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1. Introduction 
 

During last two decades, the need to design the high per 
Functionally graded materials (FGMs) are composite 

materials composed of two or more constituent phases with 

a continuously variable variation by gradually changing the 

volume fraction. These materials type have been proposed, 

developed and successfully employed in industrial 

application since 1980s (Koizumi 1993). FGMs were 

designed as a thermal barrier coating in aerospace 

application, such as ceramic-metal composite structure. 

Nowadays, FGMs are alternative materials widely 

employed in aerospace, civil, mechanical, nuclear, optical, 

electronic, chemical, shipbuilding, and biomechanical 

industries (Akavci 2016, Kar and Panda 2016, Kar and 

Panda 2015, Bourada et al. 2015, Eltaher et al. 2014, 

Belkorissat et al. 2015, Ait Atmane et al. 2015, Akbaş 2015, 

Arefi 2015a,b, Arefi and Allam 2015b, Zemri et al. 2015, 

Boukhari et al. 2016, Bounouara et al. 2016, Ahouel et al. 

2016, Celebi et al. 2016, Darabi and Vosoughi 2016, Turan 

et al. 2016, Ebrahimi and Shafiei 2016, Mouaici et al. 2016, 

Mouffoki et al. 2017, Zidi et al. 2017).  

In the past three decades, investigations on FG plates 

have received particular attention, and a variety of plate 

models has been proposed based on considering the 

transverse shear deformation influences. The classical plate 

theory (CPT), which ignores the transverse shear  
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deformation influence, gives reasonable results for thin 

plate. This model was used for stability analysis of FG plate 

by Feldman and Aboudi (1997), Abrate (2008), Mahdavian 

(2009), and Mohammadi et al. (2010a). However, it under-

predicts transverse displacements and over-predicts 

frequencies as well as buckling loads of moderately thick 

plate (Reddy 2004). To improve the limitation of CPT, 

many shear deformation plate models which consider the 

transverse shear deformation effect have been proposed. 

The Reissner (1945) and Mindlin (1951) theories are known 

as the first-order shear deformation plate theory (FSDT), 

and incorporate the transverse shear effect by the way of 

linear distribution of in-plane displacements across the 

thickness. Many works of the stability behavior of FG plate 

have been presented via FSDT (Yang et al. 2005, Zhao et 

al. 2009, Sepiani et al. 2010, Mohammadi et al. 2010b, 

Meksi et al. 2015, Adda Bedia et al. 2015, Ebrahimi and 

Jafari 2016, Bellifa et al. 2016, Hadji et al. 2016). Since 

FSDT does not respect the equilibrium conditions at the 

upper and lower surfaces of the plate, shear correction 

coefficients are needed to correct the unrealistic distribution 

of transverse shear stresses and shear strains within the 

thickness. These shear correction factors are sensitive not 

only to the geometric parameters of plate, but also to the 

boundary conditions and loading conditions. To avoid the 

employ of shear correction factors, a number of higher-

order shear deformation plate theories (HSDT), which use 

the higher-order terms in Taylor’s expansions of the 

displacements in the thickness coordinate, have been 

developed. Although the HSDTs have been utilized for 

stability and bending investigations of FG plates 
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(Najafizadeh and Heydari 2007, 2008, Bourada et al. 2012, 

Bouderba et al. 2013, Tounsi et al. 2013, Swaminathan and 

Naveenkumar 2014, Bouguenina et al. 2015, Chikh et al. 

