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Abstract. In this research, a simple hyperbolic shear deformation theory is developed and applied for the bending, vibration
and buckling of powerly graded material (PGM) sandwich plate with various boundary conditions. The displacement field of the
present model is selected based on a hyperbolic variation in the in-plane displacements across the plate’s thickness. By splitting
the deflection into the bending and shear parts, the number of unknowns and equations of motion of the present formulation is
reduced and hence makes them simple to use. Equations of motion are obtained from Hamilton’s principle. Numerical results for
the natural frequencies, deflections and critical buckling loads of several types of powerly graded sandwich plates under various
boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results
with those available in the literature. As conclusion, this theory is as accurate as other theories available in the literature and so it
becomes more attractive due to smaller number of unknowns.
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1. Introduction

Sandwich plates have received considerable attention in
many engineering applications such as aerospace,
automobile, and shipbuilding due to their high strength and
stiffness, low weight and durability. These plates are
generally manufactured form three homogeneous layers,
two face sheets adhesively bonded to the core. However, the
sudden variation in material characteristics within the
interface between different materials can lead to face
sheet/core delamination, which is a dangerous problem in
sandwich construction. To improve the resistance of
sandwich structures to such type of failure, the concept of a
functionally graded material (FGM) is being actively
applied in sandwich plate design. Nowadays, FGM suits the
specific demand in different engineering applications
especially for high temperature environment applications of
heat exchanger tubes, thermal barrier coating for turbine
blades, thermoelectric generators, furnace linings,
electrically insulated metal ceramic joints, space/aerospace
industries, automotive applications, and biomedical area etc
(Koizumi 1993, Suresh and Mortensen 1998, Miyamoto et
al. 1999, Kirigulige et al. 2005, Pollien et al. 2005,
Shahistha et al. 2014, Yaghoobi et al. 2014, Kar and Panda
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2015, Bouguenina et al. 2015, Bennai et al. 2015, Hadji and
AddaBedia 2015, LarbiChaht et al. 2015, AitAtmane et al.
2015, Celebi et al. 2016, Darabi and \Vosoughi 2016,
Bounouara et al. 2016, Ahouel et al. 2016, Ebrahimi and
Habibi 2016, Ebrahimi and Jafari 2016, Madani et al. 2016,
Benferhat et al. 2016, Ebrahimi and Shafiei 2016,
GhorbanpourArani et al. 2016, Turan et al. 2016, Zidi et
al. 2017, Rahmani et al. 2017, Bouafia et al. 2017).

With the increase use of FG sandwich plates,
understanding their mechanical behaviors becomes an
essential task. Three-dimensional finite element simulations
for investigating low velocity impact response of sandwich
panels with a FG core were conducted by Etemadi et al.
(2009). Anderson (2003) proposed an analytical 3D
elasticity solution method for a sandwich composite with a
FG core subjected to transverse loading by a rigid spherical
indentor. An exact thermoelasticity solution for a 2D
sandwich structures with FG coating was established by
Shodja et al. (2007). Natarajan and Manickam (2012)
investigated the bending and free vibration response of
functionally graded (FG) sandwich plates using higher-
order shear deformation theories (HSDT). Xiang et al
(2013) studied the dynamic behavior of FG sandwich plates
by employing an nth-order shear deformation theory and a
meshless method. Sobhy (2013) examined the buckling and
free vibration of FG sandwich plates by utilizing various
HSDTs. In a number of recent articles-see (Bourada et al.
2012, Tounsi et al. 2013, Bourada et al. 2016, Laoufi et al.
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2016, Draiche et al. 2016, El-Hassar et al. 2016, Javed et al.
2016, Chikh et al. 2017, Menasria et al. 2017, Khetir et al.
2017)-a new simple and robust plate theory for mechanical
behavior and buckling of simply supported FGM sandwich
and composite plate with only four or five unknown
functions has been developed. Neves et al. (2012) studied
the bending behaviour of FG sandwich plates according to a
hyperbolic theory considering Zig-Zag and warping effects.
Bessaim et al. (2013) developed anew higher order shear
and normal deformation theory for the static and free
vibration analysis of sandwich plates with functionally
graded isotropic face sheets. Houari et al (2013) studied the
thermoelastic bending of FG sandwich plates using a new
higher order shear and normal deformation theory. Thai et
al. (2014) analysed a functionally graded sandwich plates
using a new first-order shear deformation theory. Nguyen et
al. (2014) presented a new inverse trigonometric shear
deformation theory for isotropic and functionally graded
sandwich plates. Ait Amar Meziane et al (2014) developed
a new refined plate theory to the vibration and buckling of
exponentially graded sandwich plate resting on elastic
foundations under various boundary conditions. Belabed et
al. (2014) presented an efficient and simple higher order
shear and normal deformation theory for FG plates.
Swaminathan and Naveenkumar (2014) present an
analytical formulations and solutions for the stability
analysis of simply supported FG sandwich plates based on
two higher-order refined computational models. Taibi et al.
(2015) proposed a simple shear deformation theory for
thermo-mechanical behaviour of FG sandwich plates on
elastic foundations. Mahi et al (2015) proposed a novel
hyperbolic shear deformation theory for bending and free
vibration analysis of isotropic, functionally graded,
sandwich and laminated composite plates. Recently, Hamidi
et al. (2015) developed a sinusoidal plate theory with 5-
unknowns and stretching effect for thermomechanical
bending response of FG sandwich plates. Bakora and
Tounsi (2015) examined the thermo-mechanical post-
buckling behavior of thick FG plates resting on elastic
foundations.Nguyen (2015) presented a higher-order
hyperbolic shear deformation plate model for analysis of
functionally graded materials. Bellifa et al. (2017) proposed
a nonlocal zeroth-order shear deformation theory for
nonlinear postbuckling of nanobeams. Meksi et al. (2017)
presented an analytical solution for bending, buckling and
vibration responses of FGM sandwich plates. AitAtmane et
al. (2017) discussed the effect of thickness stretching and
porosity on mechanical response of a FG beams resting on
elastic foundations. Baseri et al. (2016) presented an
analytical solution for buckling of embedded laminated
plates based on higher order shear deformation plate theory.
Bennoun et al. (2016) proposed a novel five variable
refined plate theory for vibration analysis of FG sandwich
plates. Chikh et al. (2016) investigated the thermo-
mechanical postbuckling of symmetric S-FGM plates
resting on Pasternak elastic foundations using hyperbolic
shear deformation theory. Benbakhti et al. (2016) presented
a new five unknown quasi-3D type HSDT for thermo-
mechanical bending analysis of FGM sandwich plates.
Benahmed et al. (2017) proposed a novel quasi-3D
hyperbolic shear deformation theory for FG thick
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Fig. 1 Geometry and coordinates of FG sandwich plates

