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1. Introduction 
 

Normally, functionally graded materials (FGMs) are 

heterogeneous materials in which the elastic and thermal 

properties change from one surface to the other, gradually 

and continuously. The material is constructed by smoothly 

changing the volume fraction of its constituent materials. 

FGMs offer great promise in applications where the 

operating conditions are severe, including spacecraft heat 

shields, heat exchanger tubes, plasma facings for fusion 

reactors, engine components, and high-power electrical 

contacts or even magnets. For example, in a conventional 

thermal barrier coating for high-temperature applications, a 

discrete layer of ceramic material is bonded to a metallic 

structure. However, the abrupt transition in material 

properties across the interface between distinct materials 

can cause large interlaminar stresses and lead to plastic 

deformation or cracking (Finot and Suresh 1996). These 

adverse effects can be alleviated by functionally grading the 

material to have a smooth spatial variation of material 

composition. The concept of FGMs was first introduced in 

Japan in 1984. Since then it has gained considerable 

attention (Koizumi 1993). A lot of different applications of 

FGMs can be found in (Zhu and Meng 1995). Ramakris and 
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Kunukkas (1973) provided a closed-form analytical solution 

for free vibration of an annular sector plate with radial 

edges simply supported. Mukhopadhyay (1979, 1982) used 

a semi-analytical method and Srinivasan and 

Thiruvenkatachari (1983, 1986) used the integral equation 

technique to analyze the vibrations of annular sector plates, 

respectively. Kim and Dickinson (1989) used one-

dimensional (1-D) orthogonal polynomials and Liew and 

Lam (1993) used two-dimensional orthogonal polynomials 

as admissible functions to study the free vibration of 

annular sector plates by the Rayleigh-Ritz method. Ramaiah 

and Vijayakumar (1974) studied the free vibration of 

annular sector plates with simply supported radial edges by 

a combination of the Rayleigh-Ritz method and coordinate 

transformation. Swaminadham et al. (1984) compared the 

natural frequencies of annular sector plates from the finite 

element method and experiments. Seok and Tiersten (2004) 

used a variational approximation procedure to analyze the 

free vibration of cantilevered annular sector plates. Houmat 

(2001) used the hierarchical finite element method to study 

the free vibration of annular sector plates. Sharma and 

Marin (2013) considered wave propagation in micropolar 

thermoelastic solid half space with distinct conductive and 

thermodynamic temperatures. Marin (1997) obtained the 

existence and uniqueness of the generalized solutions for 

the boundary value problems in elasticity of dipolar 

materials with voids. Marin (2010) studied harmonic 

vibrations in thermoelasticity of microstretch materials sing 

a toupin type measure associated with the corresponding 
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Abstract.  This paper is motivated by the lack of studies in the technical literature concerning to the influence of carbon 

nanotubes (CNTs) waviness and aspect ratio on the vibrational behavior of functionally graded nanocomposite annular sector 

plates resting on two-parameter elastic foundations. The carbon nanotube-reinforced (CNTR) plate has smooth variation of CNT 

fraction based on the power-law distribution in the thickness direction, and the material properties are also estimated by the 

extended rule of mixture. In this study, the classical theory concerning the mechanical efficiency of a matrix embedding finite 

length fibers has been modified by introducing the tube-to-tube random contact, which explicitly accounts for the progressive 

reduction of the tubes’ effective aspect ratio as the filler content increases. Parametric studies are carried out to highlight the 

influence of CNTs volume fraction, waviness and aspect ratio, boundary conditions and elastic foundation on vibrational 

behavior of FG-CNT thick sectorial plates. The study is carried out based on three-dimensional theory of elasticity and in 

contrary to two-dimensional theories, such as classical, the first- and the higher-order shear deformation plate theories, this 

approach does not neglect transverse normal deformations. The annular sector plate is assumed to be simply supported in the 

radial edges while any arbitrary boundary conditions are applied to the other two circular edges including simply supported, 

clamped and free. For an overall comprehension on 3-D vibration of annular sector plates, some mode shape contour plots are 

reported in this research work. 
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steady-state vibration. Marin (1994) The Lagrange identity 

method was developed by Marin (1994) to study the initial 

boundary value problem of thermoelasticity of bodies with 

microstructure. Sharma et al. (2005a, 2005b) integrated an 

analytical approach with the Chebyshev polynomials 

technique to study the buckling and free vibration of 

isotropic and laminated composite sector plates based on 

the first-order shear deformation theory. For moderate 

thickness plates, the first-order shear deformable plate 

theory is commonly used, which could provide a result 

more accurate than that from the CPT. Liew and Liu (2000) 

used the differential quadrature method to analyze the free 

vibration of thick annular sector plates. Barka et al. (2016) 

studied Thermal post-buckling behavior of imperfect 

temperature-dependent sandwich FG plates. Bouguenina et 

al. (2015) studied FG plates with variable thickness 

subjected to thermal buckling. Chen et al. (2017) studied 

Vibration and stability of initially stressed sandwich plates 

with FGM face sheets. Wu and Liu (2016) developed a state 

space differential reproducing kernel (DRK) method in 

order to study 3D analysis of FG circular plates. Park et al. 

(2016) used modified couple stress for dynamic analysis of 

sigmoid functionally graded materials plates. Leissa et al. 