2016, Barati and Shahverdi 2016, Becheri et al. 2016, El-

Hassar et al. 2016, Fahsi et al. 2017, El-Haina et al. 2017), 

they are not convenience to use because of the higher-order 

terms included into the theory. Therefore, there is a scope to 

develop a HSDT which is simple to use. Recently, Mantari 

and Granados (2015) have developed a new simple FSDT 

with four variables in which integral terms in the plate 

kinematics are employed for the first time. However, in this 

theory the shear correction factors are required. Based on 

shear deformation theories, the bending, buckling and 

vibration of composite structures been presented by Mahi et 

al. (2015), Ait Yahia et al. (2015) and Ait Amar Meziane et 

al. (2014). More reports on the behavior of composite 

structures may be also found in the open literature (see, e.g., 

Panda and Singh 2009, 2010a,b, 2011, 2013a,b,c,d, Zidi et 

al. 2014, Taibi et al. 2015, Panda and Katariya 2015, Attia 

et al. 2015, Nguyen et al. 2015, Tounsi et al. 2016, Trinh et 

al. 2016, Raminnea et al. 2016, Saidi et al. 2016, Katariya 

and Panda 2016, Javed et al. 2016, Ebrahimi and Habibi 

2016, Kar et al. 2016a,b, Houari et al. 2016, Beldjelili et al. 

2016, Ghorbanpour Arani et al. 2016, Baseri et al. 2016, 

Laoufi et al. 2016, Benferhat et al. 2016, Barka et al. 2016, 

Kar and Panda 2016a,b 2017, Klouche et al. 2017, Bellifa et 

al. 2017, Meksi et al. 2017, Sekkal et al. 2017, Menasria et 

al. 2017). Bouderba et al. (2016) studied the thermal 

stability of FG sandwich plates using a simple shear 

deformation theory. Bousahla et al. (2016) analyzed also the 

thermal stability of plates with functionally graded 

coefficient of thermal expansion. 

This work aims to develop a simple HSDT for stability 

behavior of FG plates. The addition of the integral term in 

the displacement field leads to a reduction in the number of 

unknowns and governing equations. Analytical solutions of 

rectangular plates are obtained. Comparison studies are 

performed to demonstrate the validity of the present results. 

The influences of loading conditions and variations of 

power of functionally graded material, modulus ratio, 

aspect ratio, and thickness ratio on the critical buckling load 

of FG plates are examined and discussed. 

 

 

2. Refined plate theory for FG plates 
 

2.1 Displacement base field 
 

The displacement field of the novel theory is given as 

follows (Bourada et al. 2016, Hebali et al. 2016, Merdaci et 

al. 2016, Chikh et al. 2017, Besseghier et al. 2017, Khetir et 

al. 2017) 
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where ),(0 yxu , ),(0 yxv , ),(0 yxw , and ),( yx  are 

the four unknown displacement functions of middle surface 

of the plate. Note that the integrals do not have limits. In the 

present work is considered terms with integrals instead of 

terms with derivatives. The constants 1k  and 2k   

depends on the geometry. 
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It should be noted that unlike the FSDT, this theory does 

not require shear correction factors. The kinematic relations 

can be obtained as follows 
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The integrals defined in the above equations shall be 

resolved by a Navier type method and can be written as 

follows 
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where the coefficients 'A  and 'B  are expressed 

according to the type of solution used, in this case via 

Navier. Therefore, 'A  and 'B  are expressed as follows 
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where   and   are defined in expression (20). 

 

2.2 Constitutive relations 
 

Consider a FG plate formed from ceramic and metal, the 

material properties of FGM such as Young modulus E are 

assumed to vary through the plate thickness with a power 

law distribution of the volume fraction of the two materials 

as (Bakora and Tounsi 2015, Merazi et al. 2015) 
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where mE  and cE  are the properties of the metal and 

ceramic, respectively; and p  is the volume fraction 

exponent. The value of p  equal to zero represents a fully 

ceramic plate, whereas infinite p  indicates a fully 

metallic plate. The distribution of the combination of 

ceramic and metal is linear for 1p . The variation of 

Poisson’s ratio   is generally small and it is assumed to 

be a constant for convenience. The linear constitutive 

relations of a FG plate can be expressed as 
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2.3 Governing equations 
 

The principle of virtual works of the considered FG 

plates is expressed as 

0   VU   (10) 

where U   is the variation of strain energy; and V   is 

the variation of the external work done by external load 

applied to the plate. 