rectangular plates on elastic foundation. Benchohra et al.
(2017) developed also a new quasi-3D sinusoidal shear
deformation theory for FG plates. Klouche et al. (2017)
presented an original single variable shear deformation
theory for buckling analysis of thick isotropic plates. El-
Haina et al. (2017) given a simple analytical approach for
thermal buckling of thick FG sandwich plates. Fahsi et al.
(2017) proposed a four variable refined nth-order shear
deformation theory for mechanical and thermal buckling
analysis of FG plates.

The present work deals with the analytical formulations
and solutions for the bending, buckling and vibration
analyses of FG sandwich plates composed of a powerly
functionally graded face sheets and an isotropic
homogeneous core. To achieve this objective, a simple
hyperbolic shear deformation theory is presented and
applied for sandwich plate with various boundary
conditions. The displacement field is expressed with only 4
unknowns, which is even less than the first order shear
deformation theory (FSDT) and do not require shear
correction factor (Adda Bedia et al. 2015, Meksi et al.
2015, Bellifa et al. 2016, Bouderba et al. 2016). Equations
of motion are obtained from Hamilton’s principle.
Analytical solutions for sandwich plates under various
boundary conditions are determined. Numerical examples
are illustrated to check the accuracy of the present
formulation in predicting the bending, buckling and
vibration behaviors of powerly graded sandwich plates.

2. Problem formulation

In this work, a rectangular powerly graded sandwich
plate with a uniform thickness is considered. The sandwich
plate is composed of three microscopically heterogeneous
layers, with reference to rectangular coordinates (x, y, z) as
plotted in Fig. 1. The top and bottom faces of the plate are
at z=+h/2, and the edges of the plate are parallel to the x and
y axes.

The sandwich plate is composed of three elastic layers,
namely, “Layer 17, “Layer 2”, and “Layer 3” from the
uppermost surface to the lowest surface of the plate. The
vertical ordinates of the base, the two interfaces, and the top
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are denoted by —ho=h/2, hy, h,, hs=h/2, respectively. For
brevity, the ratio of the thickness of each layer from the
base to the top is denoted by the combination of three
numbers, i.e., “1-0-17, “2-1-2"" and so on.

The volume fraction of the sandwich plate faces is
assumed to vary according to a simple power law function
of z while that of the core equals unity, and they are given
as (Bousahla et al. 2014, Bourada et al. 2015, Zidi et al.
2014, Hebali et al. 2014, Fekrar et al. 2014, Bouderba et al.
2013, Hadji et al. 2016, Barka et al. 2016, Hebali et al.
2016, Houari et al. 2016, Besseghier et al. 2017)

P(2) = (P, — PV ™ + P, 1)

where P denotes the effective material characteristic such as
Young’s modulus E, Poisson’s ratio v, and mass density p;
subscripts ¢ and m indicate the ceramic and metal phases,
respectively; and V is the volume fraction of the ceramic
phase defined by

V(l)(z)z{hzl%:‘ﬂk for hy<z<h (2a)

v@iz)=1 for h<z<h, (2b)

V(l)(z)_{ﬂJk for hg<z<h (2c)
by —ho

where k is the inhomogeneity parameter which takes values
greater than or equal to zero. It is noted that the core is
independent of the value of k which is fully ceramic.