(1993, 1995) considered the effect of stress singularities on 

the vibration analysis of thick annular sector plates and 

presented the corner functions to improve the convergence 

of the numerical solutions. Zhou et al. (2009) used the 

Chebyshev-Ritz method to study the free vibration of thick 

annular sector plates, Nie and Zhong (2008) investigated 

the free and forced vibration analysis of FGM annular 

sector plates with simply-supported radial edges by using a 

semi-analytical approach. Arefi (2015) suggested an 

analytical solution of a curved beam with different shapes 

made of functionally graded materials (FGMs). Bennai et 

al. (2015) developed a new refined hyperbolic shear and 

normal deformation beam theory to study the free vibration 

and buckling of functionally graded (FG) sandwich beams 

under various boundary conditions. Bouchafa et al. (2015) 

used refined hyperbolic shear deformation theory (RHSDT) 

for the thermoelastic bending analysis of functionally 

graded sandwich plates. Tahouneh (2016) presented a 3-D 

elasticity solution for free vibration analysis of continuously 

graded carbon nanotube-reinforced (CGCNTR) rectangular 

plates resting on two-parameter elastic foundations. The 

volume fractions of oriented, straight single-walled carbon 

nanotubes (SWCNTs) were assumed to be graded in the 

thickness direction.  Moradi-Dastjerdi and Momeni-

Khabisi (2016) studied Free and forced vibration of plates 

reinforced by wavy carbon nanotube (CNT). The plates 

were resting on Winkler-Pasternak elastic foundation and 

subjected to periodic or impact loading. 

Nowadays, the use of carbon nanotubes in 

polymer/carbon nanotube composites has attracted wide 

attention (Wagner et al. 1997). A high aspect ratio, low 

weight of CNTs and their extraordinary mechanical 

properties (strength and flexibility) provide the ultimate 

reinforcement for the next generation of extremely 

lightweight but highly elastic and very strong advanced 

composite materials. On the other hand, by using of the 

polymer/CNT composites in advanced composite materials, 

we can achieve structures with low weight, high strength 

and high stiffness in many structures of civil, mechanical 

and space engineering. 

Several researches have recently investigated the elastic 

properties of multiwalled carbon nanotube (MWCNT) and 

their composites (Fidelus et al. 2005, Ghavamian et al. 

2012). Farsadi et al. (2012) investigated the extent to which 

the effective stiffness of composite materials can be 

impacted by the characteristic waviness of nanotubes 

embedded in polymers. Weidt and Figiel (2015) developed 

a 3D nonlinear computational model to predict the 

compressive behaviour of epoxy/carbon nanotube (CNT). 

Gojny et al. (2005) focused on the evaluation of the 

different types of the CNTs applied, their influence on the 

mechanical properties of epoxy-based nanocomposites and 

the relevance of surface functionalization. Therefore, the 

study of the mechanical performance of CNT-based 

composites and the discovery of possible innovative 

applications has recently attracted the interest of many 

researchers. Several researchers have reported that 

mechanical properties of polymeric matrices can be 

drastically increased (Montazeri et al. 2010, Yeh et al. 

2006) by adding a few weight percent (wt%) MWCNTs. 

Montazeri et al. (2010) showed that modified Halpin-Tsai 

equation with exponential Aspect ratio can be used to model 

the experimental result of MWNT composite samples. They 

also demonstrated that reduction in Aspect ratio (L/d) and 

nanotube length cause a decrease in aggregation and Above 

1.5 wt%, nanotubes agglomerate causing a reduction in 

Young’s modulus values. Thus, it is important to determine 

the effect Aspect ratio and arrangement of CNTs on the 

effective properties of carbon nanotube-reinforced 

composite (CNTRC). Yeh et al. (2006) used the Halpin-Tsai 

equation to shows the effect of MWNT shape factor (L/d) 

on the mechanical properties. They showed that the 

mechanical properties of nanocomposite samples with the 

higher shape factor (L/d) values were better than the ones 

with the lower shape factor. The reinforcement effect of 

MWCNTs with different aspect ratio in an epoxy matrix has 

been carried out by Martone et al. (2011). They showed that 

progressive reduction of the tubes effective aspect ratio 

occurs because of the increasing connectedness between 

tubes upon an increase in their concentration. Also they 

investigated on the effect of nanotube curvature on the 

average contacts number between tubes by means of the 

waviness that accounts for the deviation from the straight 

particles assumption. The material properties of FG-CNTR 

can be evaluated through a micromechanical model in 

which CNT efficiency parameters are estimated by 

matching the elastic moduli of the CNTR observed from the 

molecular dynamics (MD) simulation with that of 

numerical results obtained from the rule of mixture (Shen 

2009).  