The variation of strain energy of the plate is given by 
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where A  is the top surface and the stress resultants N , 

M , and S  are defined by 
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Substituting Eq. (8) into Eq. (12) and integrating th

rough the thickness of the plate, the stress resultants ar

e given as 
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where ijA , ijB , etc. are the plate stiffness, defined by 

     6,2,1,    ,)(),( ),(,,,1,,,,,

2/

2/

22  


jidzzfzfzzfzzCHDBDBA

h

h

ij
s
ij

s
ij

s
ijijijij

 
(14a) 

 

   5,4,    ,)(

2/

2/

2
 



jidzzgCA

h

h

ij
s
ij  (14b) 

The work done by applied forces can be expressed as 
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where (
000 ,, xyyx NNN ) are transverse and in-plane applied 

loads. 

Substituting Eqs. (11) and (15) into Eq. (10) and 

integrating the equation by parts, collecting the coefficients 

of 0 u , 0 v , 0 w ,   , the governing equations 

can be obtained as follows 
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Eq. (16) can be expressed in terms of displacements 

( 0u , 0v , 0w ,  ) by substituting for the stress resultants 
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from Eq. (13). For FG plate, the governing equations Eq. 

(16) take the form 
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(17d) 

where ijd , ijld  and ijlmd  are the following differential 

operators 
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3. Closed-form solution for rectangular plate 
 

Consider a simply supported rectangular plate with l

ength a  and width b  which is subjected to in-plane l

oading in two directions ( crx NN 1
0  ; cry NN 2

0  ; 

00 xyN ). Based on the Navier method, the following 

expansions of displacements ( 0u , 0v , 0w ,  ) are ado

pted to automatically satisfy the boundary conditions. 
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where ( mnU , mnV , mnW , mnX ) are unknown functions to be 

determined and ( ,  ) are expressed by 

am /   and bn /   (20) 

Substituting Eq. (19) into Eq. (17), the closed-form 

solution of buckling load crN  can be obtained from 
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where 
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By applying the condensation approach to eliminate the 

in-plane displacements mnU  and mnV , Eq. (21) can be 

rewritten as 
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The system of homogeneous Eq. (23) has a nontrivial 

solution only for discrete values of the buckling load. For a 

nontrivial solution, the determinant of the coefficients 

( mnW , mnX ) must equal zero 

0
4443

3433




SS

SkS
 (25) 

The resulting equation may be solved for the buckling 

load. This gives the following expression for buckling load: 
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44334334

S

SSSS
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
  (26) 

By employing the Eq. (25), the following expression for 

critical buckling load is determined 
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For the case of CPT, the expression of buckling load 

crN  can be simplified by setting the shear component of 
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transverse displacement to zero ( 0 ) as 

 2
2

2
1

33
),(

 




S
nmNcr  (28) 

For each choice of m  and n , there is a correspon

sive unique value of crN . The critical buckling load i

s the smallest value of ),( nmNcr . 

 

 

4. Results and discussion 
 

In this section, numerical examples are proposed   

and discussed for checking the accuracy and simplicity 

of the developed theory in determining the critical    

buckling load of FG plates under in-plane loading. For 

the verification purpose, the results computed by      

present model are compared with those existing in the 

literature by employing CPT, FSDT and HSDT. The    

following material properties are employed: 

 Material 1 (Al/Al2O3) GPa 380cE , 

GPa 70mE , 3.0  

 Material 2 (Al/SiC) GPa 420cE , 

GPa 70mE , 3.0  

 

