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1. Introduction 

 

Laminated composites with their tailored properties 

have wide range of application area in engineering 

disciplines, which have the necessity of light weighted 

materials with high stiffness capabilities. They can be 

preferred for a wide range of different applications. Major 

reason for this decision is not only the influence of high 

stiffness to weight ratios for reducing weight but also the 

decrease in the construction cost as a result of molding 

complex geometries instead of machining. Therefore it is 

consistent to develop new materials to find the most 

accurate solution methodology describing the physics of 

detailed design and working conditions of laminated 

composite structures.  

Hyperbolic shells are commonly used by architects for 

creative purposes to combine the technique and art in 

modern buildings. Therefore the literature is commonly 

consist of the studies about architectural aspects. Ortega and 

Robles (2003) presented a shape optimization methodology 

considering the effects of geometrical parameters. The 

behavior of hyperbolic paraboloid shaped roofs, considering 

the deflection of the surface caused by aerodynamic loads, 

is presented by Rizzo et al. (2011, 2012a,b, 2015).  

Hyperbolic shells as being the most attractive 

visualization for creating new designs for architects are also  
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new focus on aerospace and shipbuilding industry because 

of the integration problems arise between different surfaces 

with different curvatures. As an example of such surfaces, 

the conjunction of wings and body of an airplane or sonar 

dome and ship hull made of composite materials can be 

mentioned.  

Most of the shell geometries with arbitrary laminations 

and boundaries can be found in the literature, but the 

hyperbolical forms which can be seen in the space, aviation 

or marine applications, are reported very recently in several 

studies (Ishakov 1999, Singh et al. 2009, Fraternali et al. 

2014, Lachenal et al. 2014, Chaudhuri et al. 2015 a,b, 

Vinson 2005, Zenkour and Youssif 2000, Chen 2007). 

Because of the lack of contributive data in the literature, the 

aim of this study is to present the effects of hyperbolic 

paraboloidal form on the performance of the sandwich 

shells having one or double core layers. 

 

 

2. Hyperbolic paraboloid surfaces  
 

It is convenient to define and describe the hyperbolic 

paraboloidal surfaces before presenting its solution 

methodology for laminated sandwich composite material at 

the beginning.  

Hyperbolic paraboloids, as a particular case of a doubly-

curved shell which is described by principal curvature lines, 

are generated by moving a parabola on another one. The 

position vector of the hyperbolic paraboloid is given as 

1 2( , )r    by Tornabene and Fantuzzi (2014) 
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Using the relations given in Eqs. (2)-(6) the first 

fundamental coefficients can be written as 

 

 

 
 

1 2

1 1

1 2

1 2

2

2 2

2

2 2

1 2 , , 1 2 1

2

2 2

1 1 2 1

1 2 , ,

2

1 2 , , 3

2

1 1
( , ) (1 tan ) tan cos

2 4

1 1
tan (1 tan ) tan sin

2 4

( , ) 0

1
( , )

2 cos

E r r k k

k k

F r r

k
G r r

 

 

 

 



 

    

   

 

 


 
     

 

 
   
 

  

 
    

 

 

(7) 

 

   1 2, ,

1 2 1 2 1 2 2 1 2 3
2

( , ) sin cos sin ) (cos cos
r r

n e e e
EG F

 
      


   



 
(8) 

 

1

1 1

1 2

2

2 2

2 2 1 2 1 2

1 2 ,

2 1

1 2 ,

1 2 ,

2

2 3 3 2

3

3

( , )

( , ) 0

( ,

2 ( ) ( ) ( ) ( )1

4 ( ) ( )

1

2
)

( )

k cos k cos k cos cos

co
L r n

M r n

N

s cos

k

cos
r n



 

 



 

     
 

 

 

 


 
   

   

    

 

(9) 

Principal radii of curvatures R1, R2 and the Lamè 

parameters A1, A2 of the surface are given as 
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If the principle curvatures have different signs then it 

means that the Gaussian curvature is negative, because of 

R1>0 while R2>0, which characterize that the surface is a 

doubly-curved surfaces and named as hyperbolic shape. 

From Eq. (10) it can be observed that the position vector 

defined in Eq. (1) corresponds to a hyperbolic paraboloid. 