Analysis of FG-CNTR plates were first presented by 

Shen (2009) in which he studied the nonlinear bending 

behavior of FG-CNTR plates in thermal environment. He 

concluded that the load bending moment curves of the plate 

could be significantly increased as a result of functionally 

graded CNT reinforcements. Shen and Zhang (2010) 

presented thermal buckling and post buckling behavior of  
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Fig. 1 Geometry of the CNTR annular sector plate on an 

elastic foundation (simply supported at the radial edges and 

different types of boundary conditions at the circular edges) 

 

 

functionally graded nanocomposite plates reinforced by 

single-walled carbon nanotubes (SWCNTs). The 

temperature-dependent material properties of SWCNTs 

were obtained from MD simulations. In comparison with 

research works on the free vibration or buckling analyses of 

FG structures, only a few references can be found that 

consider the effect of waviness and aspect ratio on the free 

vibrational behavior of panels with four edges simply 

supported (Moradi-Dastjerdi et al.  2013, Shams and 

Soltani 2015). Moradi-Dastjerdi et al.  (2013) investigated 

the effects of CNT waviness on the dynamic behavior of 

FG-CNTR cylinder under impact load. Shams and Soltani 

(2015) investigated the effects of carbon nanotube waviness 

on the buckling behavior of functionally graded 

nanocomposite plates using a mesh free method. Despite 

the aforementioned extensive research on the free vibration 

analysis of structures resting on elastic foundations, to the 

authors’ best knowledge, still very little work has been done 

for vibration analysis of FG-CNTR structures and 

considering the effect of waviness and aspect ratio on their 

vibrational response. The aim of this study is to fill this 

apparent gap in this area by investigating the effects of 

CNTs waviness and aspect ratio on vibrational behavior of 

FG nanocomposite annular sector plates on elastic 

foundations. In this study, the classical theory concerning 

the mechanical efficiency of a matrix embedding finite 

length fibers has been modified by introducing the tube-to-

tube random contact, which explicitly accounts for the 

progressive reduction of the tubes’ effective aspect ratio as 

the filler content increases. 

 

 

2. Problem description 
 

2.1. Mechanical properties of the structure 
 

Consider a CNTR annular sector plate resting on two-

parameter elastic foundations as shown in Fig. 1. This plate 

is referring to a cylindrical coordinate system (x,θ,z), as 

depicted in Fig. 1. It is assumed the thickness of structure is 

“h”. The plate is made of a mixture from wavy SWCNTs 

and an isotropic matrix. The wavy SWCNTs are either 

uniformly distributed (UD) or functionally graded (FG) 

along the thickness direction for different types of 

distribution as shown in Fig. 2. 

 

Fig. 2 Schematic configuration of a carbon nanotube-

reinforced composite sectorial plate with four types of CNT 

distribution 

 

 

Employing the extended rule of mixture the effective 

elastic properties of the CNTR plate can be expressed as 

follows (Shen 2009) 
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are the corresponding properties of the 

isotropic matrix. ηj (j=1,2,3) are the CNT efficiency 

parameters accounting for the scale-dependent material 

properties evaluated by comparing the effective material 

properties obtained from MD simulations and that of 

numerical results obtained from the rule of mixture in (Shen 

2009). VCNT and Vm are the CNT and matrix volume 

fractions related by 

 1CNT mV V  (6) 

The effective Young’s moduli and shear modulus of 

wavy CNT are introduced as follows (Martone et al. 2011) 
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The efficiency parameter, η
*
, is considered to account  
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Table 1 Properties of the (10,10) SWCNT and the polymer 

matrix (Shen and Zhang 2010) 

 

Table 2 CNT efficiency parameters for different values of 

volume fractions (Shen and Zhang 2010) 

*
CNTV  η1 η2 η3 

0.12 0.137 1.022 0.715 

0.17 0.142 1.626 1.138 

0.28 0.141 1.585 1.109 

 

 

the CNT aspect ratio and waviness (Martone et al. 2011). 

<c> is the average number of contacts for CNTs depends on 

their aspect ratio defined as 
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where the waviness, w, has been introduced for accounting 

the CNT’s curvature within the CNTR structure (Martone et 

al. 2011). Introducing this parameter, the excluded volume 

due to the curvature of CNTs has been considered. The 

accuracy of this method has been investigated by (Moradi-

Dastjerdi et al. 2013). The variation of CNT distribution 

through the plate thickness is assumed as follows 
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(11) 

*
CNTV  

is the CNT volume fraction and wCNT is the mass 

fraction of CNTs. Poly methyl methacrylate, referred to as 

PMMA and (10,10) SWCNTs are selected as the matrix and 

the reinforcement materials, respectively. The material 

properties for the constituent materials are listed in Table 1 

(Shen and Zhang 2010). 

Values of CNT efficiency parameters, η1 (i=1,2,3), for 

different CNT volume fractions are presented in Table 2 to 

capture the scale difference between micro and nano levels. 

It should be noted that η3=0.7η2, G13=G12 and G23=1.2G12 

(Shen and Zhang 2010).  

 

 

3. Governing equations  

In the absence of body forces, the governing equations 

are as follows 
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(12) 

Where σr, σθ, σz are axial stress components, τrθ, τθz, τrz 

are shear stress components, ur, uθ, uz 
are displacement 

components, ρ
 
denotes material density and t is time. The 

relations between the strain and the displacement are 

2

2

2

2

2

2

 ∂

∂

 ∂

 ∂

 ∂

∂1

 ∂

 ∂

 ∂

∂2

 ∂

 ∂

 ∂

 ∂1

 ∂

 ∂

 ∂

∂-

 ∂

 ∂

 ∂

 ∂1

 ∂

 ∂

t

u

rzrr

t

u

rzrr

t

u

rzrr

zrzzzrz

rzr

rrrzrr


































 

(13) 

Where εr, εθ, εz, γθz, γrθ, γrz are strain components. The 

constitutive equations for material are (Reddy 2013) 
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(14) 

where cij are material elastic stiffness coefficients. 