2.1 Kinematics and constitutive equations

The displacement field of the present formulation is
modeled based on the following assumptions: (1) The
transverse displacement is splitted into both bending and
shear components; (2) the axial displacements are divided
into three components, namely: extension, bending and
shear parts; (3) the bending parts of the axial displacements
are identical to those expressed by CPT; and (4) the shear
parts of the axial displacements give rise to the hyperbolic
variations of shear strains and hence to shear stresses across
the thickness of the plate in such a way that the shear
stresses vanish on the top and bottom surfaces of the plate.
Based on these assumptions, the following displacement
field relations can be determined (AitYahia et al. 2015,
Attia et al. 2015, Belkorissat et al. 2015, Beldjelili et al.
2016, Boukhari et al. 2016, Barati and Shahverdi 2016,
Bousahla et al. 2016, Becheri et al. 2016)

oW, aw,
u(x,y,z,t) =ug(x,y,t) —z—=— f(2) —
(X, y,2,t) =up(x, y,t) o (2) o

V(X ¥, 2,0 = Vo X, y,t)—z%— f(z)% 3)

w(X, Y, z,t) = Wy (X, y,t) + ws (X, y,t)

where uq and v, indicate the displacements along the x and y
coordinate directions of a point on the mid-plane of the
plate; w, and w;s are the bending and shear components of
the transverse displacement, respectively. The shape

functions f(z) are chosen to satisfy the stress-free boundary
conditions on the top and bottom surfaces of the plate, thus
a shear correction factor is not required. In this study, the
shape function is considered as follows

hsinh(10z/ h)
fz)=————— 7~
(2) 10cosh(5) —h/100 )

The displacement model (3) leads to the following
kinematic relations

a| |e0] [k ks 0
_J.0 b s Vyz | _ Vyz
ey r=1¢y przeky o+ T2 ky ¢, =9(2) +(5)
Vxz ]/gz
ry) |y Ky Ky
Where
2
a0 -Z%h
&y OX k)lz 82x
P Ny K= _ 07w ,
0 X Kb ay?
}/Xy %4,% Xy 62Wb
-2
o ox oxoy ©)
_ 0w
kg o
k; _ 0w , {7yz}:g(z) 7;512 ,
kS 6y2 Vxz 7>S<z
Xy 62W
_2 5
oxoy
and
df (2)
g(Z)=1—T (7)

The linear constitutive relations of a powerly graded
sandwich plate can be expressed as

o)™ ey S, 0 0 01" (&
oy Cp Cjp 0 0 0] |g
el =0 0 Cu 0 0| i1y ®)
Tyz 0 0 0 Cg55 O Yxz
Ty 0 0 0 0 Cel| |rw

where (ay, 6y, 0, Tyz, Ty Txy) AN (&, &y, &2 V2o Pxas Py) ATE the
stress and strain components, respectively. The elastic
constants C;; are defined as

l =V y
1_,2 12 11
T ©)
of) =cff = =50
2(1+v)

2.2 Equations of motion

In this work, the analysis of bending, buckling and free
vibration of powerly graded sandwich plate is performed
using Hamilton's principle. The principle can be expressed
in an analytical form as follows
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oz}(gu +6V -5 K)dt (10)
0

where U is the variation of strain energy; 6V is the
variation of work done by the external forces; and JK is the
variation of kinetic energy.

The strain energy expression is given as follows

sU= Hoxégx +0y 56y + Ty 01 +T0 7y, +rx25}/szdV
\Y
:j[NX5gS+Nyag‘y’+ny5y2y+M55kQ+M§5k5 +M{Sky (11)
A
SMESKS MESKS +M,aKS, +55,075, +556 7% J0A=0

where A is the top surface and the stress resultants N, M,
and S are defined by

N, Ny, ny o 1
b b ! n)
My, My, My =% [ (ax,ay,rxy)( z ¢dz,  (12a)
YERRVERRVER S 1)
(SiZ,SS ) Z I(TXZlfyz)(n)g(Z)dz- (12b)

where h,; and h, are the top and bottom z-coordinates of
the nth layer.

Substituting Eq. (8) into Eqg. (12) and integrating
through the thickness of the plate, the stress resultants are
expressed as

N A B B¢
MPl=| B D DKk},
MS BS DS HS kS

S=A%, (13)

In which

N:{NX’NY‘NXV}t’ Mb:{Mb Mg'MQY}[’

(14a)
S VAT
0.0.0 b_Lb b yb
gz{fx'gy'7xy}(’ k :{kx'ky’kxy}"
(14b)
S S S S
k Z{kx,ky,kxy}t,
Ay Ay O By B O
A=|Ap Ap 0|, B=|Byp By 0 |
0 0 Ag 0 0 Bgs
(14c)
Dy Dp O
D= D12 D22 0 y
0 0 Des
Bi B O Dy D 0
B*=|B, B> 0|, D°=|D, D5, O |,
0 0 Bgﬁ 0 0 Dge
(14d)
Hy Hy O
H®=|H, H3 0 |,
0 0 ng

s=bssif. r=bnan).

and stiffness components are given as
A1 By Dy B Dy Hp

A, Bp D B D Hp
Ass Bss Dgs Bgs Dgs Hes

, (152)
3 hy 1
S ez @2 1) 2@) v Lo
n=lh,_, m
2
(AQZ’ B22.Dy2, 85, D2, H32)= (Atlv By1, Di1, By, Dfy, Hfl) (15b)
Als = A5 = Z I cMg(2)Pdz, (15¢)