 
4.1 Comparison studies 
 
Example 1: The first example is performed for    

simply supported rectangular plate ( 5.0/ ba ) with linear 

distribution of the volume fractions of the constituents 

( 1p ). The structure is fabricated from a mixture of 

Aluminum (Al) and Alumina (Al2O3), and subjected to 

different types of axial loading. Table 1 presents the   

comparisons of the critical buckling loads computed by the 

present model with those reported by Javaheri and Eslami 

(2002) based on CPT, Shariat and Eslami (2005) based on 

FSDT, and Bodaghi and Saidi (2010) based on HSDT. It 

can be observed that the results of present model are in 

excellent agreement with those given by HSDT (Bodaghi 

and Saidi 2010) for all values of thickness ratio ha / . It 

should be noted that the proposed theory uses only four 

independent variables as against five in the case of HSDT       

(Bodaghi and Saidi 2010) and FSDT (Shariat and      

Eslami 2005). Also, the proposed theory does not     

required shear correction coefficients as in the case of     

FSDT. It can be confirmed that the proposed theory is not 

only accurate but also efficient and simple in     

determining critical buckling load of FG plates. It is also 

seen that the CPT overestimates the critical buckling force 

of FG plates. The difference between CPT and shear 

deformation theories is significant for thick plate and 

negligible for thin plate due to the effects of the   

transverse shear deformation. 

Example 2: The next comparison is carried out for FG 

plates under various loading conditions. The plate is made 

from a mixture of Aluminum (Al) and SiliconCarbide (SiC). 

The critical buckling forces of simply supported plate for 

different values of thickness ratio hb / , aspect ratio ba / , 

and gradient index p  are demonstrated in Table 2. It can 

be observed that the critical buckling force predicted by the 

proposed theor are almost identical with those given by 

(Bodaghi and Saidi 2010) based on HSDT, and the change 

of critical buckling mode of FG plate determined by the  

proposed model and HSDT are identical.  

 

4.2 Parameter studies 
 

Parameter investigations are presented to examine   

the influences of loading types and variations of 

gradientindex p , modulus ratio cm EE / , thickness ratio 

ha / , and aspect ratio ab /  on the non-dimensional 

critical buckling load 
32 / hEaNN mcr  of Al/Al2O3 

plates.  

Fig. 1 illustrates the variation of non-dimensional 

critical buckling force of square FG plates with different 

loading types versus the gradient index p . The thickness 

ratio ha /  is considered to be 10. It can be observed that 

with increasing the gradient index, the non-dimensional 

critical buckling force decreases, and the variation of the 

non-dimensional critical buckling force is considerable 

when the gradient index is small. This is due to the fact that 

higher values of gradient index correspond to high portion 

of metal in comparison with the ceramic part. Moreover, the 

non-dimensional critical buckling force of plate under 

uniaxial compression ( 11  , 02  ) is greater than that 

under biaxial compression ( 121   ) and less than 

that under biaxial compression and tension 

( 11  , 12  ). 

Fig. 2 demonstrates the variation of non-dimensional 

critical buckling force of square plate versus the modulus 

ratio cm EE /  for different values of gradient index. The 

thickness ratio ha /  is considered to be 10. It can be 

observed that the non-dimensional critical buckling force 

increases as the modulus ratio cm EE /  increases, and 

decreases as the gradient index increases. 

The variation of non-dimensional critical buckling force 

of plate versus thickness ratio ha /  is presented in Fig. 3 

by employing the proposed theory and CPT. Since the 

transverse shear deformation influences of plate are 

neglected in the CPT, the values of non-dimensional critical 

buckling force computed by CPT are independent of 

thickness ratio. Whereas, the values of non-dimensional 

critical buckling force computed by the proposed theory, 

which considers the transverse shear deformation 

influences, are dependent of thickness ratio. It is 

demonstrated that the non-dimensional critical buckling 

force increases by increasing the thickness ratio ha / , 

while the CPT overestimates the non-dimensional critical 

buckling force of FG plate. The difference between two 

models is significant for thick plates ( 10/ ha ), and 

negligible for thin plates. 
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The influences of aspect ratio ab /  on non-