Using the three-dimensional constitutive relations and 

the strain-displacement relations, the equations of motion in 

terms of displacement components for a linear elastic FG 

plate with infinitesimal deformations can be written as 

r r
r

u uu u
c c u

r r r r r r r

 

 

   
     

     

22

11 122 2 2

1 1 1 1  

( )z r
c u uu u

c
r z r r r r

 

  

  
   

     

22 2
66

13 2

1 1
 

r z r zu u u u
c' c

z r z z r

     
     

       

2 2

55 55 2
 

r r z r r z
u uu u u u u u

c c c c c c
r r r r z r r r z

 

 

        
                     

11 12 13 12 22 23

1 1 1  

ru

t






2

2
 

(15) 

- -r r
u uu u

c u
r r r r r r r

 


 

   
  

     

2 2

66 2 2 2

1 1 1 1  (16) 

SWCNT Polymer matrix 

CNT CNT

CNT CNT

E . (TPa),E . (TPa),

G . (TPa), (Kg / m )

.





 

 



11 22

3
12

12

5 6466 7 0800

1 9447 1400

0 175

 

m

m

m

E . (GPa)

(Kg/ m )









3

2 1

1150

034

 

652



 

Effects of CNTs waviness and aspect ratio on vibrational response of FG-sector plate 

 

r r z
uu u u

c c c
r r r r z



   

   
     

      

22 2

12 22 232

1 1 1  

' z z
u uu u

c c
r z r z z

 

 

    
     

       

22

44 44 2

1 1  

( - )r
c u u uu

r r r r t

  


 
  

  

2
66

2

2 1  

r z z
uu u c u

c
r z r r r z



 

     
    

        

22 2 2
44

55 2 2

1  

' ' ( )r r r
uu u u

c c c
r z r r r





 
   

   

2

13 13 23

1
 

'r z z
u u u u

c c c
r z r z z z





    
    

     

2 2

23 33 33 2

1 1
 

( )r z z
c u u u

r z r t


  
  

  

2
55

2
 

(17) 

where 
dz
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c
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ij '  

Eqs. (15) and (16) represent the in-plane equations of 

motion along the r and θ-axes, respectively; and Eq. (17) is 

the transverse or out-of-plane equation of motion.  

The related boundary conditions are as follows: 
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   
    

   

2 2

2 2 2

0 0

1 1
 

(18) 

at z=h 

, ,zr z z    0 0 0  (19) 

Kw and Kg are the Winkler and shearing layer elastic 

coefficients of the foundation. In this paper three different 

kinds of boundary conditions are considered for circular 

edges including clamped-clamped (c-c)
 
, simply supported-

clamped (s-c) and free-clamped (f-c). The boundary 

conditions at edges are 

Clamped (r=b)-Clamped (r=a) 

at  r = a       r zu u u  0  

at  r = b       r zu u u  0  
(20) 

Simply supported (r=b)-Clamped (r=a) 

at  r = b       
z ru u   0  

at  r = a       r zu u u  0  
(21) 

Free (r=b)-Clamped (r=a) 

at  r = a       r zu u u  0  

at  r = b        0 rzrr    
(22) 

 

 

4. Solution procedure 

 

Using the geometrical periodicity of the plate, the 

displacement components for the free vibration analysis can 

be represented as 

     

     

     

, , , , sin ,

, , , , cos ,

, , , , sin

i t

r rm

i t

m

i t

z zm

U r z t U r z m e

U r z t U r z m e

U r z t U r z m e





 



  

  

  







 
(23) 

where m (=0,1,…,∞) is the circumferential wavenumber; ω 

is the natural frequency and i (= 1 ) is the imaginary 

number. It is obvious that m=0 means axisymmetric 

vibration.  At this stage the generalized differential 

quadrature (GDQ) method (A brief review of GDQ method 

is given in Appendix) rules are employed to discretize the 

free vibration equations and the related boundary 

conditions. Substituting for the displacement components 

from (23) and then using the GDQ rules for the spatial 

derivatives, the discretized form of the equations of motion 

at each domain grid point (rj,zk) with (j = 2,3,…, Nr−1) and 

(k =2,3,…, 1zN ) can be obtained as Eq. (15) 
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m m
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Eq. (16) 
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Eq. (17) 
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(26) 

where r

ijA , z

ijA  and r

ijB , z

ijB  are the first and second order 

GDQ weighting coefficients in the r- and z- directions, 

respectively. 

In a similar manner the boundary conditions can be 

discretized. For this purpose, using Eq. (23) and the GDQ 

discretization rules for spatial derivatives, the boundary 

conditions at z=0 and h become, 

Eq. (18): 

at z=0 
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Eq. (19): 

at z=h 
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(28) 

where k=1 at z=0 and k=Nz at z=h, and j=1,2, . . .,Nr. The 

boundary conditions at r=b and a stated in (20-22) become, 

Simply supported (S) 

, ,zmjk mjku u 0 0
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(29.1) 

Clamped (C) 

, ,rmjk mjk zmjku u u  0 0 0  (29.2) 

Free (F) 
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(29.3) 

In the above equations k=2, . . ., Nz−1; also j=1 at r=b 

and j= Nr at r=a. 