The ratio of the principal radii of curvatures for hyperbolic 

paraboloidal surface can be defined by 1
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Fig. 1 The position vector 1 2( , )r    of the Hyperbolic Paraboloid 
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Fig. 2 Hyperbolic paraboloid surface and radius of 

upper and lower parabolas 
 

 

where d  is defined by the ratio of characteristic 

parameters of two parabolas as, 
2

1





k

k
d  . The position 

vector 
1 2( , )r   , described in Eq. (1), of the hyperbolic 

paraboloid is illustrated in Fig. 1. 

If we determine a curvature parameter    considering 

the respect ratio of the radiuses of upper (R1) and lower (R2) 

parabolas 









lower

upper

R

R , it will have negative sign 

 0  because one of the parabolas has the radius in 

reverse orientation by centered in negative -z- axis, as 

presented in Fig. 2. Radiuses of osculating circles at 

intersection point of selected surface parabolas are plotted 

for illustration purposes in Fig. 2. Since the surface has 

double curvature at predefined intersection point, the 

surface having two radiuses as upper and lower parabolas 

can be examined by the theories developed for doubly 

curved shells.  

 

 
3. Analyzing the doubly curved composite shells 
using TSDT 
 

Since some of the in-plane and plate stiffness properties 

are dominated by the transverse shear deformations, their 

effects are important for laminated composite structures. 

Therefore, for polymer matrix laminated composite plates, 

transverse shear deformation effects can be significant. 

However they have been neglected in classical plate 

theories (Khalili et al. 2012). This assumption causes the 

theory to be inadequate for modeling composite plates, even 

if the plate is fairly thin. The first order shear deformation 

plate theory yields a constant value of transverse shearing 

strain through the thickness of the plate, and thus requires 

shear correction factors to ensure the proper amount of 

transverse shear energy (Viola et al. 2013). The reliable 

prediction of deformations and stresses especially for the 

thicker structures requires the use of higher order shear 

deformation theories (Viola et al. 2013).  

Development of various new higher order deformation 

theories is continuous with consistent effort. The increasing 

use of laminated shell structures in engineering applications 

requires adequate instruments in order to achieve refined 

solutions to the shell problems under investigation. 

Therefore a significant number of higher order shear 

deformation theories for composite plates and shells has 

been presented over the last decades (Alankaya and Oktem 

2016, Mantari et al. 2012a,b,c,d, Zenkour 2013, Zhen and 

Wanji 2007, Ferreira et al. 2003, Reddy 2003, Youssif 

2009). It has valuable importance to indicate that Zhen and 

Wanji (2007) studied higher order theories to ninth-order 

and presented the higher order components resulted in the 

higher accuracy of transverse shear stresses. However, they 

reported that the results obtained by the ninth-order theory 

had almost negligible differences. In principle, it is possible 

to expand the displacement field in terms of the thickness 

coordinate up to any desired degree. However, due to the 

algebraic complexity and computational effort requirements 

with higher order theories contrary for marginal gain in 

accuracy, theories for higher than third order, have not been 

attempted (Zhen and Wanji 2007).  

The third-order assumption in the displacement field 

satisfies the continuity conditions of transverse shear 

stresses at the layer interfaces as well as the conditions of 

zero transverse shear stresses on the plate boundary surface 

fulfilling the need of shear correction factor. Thus TSDT 

eliminates the need to compute shear correction factors, 

which is a requirement for the first order shear deformation 

theory (FSDT). TSDT of Reddy is based on the same 

assumptions as the classical and first-order theories except 

that the assumption of straightness and normality of a 

transverse normal after deformation is relaxed by expanding 

the displacements as cubic functions of the thickness 

coordinate. In addition it is subject to the following 

assumptions and restrictions (Reddy 2003): (i) The layers 

are perfectly bonded together, (ii) The material of each layer 

is linearly elastic and has three planes of material symmetry 

(orthotropic), (iii) Each layer is of uniform thickness, (iv) 

The strains and displacements are small, (v) The transverse 

shear stresses on top and bottom surfaces of the laminate 

are zero. 

Since it represents the kinematics better while 

disregarding shear correction factor and yields more 

accurate transverse shear stresses with minimum 

computational effort,  Third Order Shear Deformation 

Theory (TSDT) of Reddy (2003) is preferred for the 

analyses of laminated composite shell for this study. 

Because of its simplicity and proven accuracy among other 

higher order theories that are present in the literature. 