dimensional critical buckling force of FG plate subjected to 

uniaxial compression and biaxial compression are 

illustrated in Figs. 4 and 5, respectively. The thickness ratio 

ha /  is considered to be 10. It is observed that the non-

dimensional critical buckling force generally decreases by 

the increase of ab / . In the case of uniaxial compression 

as demonstrated in Fig. 4, the graph is not smooth due to the 

change of critical buckling mode as the aspect ratio 

increases. Whereas, the graph in the case of biaxial 

compression as demonstrated in Fig. 5 is smooth because of 

the existence of a single critical buckling mode regardless 

of aspect ratio ab / .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 3-5 provide the non-dimensional critical    

buckling loads for FG plates under uniaxial compression, 

biaxial compression, and biaxial compression and   

tension, respectively. It is demonstrated from Tables 3-5 

that the non-dimensional critical buckling force    

increases by the decrease of gradient index and the    

increase of thickness ratio. Moreover, increasing not   

only increases the values of non-dimensional critical   

buckling force, but also induces the changes in critical 

buckling mode. For example, for the plate under      

uniaxial compression along x-axis with, the critical 

buckling mode varies from 3 to 2 as the value of     

thickness ratio increases from 5 to 10. In the case of plate 

subjected to biaxial compression (see Table 4 and Fig. 5), 

only one critical buckling mode exists regardless of aspect 

ratio, thickness ratio, and gradient index. 

Table 1 Comparison of critical buckling load (MN) of simply supported Al/Al2O3 plate 

( 50.b/a  , 1p ) 

),( 21   Method ha /  

5 10 20 30 40 50 

(1.0) 

 

CPT (a) 267.4800 33.4350 4.1794 1.2383 0.5224 0.2675 

FSDT (b) 243.4100 32.6280 4.1537 1.2349 0.5216 0.2672 

HSDT (c) 239.1500 32.4720 4.1486 1.2343 0.5215 0.2672 

Present 239.1450 32.4721 4.1486 1.2343 0.5215 0.2672 

(1,1) CPT (a) 213.9900 26.7480 3.4353 0.9907 0.4179 0.2140 

FSDT (b) 194.7300 26.1030 3.3230 0.9880 0.4173 0.2137 

HSDT (c) 191.3200 25.9780 3.3189 0.9879 0.4172 0.2137 

Present 191.3160 25.9777 3.3189 0.9879 0.4172 0.2137 

(1.-1) CPT (a) 356.6400 44.5800 5.5725 1.6511 0.6966 0.3566 

FSDT (b) 324.5400 43.5050 5.5383 1.6466 0.6955 0.3563 

HSDT (c) 318.8600 43.2960 5.5315 1.6457 0.6953 0.3562 

Present 318.8600 43.2961 5.5315 1.6457 0.6953 0.3562 
(a) (Javaheri and Eslami 2002) 
(b) (Shariat and Eslami 2005) 
(c) (Bodaghi and Saidi 2010) 
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Fig. 1 The effect of the gradient index p  on non-dimensional critical buckling load N  of simply supported square 

plate ( 10h/a ) under different loading conditions 
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Table 2 Comparison of critical buckling load (MN/m) of simply supported Al/SiC plate 

),( 21   ba /  hb /  Method p  

0 1 2 

(-1.0) 0.5 

 

10 HSDT (*) 2079.721 1028.412 780.097 

Present 2079.758 1028.449 780.023 

5 HSDT (*) 12162.119 6270.298 4692.542 

Present 12164.987 6272.425 4695.029 

1 10 HSDT (*) 1437.361 702.304 534.441 

Present 1437.389 702.251 534.835 

5 HSDT (*) 9915.620 4955.431 3746.054 

Present 9916.193 4955.484 3746.732 

1.5 10 HSDT (*) 1527.903a 748.920a 569.751a 

Present 1527.994a 748.988a 569.528a 

5 HSDT (*) 10044.721a 5067.219a 3819.109a 

Present 10044.962a 5068.084a 3820.079a 

(-1.-1) 0.5 

 