In order to carry out the eigenvalue analysis, the domain 

and boundary degrees of freedom are separated and in 

vector forms they are denoted as {d} and {b}, respectively. 

Based on this definition, the discretized form of the 

equilibrium equations and the related boundary conditions 

take the following forms, 

Equations of motion (24-26) 

  
 

 
    db dd

b
K K M d

d


  
     

  

2 0  
(30) 

Boundary conditions (27, 28) and (29.1-3) 

       bd bbK d K b  0  (31) 

Eliminating the boundary degrees of freedom in Eq. (30) 

using Eq. (31), this equation become 

       -K M d 2 0  (32) 

where         bdbbdbdd KKKKK
1-

- The above eigenvalue 

system of equations can be solved to find the natural 

frequencies and mode shapes of the plates. 
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5. Numerical results and discussion 
 

In this section, the convergence behavior and accuracy 

of the method in evaluating the non-dimensional natural 

frequencies of isotropic and FG annular sector plates with 

different set of boundary conditions along the circular edges 

are investigated. 

Leissa et al. (1993, 1995) provided the exact results for 

sector plates with a re-entrant corner, based on the Mindlin 

plate theory. As a first example, the comparative studies of 

the fundamental frequency parameters are given in Table 3. 

It is seen from Table 3 that for thin plates (h/a=0.01) there is 

an excellent agreement between the present 3-D solutions 

and the classical solutions. For moderately thick plates 

(h/a=0.2) the present 3-D solutions also agree quite well 

with the Mindlin solutions. For very thick plates (h/a=0.4) 

the discrepancies increase, particularly for c-c plates. It is 

found that only nineteen DQ grid points in each direction (r 

 

 

and z) can yield accurate results. The same problem has 

been analyzed by Zhou et al. (2009). It is obvious that the 

error of the Mindlin plate theory increases with the increase 

of the plate thickness, especially for very thick plates 

(h/a≥0.4). The two-dimensional theories, such as the 

classical plate theory, the first and the higher order shear 

deformation plate theories neglect transverse normal 

deformations, and generally assume that a plane stress state 

of deformation prevails in the plate. These assumptions may 

be appropriate for thin plates but do not give good results 

for thick plates. It is seen from Table 3 that the maximum 

differences between the 3-D solutions and the Mindlin 

solutions occur at the clamped-clamped plates. A numerical 

value of Nr=Nz=19 is used for the next studies. As the 

second example, the convergence behavior and accuracy of 

the method for lowest non-dimensional frequency 

parameter  11h C    of thick FG annular sector 

plates with two different set of circular edges conditions  

Table 3 Comparison of fundamental frequency parameter ( )a h D  2

 
for flexural vibration of annular sector 

plates with two straight edges simply supported for b/a=0.5 

α(deg) h/a Theories C-C F-C F-S 

195 

0.01 

Leissa et al. (1995) 90.0837 21.4263 10.8761 

Zhou et al. (2009) 90.1125 21.4074 10.8522 

Present 90.1123 21.4076 10.8524 

0.2 

Leissa et al. (1995) 70.8090 19.9986 10.2268 

Zhou et al. (2009) 71.9146 20.0967 10.2386 

Present 71.9143 20.0968 10.2384 

0.4 

Leissa et al. (1995) 48.6618 17.5822 9.3661 

Zhou et al. (2009) 50.0059 17.7636 9.3961 

Present 50.0056 17.7638 9.3962 

210 

0.01 

Leissa et al. (1995) 89.9678 20.9496 10.2631 

Zhou et al. (2009) 90.0265 20.9368 10.2418 

Present 90.0264 20.9369 10.2416 

0.2 

Leissa et al. (1995) 70.7344 19.6097 9.6643 

Zhou et al. (2009) 71.8406 19.7064 9.6751 

Present 71.8406 19.7063 9.6752 

0.4 

Leissa et al. (1995) 48.6117 17.2943 8.8769 

Zhou et al. (2009) 49.9566 17.4733 8.9043 

Present 49.9564 17.4735 8.9041 

270 

0.01 

Leissa et al. (1995) 89.6828 19.7282 8.5788 

Zhou et al. (2009) 89.7655 19.7258 8.5635 

Present 89.7653 19.7259 8.5633 

0.2 

Leissa et al. (1995) 70.5516 18.6218 8.1304 

Zhou et al. (2009) 71.6588 18.7149 8.1386 

Present 71.6586 18.7150 8.1387 

0.4 

Leissa et al. (1995) 48.4901 16.5657 7.5461 

Zhou et al. (2009) 49.8361 16.7386 7.5670 

Present 49.8360 16.7387 7.5670 

360 

0.01 

Leissa et al. (1995) 89.4931 18.8711 7.2502 

Zhou et al. (2009) 89.6519 18.8831 7.2418 

Present 89.6520 18.8829 7.2421 

0.2 

Leissa et al. (1995) 70.4307 17.9366 6.9363 

Zhou et al. (2009) 71.5435 18.0283 6.9426 

Present 71.5433 18.0285 6.9423 

0.4 

Leissa et al. (1995) 48.4105 16.0630 6.5171 

Zhou et al. (2009) 49.7559 16.2316 6.5332 

Present 49.7561 16.2315 6.5331 
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Fig. 3 Mode shape plots of annular sector plates with 