 
 

4. Definition of the problem 
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(13) 

where u, v, w represents displacements of a point at three 

axis  321 ,,  , while u0,v0,w0 represents displacements 

of a point at the mid-surface  03  . 1  and 2  are 

rotations about  2 and  1 axes respectively.  
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The equations obtained by using the principles of virtual 

work and constitutive relations for composite materials are 

presented extensively in Appendix-A. The set of five highly 

coupled fourth-order partial differential equations can be 

expressed in the following matrix form 

     ijij fXK   which ( , 1,...,5)i j   and  

( )ij jiK K  

(14a) 

where 
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The definitions of [Kij] coefficient matrix are given in 

Appendix-B and the load term 
mnQ is defined as follow 

mn

q
Qmn 2

16


  (15) 

for uniformly distributed load where m,n are the number of 

terms. The problem considered in this study is solved for 

the following boundary conditions; The simply supported 

type 1 (SS1) boundary conditions are prescribed at the 

edges a,01  . 

0211361  PMuNN  (16a) 

and the simply supported type 4 (SS4) boundary conditions 

prescribed at the edges  b,02  . 

0122321  PMuuu  (16b) 

 

 

5. Solution methodology 
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The next step is substituting assumed particular 

solutions into equilibrium equations. The procedure for 

differentiation of these functions is based on Lebesque 

integration theory which introduces boundary Fourier 

coefficients arising from discontinuities of the particular 

solutions at the edges. Chaudhuri (2002) has been noted that 

the boundary Fourier coefficients serve as complementary 

solution to the considered problem. The partial derivatives 

which cannot be obtained by term wise differentiation, for 

the considered boundary conditions, are given by (Oktem et  

al. 2013) as follows 
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The unknown boundary Fourier coefficients appear in 

Eqs. (19)-(21) are defined as follows 
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The remaining partial derivatives can be obtained by 

term wise differentiation. Solution methodology requires 

solution of the Fourier coefficients by using natural and 

geometrical boundary conditions which are presented by 

(Oktem et al. 2013) in detail and will not be repeated here 

for the brevity of the presentation. 
 

 

6. Numerical results and discussions 
 

A generic model for laminated composite shell made of 

structural foam core and unidirectional pre-impregnated 

carbon face layers are modeled for numerical analyses. The 

materials are commercially available and suitable for 

structural usage due to their high strength properties are 

randomly chosen from product family catalogue of Gurit 

AG (http://www.gurit.com). The material properties used 

for the face sheets and core layers in the analyses are 

presented in Table 1. 

During the calculations, the following normalized 

quantities are defined and used in which 'a' and 'b' are the 

edge lengths of the hyperbolic paraboloidal shell, and q0 

denotes the transverse load. The normalized quantities are 

computed at the center of the panel and presented in figures 

for all numerical results. 
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Fig. 4 Convergence of the normalized central 

deflection (u3
*
) and moment (M1

*
) for 

symmetrically laminated sandwich shell 
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Number of terms (m=n) to be included in the equations 

are controlled by the convergence of the solution 

methodology. Convergence control is performed for the 

symmetrically laminated sandwich shell [0
o
/90

o
/core/90

o
/0

o
] 

having moderately thick (a/h=10) cross-ply face sheets and 

one core layer (c/h=10) under uniformly distributed load of 

100 MPa.  

Fig. 4 displays the convergence of normalized central 

transverse displacement (u3
*
) and moment (M1

*
) of a 

hyperbolic paraboloidal shell which has negative ratio 

 1  at the same radiuses of lower and upper parabolas. 

Normalized values 














20
,

3

*

1

*

3 Mu  are presented in Fig.4 

respectively for the purpose of providing a clear view for 

the convergence. 

The normalized displacement (u3
*
) and moment (M1

*
) 

values exhibit a fast convergence where as more than 20 

terms are included in the expansion of double Fourier 

series. Consequently, number of terms included are defined 

as n=m=20 for numerical results. 
 

6.1 Validation of the presented solution 

 

Finite element analyses are performed by a 

commercially available FEA software ANSYS for the 

validation of the presented solution methodology. 

Hyperbolic paraboloidal shell, which has negative ratio 

 1  at the same radiuses of lower and upper 

parabolas (R1 = - R2), is modeled with a symmetric 

[0
o
/90

o
/core/90

o
/0

o
] lay-up. Laminate properties are defined 

by specifying individual layer properties as presented in Fig. 