10 HSDT (*) 1663.777 822.738 624.158 

Present 1663.807 822.759 624.182 

5 HSDT (*) 9729.999 5016.384 3754.274 

Present 9731.990 5017.941 3756.023 

1 10 HSDT (*) 718.692 351.124 267.416 

Present 718.695 351.125 267.418 

5 HSDT (*) 4957.888 2477.589 1873.190 

Present 4958.097 2477.742 1873.366 

1.5 10 HSDT (*) 526.861 256.776 195.714 

Present 526.862 256.776 195.714 

5 HSDT (*) 3772.877 1871.038 1418.120 

Present 3772.964 1871.101 1418.193 

(-1.1) 0.5 

 

10 HSDT (*) 2772.980 1371.653 1040.519 

Present 2773.011 1371.265 1040.304 

5 HSDT (*) 16216.712 8360.541 6257.811 

Present 16219.983 8363.233 6260.038 

1 10 HSDT (*) 2772.980a 1371.653a 1040.519a 

Present 2773.011a 1371.265a 1040.304a 

5 HSDT (*) 16216.712a 8360.541a 6257.811a 

Present 16219.983a 8363.233a 6260.038a 

1.5 10 HSDT (*) 2772.980b 1371.653b 1040.519b 

Present 2773.011b 1371.265b 1040.304b 

5 HSDT (*) 16216.712b 8360.541b 6257.811b 

Present 16219.983b 8363.233b 6260.038b 

(*) (Bodaghi and Saidi 2010) 
a Mode for plate is (m, n) = (2, 1). 
b Mode for plate is (m, n) = (3, 1) 
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Fig. 2 The effect of modulus ratio on non-dimensional critical buckling load N  of simply supported square 

plate ( 10/ ha ) under uniaxial compression along the x-axis  01 21   ,  
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Table 3 Non-dimensional critical buckling load N  of simply supported Al/Al2O3 plate subjected to 

uniaxial compression along the x-axis ( 01 21   , ) 