Clamped-Clamped boundary conditions at the circular 

edges (Kw=Kg=10, h/a=0.2, *
CNV =0.28, α=90

o
) 

 

 

including clamped-clamped and clamped -simply supported 

are studied in Tables 4 and 5. The results are compared with 

those of the three-dimensional elasticity solutions of Nie 

and Zhong (2008) which were obtained using the State 

space method (S.S.M). It is assumed that the material 

properties vary exponentially ))(,)((
)()(
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Fig. 4 Mode shape plots of annular sector plates with Free-

Clamped boundary conditions at the circular edges 

(Kw=Kg=10, h/a=0.2, 
*
CNV =0.28, α=90

o
) 

 

 

through the thickness of the plate. Superscripts M denote 

the material properties of the bottom surface of the plate, λ 

is the material property graded index. One can see that an 

excellent agreement exists between the converged results of 

the presented approach and the other one. 

In this section, we characterize the response of FG  

Table 4 The lowest non-dimensional frequency parameter  11h C    for FG annular sector plates having 

clamped (r=b) and clamped (r=a) conditions 

α (deg) h/a b/a m 
 λ 

 1 2 3 4 5 

195 

0.1 

0.1 

1 Nie and Zhong 2008 0.0663 0.0622 0.0566 0.0505 0.0446 

2 Present 0.0664 0.0623 0.0564 0.0505 0.0445 

1 Nie and Zhong 2008 0.0795 0.0746 0.0677 0.0603 0.0531 

2 Present 0.0793 0.0747 0.0679 0.0603 0.0530 

0.3 

1 Nie and Zhong 2008 0.1041 0.0980 0.0895 0.0801 0.0710 

2 Present 0.1039 0.0979 0.0897 0.0800 0.0710 

1 Nie and Zhong 2008 0.1104 0.1039 0.0948 0.0849 0.0753 

2 Present 0.1105 0.1039 0.0950 0.0850 0.0752 

0.3 

0.1 

1 Nie and Zhong 2008 0.4040 0.3862 0.3611 0.3329 0.3046 

2 Present 0.4041 0.3863 0.3610 0.3327 0.3048 

1 Nie and Zhong 2008 0.5013 0.4781 0.4455 0.4091 0.3730 

2 Present 0.5011 0.4779 0.4455 0.4092 0.3729 

0.3 

1 Nie and Zhong 2008 0.5645 0.5436 0.5137 0.4796 0.4450 

2 Present 0.5646 0.5435 0.5138 0.4796 0.4452 

1 Nie and Zhong 2008 0.6077 0.5840 0.5504 0.5125 0.4744 

2 Present 0.6079 0.5842 0.5505 0.5124 0.4746 

210 

0.1 

0.1 

1 Nie and Zhong 2008 0.0659 0.0619 0.0563 0.0502 0.0443 

2 Present 0.0660 0.0621 0.0561 0.0501 0.0444 

1 Nie and Zhong 2008 0.0766 0.0719 0.0653 0.0581 0.0512 

2 Present 0.0765 0.0721 0.0654 0.0583 0.0510 

0.3 

1 Nie and Zhong 2008 0.1039 0.0978 0.0892 0.0799 0.0708 

2 Present 0.1037 0.0977 0.0895 0.0800 0.0706 

1 Nie and Zhong 2008 0.1090 0.1027 0.0937 0.0839 0.0744 

2 Present 0.1092 0.1029 0.0935 0.0839 0.0745 

0.3 

0.1 

1 Nie and Zhong 2008 0.4002 0.3827 0.3580 0.3302 0.3023 

2 Present 0.4000 0.3829 0.3582 0.3304 0.3023 

1 Nie and Zhong 2008 0.4832 0.4608 0.4294 0.3943 0.3594 

2 Present 0.4833 0.4606 0.4296 0.3944 0.3595 

0.3 

1 Nie and Zhong 2008 0.5630 0.5421 0.5123 0.4784 0.4439 

2 Present 0.5633 0.5421 0.5121 0.4784 0.4440 

1 Nie and Zhong 2008 0.5990 0.5756 0.5428 0.5056 0.4682 

2 Present 0.5991 0.5755 0.5429 0.5057 0.4683 
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Fig. 5 Variation of the first non-dimensional natural 

frequency parameter of annular sector plate with Winkler 

and different shearing layer elastic coefficient for different 

types of boundary conditions (h/a=0.2, * 0.28CNV , 

α=190°, w=0, Type 1) 

 

 

sector plate considering the effects of waviness and aspect 

ratio. The non-dimensional natural frequency, Winkler and 

shearing layer elastic coefficients are assumed as follows 

 

 

(Tahouneh 2017) 

)1(12, 232

iiiii hEDDha    (33) 

,g g i w w iK k a D K k a D 2 4  (34) 

where ρi, Ei 
and υi are mechanical properties of CNT. 

For an overall comprehension on 3-D vibration of 

annular sector plates, some mode shape contour plots for 

different types of boundary conditions are depicted in Figs. 

3 and 4. 