5. 
 

 

 

 

Fig. 5 Layer definitions for the Shell 91 element 
 

 

 

Fig. 6 The element description for the FEA model 
 

 

The present study is mainly focused on the effects of 

shear deformations which are more efficient in the thick and 

moderately thick regime. Therefore, Shell-91 element is 

used which is developed for modeling thick sandwich 

structures and layered applications of structural shells.  

Shell-91 element type with 8 nodes and six degree of 

freedom is suitable for nonlinear layered structural shell 

analyses with sandwich option. Because the chosen element 

type is considered for comparison purposes on meso-scale 

level, each ply is modeled and analyzed having one element 

per ply as presented in the Fig. 6. 

For the validation of presented theory, a sandwich 

hyperbolic paraboloidal shell which has negative ratio 

 1  is modeled with one core layer at varying sheet 

(a/h) and core (c/h) thickness ratios. Central deflections 

under uniformly distributed load of 100 MPa are presented 

in Table 2 with their FEA counterparts. 

For the validation of presented theory, a sandwich 

hyperbolic paraboloidal shell which has negative ratio 

 1  is modeled with one core layer at varying sheet 

(a/h) and core (c/h) thickness ratios. Central deflections  

 

Table 1 Material properties of the face sheets and the core layer 

Part Material Property 

Face 

Sheets  
Gurit SC 110T2 

(Visual Carbon Prepreg) 

0o Tensile Modulus  : 69 GPa 

90o Tensile Modulus  : 72 GPa 

In-plane Shear Modulus : 5 GPa 

Flexural Modulus  : 60 GPa 

Core Gurit Corecell A 

(Structural Foam Core A500) 

Tensile Modulus  : 84 MPa 

Shear Modulus  : 32 MPa 
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Table 2 Comparison of the central deflections obtained from 

presented theory with their FEA counterparts 

a/h c/h 

Deflection (mm) 

Presented heory FEA 

10 10 0.000209 0.000223 

50 10 0.001510 0.001457 

50 50 0.025673 0.029325 

 

 

under uniformly distributed load of 100 MPa are presented 

in Table 2 with their FEA counterparts. 

The numerical results of the presented theory are in 

concordance with FEA counterparts and indicate that is 

adequately sensitive on thickness changes of both face 

sheets and core layer. 
 

6.2 Numerical results 
 

Since the aim of this study is to investigate the effect of 

curvature on hyperbolic paraboloidal formed shells, made 

of sandwich composite material, numerical results are 

presented in figures depending on the curvature ratio   .  

Normalized central deflections of laminated shell are 

presented in the Figs. 7 and 8 having one 

[0
o
/90

o
/core/90

o
/0

o
] and double [0

o
/90

o
/core/90

o
/0

o
]sym core 

layers respectively. The effect of face sheet and core layer 

thicknesses at moderately thick and very thin regimes are 

presented regarding to the non-dimensional curvature ratio 

(  ).  Moreover the effect of face sheet thickness is 

investigated depending on the core thickness changes and 

presented in Fig. 9. 
 

 

 

Fig. 7 Normalized central deflections for the 

sandwich shell having one core layer 
 

 

 

Fig. 8 Normalized central deflections for the 

sandwich shell having double core layer 
 

 

Fig. 9 Effect of thickness on the normalized central 

deflections 
 

 

Normalized moments are presented in the Figs. 10 and 

11 representing the effect of face sheet and core layer 

thicknesses regarding to the non-dimensional curvature 

ratio (  ).  In addition, the effect of face sheet thickness is 

investigated depending on the core thickness changes and 

presented in Fig. 12. 

The effects of change in face sheet and core layer 

thicknesses are investigated by means of stress distribution 

through the lamina. Normalized stress distribution through 

the laminated layers is presented in the Figs. 13 and 14 at 

varying thicknesses of one and double core layers 

respectively. 
 