ba /  ha /  p  

0 0.5 1 2 5 10 20 100 

0.5 5 6.7203 4.4235 3.4164 2.6451 2.1484 1.9213 1.7115 1.3737 

10 7.4053 4.8206 3.7111 2.8897 2.4165 2.1896 1.9387 1.5251 

20 7.5993 4.9315 3.7930 2.9582 2.4944 2.2690 2.0054 1.5683 

50 7.6555 4.9634 3.8166 2.9779 2.5172 2.2923 2.0250 1.5809 

100 7.6635 4.9680 3.8200 2.9808 2.5205 2.2957 2.0278 1.5827 

1.0 5 16.0211 10.6254 8.2245 6.3432 5.0531 4.4807 4.0070 3.2586 

10 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528 4.8346 3.8198 

20 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668 5.0988 3.9923 

50 19.5914 12.6970 9.7636 7.6177 6.4373 5.8614 5.1782 4.0434 

100 19.6145 12.7158 9.7775 7.6293 6.4507 5.8752 5.1897 4.0508 

1.5 5 28.1996a 19.2510a 19.2510a 11.4234a 8.4727a 7.2952a 6.6106a 5.6325a 

10 40.7476 a 26.9091a 20.8024a 16.0793a 12.9501a 11.5379a 10.2958a 8.3112a 

20 45.8930 a 29.9050a 23.0286a 17.9221a 14.9472a 13.5273a 11.9843a 9.4447a 

50 47.5784 a 30.8691a 23.7414a 18.5177a 15.6238a 14.2156a 12.5629a 9.8207a 

100 47.8297 a 31.0119a 23.8469a 18.6061a 15.7256a 14.3198a 12.6502a 9.8769a 

2.0 5 37.7404 b 26.3645b 20.7491b 15.5819b 10.9554b 9.1505c 8.3988c 7.4403b 

10 64.0842 a 42.5015a 32.8980a 25.3727a 20.2123a 17.9227a 16.0280a 13.0345a 

20 74.3140 a 48.4917a 37.3564a 29.0523a 24.1413a 21.8114a 19.3385a 15.2794a 

50 77.8004 a 50.4890a 38.8338a 30.2858a 25.5363a 23.2278a 20.5301a 16.0561a 

100 78.3257 a 50.7880a 39.0546a 30.4707a 25.7491a 23.4456a 20.7126a 16.1737a 

a 
Mode for plate is (m, n) = (2, 1) 

b 
Mode for plate is (m, n) = (3, 1) 

c 
Mode for plate is (m, n) = (4, 1) 

Table 4  Non-dimensional critical buckling load N  of simply supported Al/Al2O3 plate subjected to 

biaxial compression ( 1 21 , 1     ) 

ba /  ha /  p  

0 0.5 1 2 5 10 20 100 

0.5 5 5.3762 3.5388 2.7331 2.1161 1.7187 1.5370 1.3692 1.0990 

10 5.9243 3.8565 2.9689 2.3117 1.9332 1.7517 1.5510 1.2200 

20 6.0794 3.9452 3.0344 2.3665 1.9955 1.8152 1.6044 1.2547 

50 6.1244 3.9708 3.0533 2.3823 2.0137 1.8338 1.6200 1.2647 

100 6.1308 3.9744 3.0560 2.3846 2.0164 1.8365 1.6222 1.2662 

1.0 5 8.0105 5.3127 4.1122 3.1716 2.5264 2.2403 2.0035 1.6293 

10 9.2893 6.0615 4.6696 3.6315 3.0177 2.7264 2.4173 1.9099 

20 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834 2.5494 1.9961 

50 9.7907 6.3485 4.8818 3.8088 3.2186 2.9307 2.5891 2.0217 

100 9.8073 6.3579 4.8888 3.8147 3.2254 2.9376 2.5948 2.0254 

1.5 5 11.6820 7.8299 6.0799 4.6637 3.6176 3.1718 2.8510 2.3600 

10 14.6084 9.5685 7.3793 5.7279 4.7124 4.2384 3.7657 2.9959 

20 15.7985 10.1332 7.7977 6.0761 5.1006 4.6300 4.0961 3.2135 

50 15.8875 10.3036 7.9236 6.1815 5.2212 4.7531 4.1995 3.2803 

100 15.9312 10.3284 7.9419 6.1969 5.2389 4.7712 4.2147 3.2900 

2.0 5 15.7235 10.6622 8.3092 6.3353 4.7754 4.1382 3.7392 3.1534 

10 21.5050 14.1552 10.9323 8.4644 6.8750 6.1481 5.4769 4.3958 

20 23.6970 15.4260 11.8755 9.2469 7.7327 7.0067 6.2040 4.8802 

50 24.7985 15.8244 12.1700 9.4931 8.0132 7.2926 6.4440 5.0358 

100 24.4974 15.8830 12.2132 9.5294 8.0550 7.3353 6.4799 5.0589 
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Table 5 Non-dimensional critical buckling load N  of simply supported Al/Al2O3 plate subjected to 

biaxial compression and tension (
1 21 , 1    ) 