]'hnl

The variation of work done by the applied loads can be
expressed as

SV ==[(P+a)5 (W, +w )dA (16)
A
With

2 2 2
pP= P)?a (Wb;_WS)+P)98 (Wb;WS)+2PX(§/6 (Wb+WS) (17)
x oy oxoy

where q is the transversely load and (P?, P, PS) are the

in-plane loads.
The variation of kinetic energy of the plate can be
written as

5K = j[uau +VSV+ WS W] p(z) dV

{Io[uobuo + VoSV + (W + Vitg SVigy + S )]

, 08V 0V 5\70)
oy

1[% A5V, awb Sty + g
J]{Uo 85W5 S 5U0 +\70 a&WS +%5V0j (18)
o oy
awb 08ty ity 08 gy K, Qg 08 i, Oy 06 W
OX oy oy X X oy oy
[awb 05 g vty aawb , Oty 06 g +%a§wb] A
x oy oy oy oy
where  dot-superscript  convention  indicates  the

differentiation with respect to the time variable t; p(z) is the
mass density given by Eq. (1); and (l, Iy, J1, I, J2, Ky) are
mass inertias defined as

hn
(19,12, 31,15,35,K5 )= ilhj (1,z,f,22,z f, fz)p(z)dz (19)
nN=lhy4
By substituting Egs. (18), (16) and (11) into Eg. (10),
using Hamilton’s principle, and collecting the coefficients
of (Jdug, Jvo, ow, and ows) after taking the required
integration by parts, the following equations of motion of
the plate are obtained



An efficient hyperbolic shear deformation theory for bending, buckling and free vibration of FGM sandwich plates... 697

oN oN .. ow, oW,

5“0: _)(+ Xy=|0Uo—|l—b—Jl_s
OX oy OX X
oN OoN oW ow

(S‘VO: _Xy+_y=|0\'/‘0_|l_b_\]l_5
ox oy oy oy
2:ab asz 62Mb

Swy ! aN;X+2 Y 4 Zy—P—q=
ox oxoy oy

Alig oV (20)
Lo (W, + g )+ 1| =2+ 20 | 1, w2, — J,V2W,
0( b s) 1[ ox WJ 2 b 2 S

AVES AVE S
Swy azM§+26 Mxy+8 My+GS§Z+9SyZ_P_q=
o oy oyt Xy
IO(Wb +WS)+ \]1(6;—)(0-‘-%}—\]2V2Wb — K2V2\)\'IS

The equations of motion of the present theory can be
expressed in terms of displacements (Ug, Vo, Wp, Ws) by
replacing Eq. (14) into Eq. (21) and the appropriate
equations take the form

Ay1d13Ug + Agg g + (Arp + Agg Jd12Vg
— By4d111Wp — (Byo + 2Bgs Jd10oWy

(21a)
- B, + 2586)‘1122Ws —Bpyd1Ws
= lglig — 11d1Wy, — J1dq W,
Agal ooV + AggdyVo + (A + Agg Mgl
— By oWy — (Byz + 2Bgg Jdg 15wy
(21b)

*(3152 + ZBga)dluws — B30 poWs

= lgVg — 11d oWy, — J1doWq,
By1d113U + (Byz + 2Beg )d125Up + (Brz +2Bgs J112Vo
+ Baalp2oVg — Dy1101114Wh — 2(Dyp + 2Dgg Jdy120Wy
— DypdppoWy — Diydyq1qWs — Z(sz + 2D§6)dllzst (21c)
— D350 5009Ws — P =0 = I (i, + Vi )+ 11 (dyiig +d¥p)
— 1 (A1, + d ity )— 35 (dyyiig +d ooV )

Bi1d111Uo + (BlsZ + 2536}1122110 + (Blsz + 2886}1112\’0
+B350205V0 — Di1d1111Wy — 2\Dsz +2Dgg H1120Wp
— D3,d 5p0oWp — Hiydg15Ws — Z(Hfz + 2H§6)‘11122Ws (21d)
— H30 2000Ws + Afd11Ws + ASsdpoWs — P —q = 1o (i, + Vi )
+ 31 (dyiip +d Vg ) Jp (i, + d oy ) — Ko (g i + d i )
where dj, dij and djn are the following differential
Operators

0 °
d;j = e,
" axian i aXianaX|
ot 0 22
dijm=————, di=—, (i,j,I,m=12).
aXian8X| 6xm aXi

3. Exact solutions for EGMs sandwich plates

The exact solution of Eq. (21) for the powerly graded
sandwich plate under various boundary conditions are
determined in this section. The boundary conditions for an
arbitrary edge with simply supported and clamped edge

Table 1 The admissible functions X,(x) and Y,(y)
The functions

Boundary conditions

Xmand Y,
At x=0, y=0 At x=a, y=b Xin(X) Ya(y)
= X(0)= =X, =0
ssss (mO=XnO=0 Xn(@=Xn(@ sin(Ax)  sin(uy)
Ya(0)=Y,(0)=0 Y (b)=Y,(b)=0
CSCS Xp(0)=Xp(0)=0 Xp@=Xp@=0 sin®(Ax) sin(uy)

Yp(0)=Yp(0)=0  Y,(b)=Y,(b)=0

ccce , , in?(4 in?
Xn@=Xp@=0 Xy@=Xp@=0 " 0 S
=y’ = =V = 2
core O=Y@=0 Y®)=Y,0)=0 (i

-2
x)+1] sin®(uy)

