 7 Variation of dimensionless longitudinal tangential
stress (fxy) through-the-thickness of a square FG plate

(k=2) for different values of Pasternak shear modulus
parameter K with K,,=100 and a/h=10
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Fig. 8 Variation of dimensionless shear stress (7,,) through-

the-thickness of a square FG plate (k=2) for different values
of Winkler modulus parameter K,, with K;=10 and a/h=10
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Fig. 9 Variation of dimensionless shear stress (7,,) through-
the-thickness of a square FG plate (k=2) for different values
of Pasternak shear modulus parameter K with K,,=100 and
a/h=10
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Ky or K decreases, which indicates that increased moduli of
the elastic foundation can enhance the bending rigidity of
the plate.

It is to be noted that the maximum value the transverse

shear stress 7,, of occurs at Z =0.1, not at the center of
plate as in the homogeneous case.

5. Conclusions

The bending response of FG plates resting on a elastic
foundation is developed using a new 3-unknowns shear
deformation plates theory. The present theory has only three
unknown and three governing equation as in the classical
plate theory, but it is capable of accurately capturing shear
deformation effects, instead of five as in the well-known
higher-order shear deformation theory (HSDT).The theory
gives parabolic distribution of transverse shear strains, and
satisfies the zero traction boundary conditions on the
surfaces of the plate without using shear correction factors.
The gradation of properties through the thickness is
assumed to be of the power law distribution of the volume
fraction of the constituents. Results show that the proposed
theory is not only accurate and simple in solving the
bending behaviour of FG plates, but also comparable with
the other higher-order shear deformation theories which
contain more number of unknowns and so deserve special
attention and offer potential for future research.
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