ba /  ha /  p  

0 0.5 1 2 5 10 20 100 

0.5 5 8.9604 5.8980 4.5551 3.5268 2.8646 2.5617 2.2820 1.8316 

10 9.8738 6.4275 4.9481 3.8529 3.2219 2.9195 2.5850 2.0334 

20 10.1324 6.5753 5.0574 3.9442 3.3259 3.0253 2.6739 2.0911 

50 10.2073 6.6179 5.0888 3.9706 3.3562 3.0564 2.7000 2.1079 

100 10.2181 6.6241 5.0934 3.9744 3.3606 3.0609 2.7037 2.1103 

1.0 5 26.2058 a 17.7704 a 13.8486 a 10.5589a 7.9590a 6.8970 a 6.2320 a 5.2556 a 

10 35.8416 a 23.5920b 18.2206 a 14.1073a 11.4583a 10.2468a 9.1281a 7.3263 a 

20 39.4951a 25.7100 a 19.7925a 15.4115a 12.8878a 11.6779a 10.3400a 8.1336 a 

50 40.6574a 26.3740 a 20.2833a 15.8219a 13.3554a 12.1543a 10.7401a 8.3931b 

100 40.8291 a 26.4717 a 20.3554a 15.8823a 13.4250a 12.2256a 10.7998a 8.4315b 

1.5 5 29.0249b 20.1105b 15.7823b 11.9009b 8.5250b 7.2422b 6.6008b 5.7477b 

10 37.9819 24.8781 19.1863 14.8925 12.2523 11.0199 9.7909 7.7894 

20 40.5307 26.3463 20.2740 15.7980 13.2616 12.0379 10.6500 8.3551 

50 41.3076 26.7894 20.6013 16.0719 13.5752 12.3580 10.9186 8.5287 

100 41.4211 26.8539 20.6489 16.1118 13.6212 12.4052 10.9581 8.5541 

2.0 5 26.2058 17.7704 13.8486 10.5589 7.9590 6.8970 6.2320 5.2556 

10 35.8416 23.5920 18.2206 14.1073 11.4583 10.2468 9.1281 7.3263 

20 39.4951 25.7100 19.7925 15.4115 12.8878 11.6779 10.3400 8.1336 

50 40.6574 26.3740 20.2833 15.8219 13.3554 12.1543 10.7401 8.3931 

100 40.8291 26.4717 20.3554 15.8823 13.4250 12.2256 10.7998 8.4315 
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Fig. 3 The effect of thickness ratio on non-dimensional critical buckling load N  of simply supported square plate 

under uniaxial compression along the x-axis  01 21   ,  
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Fig. 4 The effect of aspect ratio on non-dimensional critical buckling load N  of simply supported rectangular plate 

( 10h/a ) under uniaxial compression along the y-axis  10 21   ,  
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Fig. 5 The effect of aspect ratio on non-dimensional critical buckling load N  of simply supported rectangular plate 

( 10/ ha ) under biaxial compression  11 21   ,  
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5. Conclusions 

 

An efficient and simple refined plate theory is proposed 

for buckling behavior of FG plates. By making further 

simplifying assumptions to the existing HSDTs, with the 

inclusion of an undetermined integral term, the number of 

unknowns and governing equations of the proposed HSDT 

are reduced by one, and hence, make this theory simple and 

efficient to use. The accuracy and efficiency of the proposed 

model have been demonstrated for buckling investigation of 

simply supported FG plates. It can be concluded that the 

proposed theory is not only accurate but also efficient in 

determining the critical buckling forces of FG plate 

compared to other shear deformation plate theories such as 

FSDT and HSDT. An improvement of proposed formulation 

will be considered in the future work to consider the 

thickness stretching effect by using quasi-3D shear 

deformation models (Bessaim et al. 2013, Bousahla et al. 

2014, Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Meradjah et al. 2015, Larbi Chaht et al. 2015, Bennai 

et al. 2015, Hamidi et al. 2015, Bourada et al. 2015, 

Bennoun et al. 2016, Draiche et al. 2016, Benbakhti et al. 

2016, Benahmed et al. 2017, Ait Atmane et al. 2017, 

Benchohra et al. 2017, Bouafia et al. 2017) and the wave 

propagation problem (Mahmoud et al. 2015, Ait Yahia et al. 

2015, Boukhari et al. 2016). 
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