Xa0=Xa0=0  Xn@=Xp@=0 bl

()’ Denotes the derivative with respect to the corresponding
coordinates.

conditions are:
* Clamped (C)
Uy =V, =W, =0W, /OX=0w, /oy =W,
=ow, /ox=o6w, /oy =0 (23)
atx=0,a and y=0,b

« and simply supported (S)
Vo =W, =W, /3y =W =owg /dy =0atx=0,a (24a)

Up =W, =AW, /oX =W, =dw, /ox=0aty=0,b (24b)

The following representation for the displacement
quantities, that satisfy the above boundary conditions, is
appropriate in the case of our problem

OX (X i
Ug Umn ull )Yn(y)elmt
OYn(Y) ot
Vo | _ J VX (x) —22 gl@
W, mn/Am 5 (25)

Wy Wbmnxm(X)Yn(y) e.iw !
WemnXm (X)Yn (Y) 't

where Unn, Vinn, Wemn, @nd Wy, are arbitrary parameters and
® =y, denotes the eigenfrequency associated with (m, n)

Meigenmode. The functions Xn(x) and Y,(y) are suggested
by Sobhy (2013) to satisfy at least the geometric boundary
conditions given in Egs. (23) and (24), and represent
approximate shapes of the deflected surface of the plate.
These functions, for the different cases of boundary
conditions, are listed in Table 1.

The transversely load g is also chosen as

o0

q(x,y) = 3 ilan sin(A x)sin(u y) (26)

m=1ln=
where the coefficients Q, are given below for certain
typical loads

do for sinusoidal loads

Qmn = 164,
2

for uniform loads @7)

with a=mz/a and p=nz/b.
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Substituting expressions (26) and (25) into the Table 2 Dimensionless deflection W of square plates
governing Egs. (21) and multiplying each equation by the (a/h=10)
corresponding eigenfunction then integrating over the

. . . . Scheme

domain of solution, we can obtain, after some mathematical (i?:é?gg% Method 101 712 111 221 101
manipulations, the following equations

0 FSDT® 02961 0.2961 02961 0.2961 0.2961

Siu S12 Si3 S14 Present 0.2956 0.2956 0.2956 0.2956 0.2956

Sa S22 Sz Sau 05 FSDT® 05229 04849 04564 04371 04178

Ss1 Sz Sz3—pP Szu-pP ™ Present 05227 0.4846 0.4560 0.4366 04172

Su1 Saz Suz—PP Sy pP 28 L FSDT® 0.7455 0.6594 05956 05541 0.5130

myp 0 myg my ) [Um 0 (28) SSSS Present 0.7454 0.6593 05954 0.5537 0.5124

o 0 my My M| || Vi 0 ) FSDT® 1.0846 0.9256 0.8011 0.7205 0.6433

T mgy My maz mag | [(Womn | | fq Present 1.0839 0.9254 0.8009 0.7200 0.6427

My Mgy Mz Myg | | (W) | fq g FSDT® 14576 12714 10782 09385 08139

) Present 1.4519 1.2678 1.0767 09367 0.8131

In wich 10 FSDT® 15609 1.4143 12109 1.0434 09011

S11= Ay + Assg Present 15519 1.4053 1.2070 1.0392 0.8998

S12 = (Auz + Ags Jas 0 FSDT® 0.1841 0.1841 0.1841 0.1841 0.1841

Sy3 = -By1a, —(Byp +2Bgg g Present 0.1836 0.1836 0.1836 0.1836 0.1836

Sl4=—(Bf2+ZB§6)as—Bf1a12 05 FSDT® 03208 0.2975 0.2803 0.2688 0.2571

So1 = (Ars + Agg Jaig "~ Present 0.3205 02972 0.2799 0.2682 0.2565

S2p = Agpcty + Agstio 1 FSDT® 04547 04021 0.3636 0.3389 0.3141

Sy3 = —Bypary —(Byy + 2Bgg o oscs Present 0.4546 0.4020 0.3634 0.3384 0.3134

Sou = —(BS, + 2BSs) 10 — BSprg ) FSDT® 0.6593 05617 0.4865 0.4385 0.3920

Sa1 = Byyans + (Bpo + 2Bgg) s Present 0.6586 0.5615 0.4863 0.4379 0.3913

Sap = (Bip +2Bgg)a 1 + Booars (29a) : FSDT® 0.8900 0.7712 06529 05697 0.4940

S33 =—Dy1a13 — 2(Dy 5 + 2Dgg)ary — Dot Present 0.8835 0.7670 0.6513 0.5676 0.4931

Sas = —Dfyay3 — 2(Df, + 2D )y — Dy 1o FSDT® 09595 08606 07339 06338 05464

Sy = Brrs + (B + 2B3)arss Preser(1at) 0.9492 08503 0.7294 0.6290 0.5448
Sy = (BSy + 288 )ty + Bacte o FSDT? 01612 01612 01612 01612 01612
o Present 0.1606 0.1606 0.1606 0.1606 0.1606

FSDT® 0.2780 0.2579 0.2431 0.2333 0.2233

S43=—Dfior13 —2(Df +2Dgg )1 — D3og

Sus =—Hirens — 2(H3, + 2HEg)ars — Hpas + (A oo + (A b 05 o esent 02777 02576 02427 02327 02226
P=pY , FSDT® 03923 0:3469 03140 02980 02718
£=POIPY cece Present 0.3022 03468 0.3137 02924 02710
And , FSDT® 05674 04828 04184 03777 03380
Present 0.5666 04825 0.4182 03770 03371