 

 

Fig. 10 Normalized moments for the sandwich shell 

having one core layer 
 

 

 

Fig. 11 Normalized moments for the sandwich shell 

having double core layer 
 

 

 

Fig. 12 Effect of thickness on the normalized 

moments 
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Fig. 13 Normalized stress distribution for the 

sandwich shell having one core layer 
 

 

 

Fig. 14 Normalized stress distribution for the 

sandwich shell having double core layer 
 

 

6.3 Discussion 
 

It is observed that the deformation behavior of the 

hyperbolic paraboloidal shaped laminated composite shell is 

affected positively by the addition of core layer as presented 

in Figs.7 and 8. However the rapid change in the deflection 

curve of the one which is in the very thin regime (a/h=100 

and c/h=100) is remarkable. This behavior is considered as 

the membrane effect which makes the shell to be stiffer at 

the higher curvature ratios by the addition of second core 

layer. Contrary to expectations the effect of curvature ratio 

is slightly visible for the values over  > -0.5. Therefore the 

effect of core thickness is investigated and presented in Fig. 

9 through the changes of core layer thickness. Since the 

thickness of core layer causes the shell to be stiffer, its 

effects are considerable on the moment values and 

presented in Figs. 10 and 11. The change in the normalized 

moment through the core layer thickness is presented in Fig. 

12 representing the negative effect of the second core layer 

addition. 

The distribution through the shell thickness of 

normalized stress  *

2

*

1 ,  values are presented in Figs. 13 

and 14 at varying face sheet and core layer thicknesses of 

the shell having one and double core layers respectively. 

The effect of core layer addition by means of stress values 

is investigated for symmetric [0
o
/90

o
/core/90

o
/0

o
] shell (=-

1) having one core layer and [0
o
/90

o
/core/90

o
/0

o
]sym shell 

having two core layers. While normalized stress values 

reach their maximum value at the top and bottom surfaces, 

the effect of core material thickness and additional core 

layer is observed as higher stress values. 

 

 

 

7. Conclusions 
 

The effect of curvature on hyperbolic paraboloidal 

formed sandwich composite surface having arbitrary 

boundary conditions is investigated by analytical 

methodology based on TSDT. Solution methodology based 

on boundary discontinuous generalized double Fourier 

series approach is developed for sandwich laminates having 

one and double core layers. Because of the lack of 

contributive data in the literature, numerical solutions 

showing the effects of shell geometry are presented to 

provide benchmark results. Further results are concluded as 

follows; 

 The comparison of the results by FEA solutions that 

shows the predictive capabilities of the present developed 

methodology can be preferred for its minimized 

computational effort, 

 Whereas extremely small deformations are obtained by 

the addition of second core layer, this kind of construction 

results decrease in stress values noticeably,  

 Curvature ratio () values especially bigger than -0.5 

has slightly visible effects on the deformation 

characteristics of the shell, 

 Main differences on the central deflection and moment 

distributions are mostly effected by the changes in the 

thicknesses of face sheets and core layers. 

To ensure the practicality and feasibility of this solution 

methodology, further studies are necessary to evaluate the 

influence of geometrical and material properties based on 

the deflection and stress distribution capabilities of 

laminated composites. While the presented methodology is 

not suitable for dynamic behavior of sandwich shells which 

can be dealt with zig-zag functions included into the 

kinematic model, further studies are also necessary for the 

dynamic capabilities of this solution methodology that 

should be validated by 3D finite element analyses. 
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Appendix-A. Equilibrium Equations 

 
The equilibrium equations, which are derived using the 

principles of virtual work are given as follows (Reddy, 

2003) 
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In Eqs. (A-1) to (A-5), q represents the transverse load 

and Ni, Mi, Pi (i=1,2,6) denotes stress resultants, stress 

couples and second stress couples (see, e.g., Reddy 2003). 

Qi, (i = 1, 2) represents the transverse shear stress resultants 

given as follows 
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in which Aij, Bij, etc. are the laminate rigidities (integrated 

stiffnesses) and defined as 
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Generalized stress – strain constitutive relations for an 

orthogonal lamina can be expressed as 
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in which (σ1, σ2, σ6, σ5, σ4) and (ε1, ε2, ε6, ε5, ε4) are the stress 

and strain components respectively. Qij expressions in terms 

of engineering constants are given below 
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E1 - E2 denotes the in-plane Young’s modulus and Gij , 

ij (i,j=1,2,3) for in-plane shear modulus and poisson ratio 

at  321 ,,   axis respectively. 
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Appendix-B. Definitions of [Kij] in Eq. (14(a)) 
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