The effects of variation of the Winkler elastic coefficient 

on the first non-dimensional natural frequency parameters 

of FG-annular sector plate and for different values of 

shearing layer elastic coefficient and sets of boundary 

conditions are shown in Fig. 5. It is clear that in all cases, 

with increasing the elastic coefficients of the foundation, 

the frequency parameters increase to some limit values. It is 

observed for the large values of Winkler elastic coefficient, 

the shearing layer elastic coefficient has less effect and the 

results become independent of it. 

Table 5 The lowest non-dimensional frequency parameter  11h C    for FG annular sector plates having 

clamped (r=b) and simply supported (r=a) conditions 

α (deg) h/a b/a m 
 λ 

 1 2 3 4 5 

195 

0.1 

0.1 

1 Nie and Zhong 2008 0.0442 0.0412 0.0372 0.0329 0.0289 

2 Present 0.0444 0.0411 0.0374 0.0329 0.0287 

1 Nie and Zhong 2008 0.0582 0.0542 0.0488 0.0431 0.0377 

2 Present 0.0584 0.0544 0.0487 0.0429 0.0378 

0.3 

1 Nie and Zhong 2008 0.0727 0.0680 0.0617 0.0548 0.0484 

2 Present 0.0726 0.0682 0.0618 0.0548 0.0485 

1 Nie and Zhong 2008 0.0802 0.0751 0.0680 0.0604 0.0532 

2 Present 0.0803 0.0750 0.0680 0.0605 0.0531 

0.3 

0.1 

1 Nie and Zhong 2008 0.3152 0.2948 0.2687 0.2418 0.2166 

2 Present 0.3153 0.2949 0.2689 0.2416 0.2164 

1 Nie and Zhong 2008 0.4316 0.4039 0.3679 0.3304 0.2951 

2 Present 0.4314 0.4041 0.3680 0.3304 0.2950 

0.3 

1 Nie and Zhong 2008 0.4565 0.4245 0.3922 0.3600 0.3290 

2 Present 0.4564 0.4243 0.3920 0.3600 0.3290 

1 Nie and Zhong 2008 0.5198 0.4828 0.4442 0.4059 0.3693 

2 Present 0.5199 0.4826 0.4442 0.4060 0.3690 

210 

0.1 

0.1 

1 Nie and Zhong 2008 0.0438 0.0409 0.0369 0.0327 0.0287 

2 Present 0.0437 0.0407 0.0371 0.0329 0.0287 

1 Nie and Zhong 2008 0.0552 0.0515 0.0463 0.0408 0.0357 

2 Present 0.0550 0.0517 0.0464 0.0408 0.0356 

0.3 

1 Nie and Zhong 2008 0.0724 0.0678 0.0614 0.0546 0.0482 

2 Present 0.0722 0.0679 0.0615 0.0547 0.0481 

1 Nie and Zhong 2008 0.0787 0.0736 0.0667 0.0593 0.0522 

2 Present 0.0786 0.0735 0.0669 0.0594 0.0523 

0.3 

0.1 

1 Nie and Zhong 2008 0.3103 0.2904 0.2648 0.2384 0.2137 

2 Present 0.3101 0.2905 0.2650 0.2384 0.2135 

1 Nie and Zhong 2008 0.4105 0.3840 0.3495 0.3137 0.2800 

2 Present 0.4106 0.3842 0.3493 0.3138 0.2801 

0.3 

1 Nie and Zhong 2008 0.4538 0.4221 0.3901 0.3582 0.3275 

2 Present 0.4540 0.4221 0.3900 0.3584 0.3277 

1 Nie and Zhong 2008 0.5077 0.4715 0.4340 0.3968 0.3613 

2 Present 0.5076 0.4716 0.4342 0.3969 0.3612 
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Fig. 5 Continued 

 

 
Fig. 6 Geometry of the annular sector plate on an elastic 

foundation ( * 0.28CNV , AR=1000, w=0, α=200°, Type 1) 

 

 

The influence of shearing layer elastic coefficient on the 

first non-dimensional natural frequencies for C-C boundary 

condition is shown in Fig. 6. One can see that the Winkler 

elastic coefficient has little effect on the non-dimensional 

natural frequencies at different values of shearing layer 

elastic coefficient. It should be noted that this behavior is 

also observed at other types of boundary conditions, but, for 

the sale of brevity, they are not shown here. 

Normalized natural frequency of the FG-sectorial plates 

resting on elastic foundations for various circumferential 

Wave number, m, is calculated and plotted in Fig. 7. This 

figure is representing the three different FG material 

distributions (Types 1, 3 and 4). The results for UD sectorial 

plate are also included for direct comparison. It can be 

noticed that the plate of type 1 has highest, while the plates 

of types 3 and 4 are nearly the same and have lowest 

normalized natural frequency among the four. 

The effect of CNT aspect ratio is examined by Fig. 8. 