My =—loag ey =y, o FSDT® 07685 06626 05603 04897 04247
Mg = lhag M=o + 1 (s + ag) Present 0.7610 06577 05584 0.4873 04236
My = J1 o 1o FSDT® 08327 07412 06302 05452 04693
Mgy =—loa, @Nd TS (29p) Present 0.8208 07292 0.6249 05396 0.4676
My3 = lyety mi;ﬁzz o FSDT? 01043 01043 01043 0.1043 01043
Mos = 1 Present 0.1038 01038 0.1033 0.1038 0.1038

Mgy =—loay + Ky (g + arg)

Ma; = —lyag 05 FSDT® 01786 0.1657 0.1563 0.1501 0.1437
" Present 0.1784 01655 0.1560 0.1496 0.1432

With 1 FSDT® 02513 02222 02012 0.1879 0.1744
B=éag+ag I Present 0.2512 02221 02010 0.1875 0.1739
ba . FSDT® 03628 03084 0.2674 02416 02164
) , =[[\XmYn, XpYo, XY, X,Y,dxd
(1, a3, as) 5,{,( o Xo, Xy Koy 2 present 03622 03082 02672 02411 02158
( )—ba(X vy X..Y.)X Y i . FSDT® 04925 0.4232 03575 03129 0.2713
@20 aar @)= [[Xm¥a: Xm¥a: Xm¥n Xm¥achly Present 04868 04195 03561 03110 02705
(a)
o o, @ ):??(X,Y Kot X Kot (29¢) 1o FSDT® 05355 04742 04023 03484 02997
6 @8 @2)=1XmYn: Xm¥n, XmYn Km¥ndedy Present 0.5265 04651 03983 0.3442 0.2984
(a7, a9, o, on3)= @Taken from Thai et al. (2014)