 

Fig. 7 Effect of the circumferential wave number (m) on the 

normalized natural frequency for Clamped-Clamped sector 

plates on elastic foundations (Kw=Kg=10, h/a=0.2,
 

*
CNV

=0.28, AR=1000, w=0, α=190
o
) 

 

 
Fig. 8 the variation of frequency parameters versus aspect 

ratio (AR) for Type 2 sectorial plates (Kw=Kg=10, h/a=0.2, 

α=190°, w=0) 

 

 
Fig. 9 Effect of h/a on the normalized natural frequency for 

Clamped-Clamped sectorial plates resting on elastic 

foundations (Kw=Kg=10, AR=1000, h/a=0.2, α=190
o
) 

 

 

This figure illustrates frequency parameters of Clamped-

Clamped sectorial plates for different amounts of *
CNV , 

including 0.12, 0.17 and 0.28. This figure reveals that 

increasing of CNT aspect ratio leads to a little increases 

frequency parameters. It should be taken into account that 

this behavior is also observed at other types of boundary 

conditions, but, for the sale of brevity, they are not shown 

here. 
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Fig. 9 shows the effect of volume fraction of CNTs on 

the normalized natural frequencies of sectorial plates. It is 

observed that the normalized natural frequency of the plates 

increases with increasing of *
CNV . Results show that by 

increasing the values of waviness index (w), normalized 

natural frequency of sectorial plate decreases, and the 

straight CNT gives highest frequency. It also shows that the 

non-dimensional natural frequency decreases with the 

increase of h/a ratio and then remains almost unaltered for  

great amount of thickness-to-outer radius ratio, h/a. 

 
 
6. Conclusions 
 

In this research work, free vibration of continuous 

grading annular sector plates on a two-parameter elastic 

foundation is investigated. The elastic foundation is 

considered as a Pasternak model with adding a shear layer 

to the Winkler model. This study is carried out based on the 

three-dimensional, and the main attention is focused on the 

effect of CNT waviness and aspect ratio on vibration 

behavior of FG sectorial plates. The FG sector plates are 

assumed to have a smooth variation of CNT volume 

fraction in the thickness direction, and the material 

properties estimated through the extended rule of mixture. 

Micromechanics equations cannot capture the scale 

difference between the nano and micro levels. To overcome 

this difficulty, the efficiency parameter is defined. In this 

research work, 2-D differential quadrature method is used 

to study different types of boundary conditions at circular 

edges including Free, Clamped and Simply supported. 

Using 2-D differential quadrature method in the r- and z-

directions, allows one to deal with FG plates with arbitrary 

thickness distribution of material properties and also to 

implement the effects of the elastic foundations as a 

boundary condition on the lower surface of the plate 

efficiently and in an exact manner. The fast rate of 

convergence and accuracy of the method are investigated 

through the different solved examples. From this study 

some conclusions can be made as following: 

• It is shown that the variation of Winkler elastic 

coefficient has little effect on the non-dimensional 

natural frequencies at different values of shearing layer 

elastic coefficient. It is clear that in all cases, with 

increasing the shearing layer elastic coefficient of the 

foundation, the frequency parameters increase to some 

limit values. 

• It is shown that for the large values of shearing layer 

elastic coefficient; the results become independent of it. 

It is also shown that with increasing the elastic 

coefficients of the foundation, the frequency parameters 

increase to some limit values. 

• The waviness can significantly reduce the stiffening 

effect of the nanotubes. 

• By increasing the values of waviness index, 

normalized natural frequency of sectorial plate 

decreases, and the straight CNT gives highest frequency. 

• Normalized natural frequency of sectorial plate that 

reinforced by long and short CNTs is compared for the 

same waviness index; biggest normalized natural 

frequency is found in the case of long CNT with 

reference to short one. 

• It also shows that the non-dimensional natural 

frequency decreases with the increase of h/a ratio and 

then remains almost unaltered for great amount of 

thickness-to-outer radius ratio, h/a. 

• Results reveal that increasing of CNT aspect ratio 

leads to a little increases frequency parameters. 
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Appendix 

 

In Generalized Differential Quadrature Method 

(GDQM), the nth order partial derivative of a continuous 

function f(x,z) with respect to x at a given point xi can be 

approximated as a linear summation of weighted function 

values at all the discrete points in the domain of x, that is  

 
 

,
( 1,2,..., , 1, 2,..., 1),

1

i

ik

n Nf x z nc f i N n Nx ziknx k


   

 

  (1) 

Where N is the number of sampling points and nc
ij

 
is 

the x
i
 dependent weight coefficient. To determine the 

weighting coefficients nc
ij

, the Lagrange interpolation basic 

functions are used as the test functions, and explicit 

formulas for computing these weighting coefficients can be 

obtained as (Bert and Malik 1996) 

(1) ( )(1)
, , 1,2,..., ,

(1)( ) ( )

M xic i j N i jij
x x M xi j j

  


 (2) 

where 

(1) ( ) ( )

1,

N

M x x xi i j

j i j

 

 

  
(3) 

and for higher order derivatives, one can use the following 

relations iteratively 

( 1)
( ) ( 1) 1( ), , 1, 2,..., ,

( )

n
cijn n

c n c c i j Nij ii ij x xi j




  


 

, 2,3,..., 1i j n N    

(4) 

( ) ( )
1,2,..., , 1,2,..., 1

1,

N
n n

c c i N n Nii ij
j i j

    

 

  (5) 

A simple and natural choice of the grid distribution is 

the uniform grid-spacing rule. However, it was found that 

nonuniform grid-spacing yields result with better accuracy. 

Hence, in this work, the Chebyshev-Gauss-Lobatto 

quadrature points are used 

1 1
(1 cos( )) 1,2,...,

2 1

i
x i Ni

N



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