7
(x,’nvn', XmYnr XmYn, x,';;'Yn)mendxdy

boa _ ) _ _ The non-trivial solution is obtained when the
fq = JoJoQmn sin Axsin sy sin Axsin vydxdy determinant of Eq. (28) equals zero. For the free vibration
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Table 3 Dimensionless buckling load N of square plates Table 4 Dimensionless fundamental frequency @ of
(¢=1, a/h=10) square plates (a/h=10)
Boundary Scheme Boundary Scheme
L k Method e k Method
conditions 1-0-1 2-1-2 1-1-1 221 1-01 conditions 1-0-1 2-1-2 1-1-1 2-2-1 1-01
0 FSDT® 6.5022 6.5022 6.5022 6.5022 6.5022 0 FSDT® 1.8244 1.8244 1.8244 1.8244 1.8244
Present 6.5118 6.5118 6.5118 6.5118 6.5118 Present 1.8257 1.8257 1.8257 1.8257 1.8257
OSFSDT(a) 3.6817 3.9702 4.2181 4.4047 4.6081 05FSDT(a) 1.4442 1.4841 15192 15471 1.5745
"~ Present 3.6831 3.9721 4.2211 4.4091 4.6138 "~ Present 1.4447 1.4846 15199 1.5480 1.5756
1 FSDT® 25824 2.9193 3.2320 3.4742 3.7528 1 FSDT® 1.2429 1.3000 1.3533 1.3956 1.4393
SSSS Present 2.5825 2.9196 3.2332 3.4768 3.7568 SsSS Present 1.2434 1.3004 1.3538 1.3963 1.4402
) FSDT® 1.7749 2.0798 2.4032 2.6719 2.9926 ) FSDT® 1.0605 1.1218 1.1882 1.2436 1.3023
Present 1.7759 2.0801 2.4035 2.6736 2.9953 Present 1.0613 1.1224 1.1886 1.2443 1.3031
. FSDT® 1.3208 1.5114 1.7855 2.0512 2.3652 . FSDT® 0.9431 0.9796 1.0435 1.1077 1.1735
Present 1.3258 1.5184 1.7878 2.0551 2.3675 Present 0.9455 0.9815 1.0445 1.1091 1.1744
10 FSDT® 1.2333 1.3612 1.5897 1.8450 2.1364 10 FSDT® 0.9246 0.9390 0.9932 1.0587 1.1223
Present 1.2404 1.3698 1.5949 1.8524 2.1394 Present 0.9279 0.9424 0.9952 1.0611 1.1234
0 FSDT® 11.9477 11.9477 11.9477 11.9477 11.9477 0 FSDT® 2.6701 2.6701 2.6701 2.6701 2.6701
Present 11.9802 11.9802 11.9802 11.9802 11.9802 Present 2.6735 2.6735 2.6735 2.6735 2.6735
OSFSDT(a) 6.8587 7.3942 7.8489 8.1861 8.5573 05FSDT(a) 2.1277 2.1862 2.2371 2.2768 2.3162
"~ Present 6.8638 7.4010 7.8597 8.2012 8.5771 "~ Present 2.1289 2.1876 2.2388 2.2791 2.3190
1 FSDT® 4.8390 5.4712 6.0504 6.4925 7.0048 1 FSDT® 1.8365 1.9209 1.9986 2.0593 2.1226
cscs Present 4.8397 5.4721 6.0545 6.5015 7.0191 cscs Present 1.8372 1.9216 1.9996 2.0610 2.1250
) FSDT® 3.3370 3.9170 4.5225 5.0176 5.6129 ) FSDT® 1.5694 1.6616 1.5792 1.8394 1.9251
Present 3.3405 3.9183 4.5240 5.0239 5.6226 Present 1.5710 1.6625 1.7600 1.8410 1.9271
. FSDT® 24721 2.8529 3.3697 3.8622 4.4536 . FSDT® 1.3927 1.4512 1.5471 1.6405 1.7380
Present 2.4901 2.8683 3.3779 3.8763 4.4619 Present 1.3985 1.4558 1.5495 1.6440 1.7400
10 FSDT® 2.2930 2.5565 2.9978 3.4713 4.0269 10 FSDT® 1.3610 1.3889 1.4720 1.5672 1.6629
Present 2.3177 2.5873 3.0162 3.4975 4.0378 Present 1.3691 1.3978 1.4771 1.5736 1.6656
0 FSDT® 15.9226 15.9226 15.9226 15.9226 15.9226 0 FSDT® 3.2936 3.2936 3.2936 3.2936 3.2936
Present 15.9805 15.9805 15.9805 15.9805 15.9805 Present 3.2993 3.2993 3.2993 3.2993 3.2993
OSFSDT(a) 9.2338 9.9529 10.5578 11.0011 11.4933 OSFSDT(a) 2.6376 2.7099 2.7719 2.8199 2.8679
"~ Present 9.2431 9.9653 10.5774 11.0286 11.5292 "~ Present 2.6394 2.7119 2.7748 2.8236 2.8724
1 FSDT® 6.5434 7.3990 8.1753 8.7612 9.4443 1 FSDT® 2.2814 2.3864 2.4818 2.5556 2.6330
cece Present 6.5447 7.4008 8.1830 8.7777 9.4705 coce Present 2.2823 2.3873 2.4835 2.5584 2.6369
) FSDT® 45236 5.3169 6.1354 6.7961 7.5952 ) FSDT® 1.9520 2.0680 2.1889 2.2868 2.3923
Present 4.5302 5.3195 6.1381 6.8077 7.6130 Present 1.9543 2.0692 2.1900 2.2893 2.3954
. FSDT® 3.3400 3.8738 4.5813 5.2417 6.0445 . FSDT® 1.7293 1.8064 1.9269 2.0415 2.1629
Present 3.3730 3.9025 4.5965 5.2677 6.0598 Present 1.7387 1.8138 1.9308 2.0471 2.1661
10 FSDT® 3.0825 3.4629 4.0732 4.7084 5.4696 10 FSDT® 1.6858 1.7268 1.8329 1.9497 2.0703
Present 3.1273 3.5198 4.1073 4.7567 5.4897 Present 1.6990 1.7414 1.8411 1.9602 2.0746
0 FSDT® 18.6047 18.6047 18.6047 18.6047 18.6047 0 FSDT® 3.4688 3.4688 3.4688 3.4688 3.4688
Present 18.6842 18.6842 18.6842 18.6842 18.6842 Present 3.4759 3.4759 3.4759 3.4759 3.4759
05 FSDT® 10.8640 11.7085 12.4145 12.9276 13.5006 05 FSDT® 2.7872 2.8634 2.9284 2.9781 3.0282
"~ Present 10.8770 11.7258 12.4418 12.9656 13.5503 "~ Present 2.7894 2.8659 2.9318 2.9827 3.0338
1 FSDT® 7.7220 8.7323 9.6429 10.3246 11.1229 1 FSDT® 2.4144 2.5256 2.6258 2.7027 2.7838
FCFC Present 7.7238 8.7349 9.6536 10.3476 11.1593 FCFC Present 2.4155 2.5266 2.6278 2.7061 2.7885
) FSDT® 5.3477 6.2913 7.2569 8.0294 8.9676 ) FSDT® 2.0675 2.1914 2.3190 2.4215 2.5323
Present 5.3569 6.2949 7.2608 8.0457 8.9924 Present 2.0703 2.1928 2.3203 2.4245 2.5362
. FSDT® 3.9393 4.5849 5.4268 6.2015 7.1514 . FSDT® 1.8296 1.9145 2.0430 2.1632 2.2918
Present 3.9854 4.6251 5.4482 6.2380 7.1729 Present 1.8412 1.9236 2.0477 2.1701 2.2957
10 FSDT® 3.6230 4.0915 4.8230 5.5683 6.4748 10 FSDT® 1.7806 1.8285 1.9429 2.0656 2.1942
Present 3.6852 4.1712 4.8709 5.6360 6.5030 Present 1.7968 1.8467 1.9531 2.0785 2.1995
® Taken from Thai et al. (2014) @ Taken from Thai et al. (2014)
problem, we have P?=P)=Pg =f,=0. While for the PO=¢P,ie, &=PJP . and for the bending analysis, we

buckling analysis, we put w=pPJ =1f,=0; P’=P and put PY=P)=Pg =0=0.
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4. Numerical results and discussions

In this section, some numerical examples are exposed
and discussed to check the accuracy of the present
formulation and examine the impacts of the inhomogeneity
parameter, thickness ratio of layers, i.e., scheme, transverse
shear deformation and boundary conditions on deflection,
critical buckling load and natural frequency of FG sandwich
plates.

The combination of materials consists of aluminum and
alumina with the following material properties:

e Ceramic (Alumina, Al,03): E.=380 GPa; v=0.3;

p=3800 kg/m.

* Metal (Aluminium, Al): E,=70 GPa; v=0.3; p,,=2707

kg/m®.

The employed non-dimensional quantities are

3 2
_ (30)
Eg=1GPa, py=1kgm?®

Tables 2 to 4 provide the nondimensionalized values of
the transverse deflections W, buckling load N and
natural frequencies @ of various types of powerly graded
sandwich plates under various boundary conditions. The
results are compared with those obtained using FSDT
developed by Thai et al. (2014). Good agreement is
achieved between the present results obtained by using the
present simple hyperbolic shear deformation theory and
those of Thai et al. (2014). It is remarked that the stiffer and
softer plates correspond to the FCFC and SSSS ones,
respectively. With the increase of the inhomogeneity
parameter k, the plate becomes softer and hence, leads to a
reduction of both the frequency and buckling load and an
increase of deflection. This due to the fact that when the
parameter increases the plate tends to be metallic.

In Figs. 2-4, the variations of deflection, critical
buckling load and fundamental natural frequency of FG
sandwich square plates versus the inhomogeneity parameter
k are presented, respectively. Different layer configurations
are employed for multi-layered FGM plates. The thickness
ratio of the plate is considered equal to 10. It can be
observed that increasing the inhomogeneity parameter k
leads to increase in deflection (Fig. 2) and a reduction of
critical buckling load (Fig. 3) and natural frequency (Fig.
4). This behavior can be attributed to the fact that higher
inhomogeneity parameter k corresponds to lower volume
fraction of the ceramic phase. Thus, increasing the
inhomogeneity parameter makes the plate softer because of
the high portion of metal in comparison with the ceramic
part, and consequently, results in an increase in deflection
and a reduction of both buckling load and natural frequency.
It is observed from results that the hardest and softest plates
correspond to the (1-2-1) and (1-0-1) schemes, respectively.
Such behavior is due to the fact that the (1-2-1) and (1-0-1)
FG sandwich plates correspond to the highest and lowest
volume fractions of the ceramic phase, and thus makes them
become the hardest and softest ones. In addition, it can be
seen form Figs. 2-4, that when clamped boundary
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Fig. 2 Effect of the inhomogeneity parameter (k) on
dimensionless deflection (W) of square FG sandwich plates
(a/h=10): (a) simply supported plate; (b) clamped plate
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Fig. 3 Effect of the inhomogeneity parameter (k) on
dimensionless critical buckling load (N) of square FG
sandwich plates (a/h=10) under biaxial compression: (a)
simply supported plate; (b) clamped plate
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Fig. 5 Effect of boundary conditions on dimensionless
deflection W of (1-1-1) FG sandwich square plates (k=2)

conditions (CCCC) are considered, the plate becomes
stiffer; this has led to a reduction of the deflection (Fig.
2(b)) and increased critical buckling load (Fig. 3(b)) and
natural frequency (Fig. 4(b)).

Figs. 5-7 demonstrate the effect of boundary conditions
on deflection, buckling load and natural frequency of FG
sandwich plates. It is observed from this investigation that
the hardest and softest plates correspond to the FCFC and
SSSS ones, respectively.
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Fig. 6 Effect of boundary conditions on dimensionless
critical buckling load N of (1-1-1) FG sandwich square
plates (k=2) under biaxial compression
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Fig. 7 Effect of boundary conditions on dimensionless
frequency @ of (1-1-1) FG sandwich square plates (k=2)
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Fig. 8 Comparison of dimensionless critical buckling load
N of (1-2-1) FG sandwich clamped and simply supported
(a/h=10, k=2)

Fig. 8 shows the effect of the parameter £ on the critical
buckling loads N . As expected, the uniaxial buckling load
(&=0) is greater than the biaxial one (&=1).

5. Conclusions

This work presents a bending, buckling and free
vibration analysis of FG sandwich plates composed of FG
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face sheets and an isotropic homogeneous core by
employing a simple hyperbolic shear deformation theory
with 4 unknowns. Different cases of boundary conditions
are considered in the present investigation. The results
obtained by the present formulation are compared with
other results available in literature. The following
conclusions may be drawn from the present study:
* The obtained results are in good agreement with those
found in literature.
 The vibration frequencies and buckling loads for FG
sandwich plates are generally lower than the
corresponding values for homogeneous ceramic plates,
while the deflections are higher than those of
homogeneous ceramic plates.
* The vibration frequencies and buckling loads increase
as the side-to-thickness ratio increases, while the
deflections decrease.
» The vibration frequencies and buckling loads for
simply supported powerly graded sandwich plates are
lower than those for free and clamped powerly graded
sandwich plates.
» The deflections for simply supported powerly graded
sandwich plates are higher than those for free and
clamped powerly graded sandwich plates.
» The critical buckling load for the plate under biaxial
compression is lower than the plate under uniaxial
compression.
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