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1. Introduction 
 

Heat transfer continues to be a field of major interest to 

engineering and scientific researchers as well as designers, 

developers, and manufacturers. Considerable effort has 

been devoted to research in traditional applications such as 

chemical processing, general manufacturing, and energy 

devices, including general power systems, heat exchangers, 

and high performance gas turbines. 

Physical observations and results of the conventional 

coupled dynamic thermoelasticity theories involving 

infinite speed of thermal signals, which were based on the 

mixed parabolic–hyperbolic governing equations, are 

mismatched (Biot 1955). To remove this paradox, the 

conventional theories of thermoelasticity have been 

generalized by Lord-Shulman (LS) (1967). Among the 

contributions to this theory are (Chandrasekharaiah 1998, 

Hetnarski and Ignaczak 1999, El-Karamany and Ezzat 

2002, Lata et al. 2016, Abbas and Kumar 2016, Kumar et 

al. 2016 and Ezzat et al. 2001). 

Fractional order differential equations have been the 

forefront of research due to their applications in many real 

life problems of fluid mechanics, viscoelasticity, biology, 

physics and engineering. It is a well-known fact that the 

integer order differential operator is a local operator but the 

fractional order differential operator is non-local. Hence, 

the next state of a system depends not only upon its current 

state but also upon all of its historical states. This is much 

more realistic and due to this reason, fractional derivative is 

also known as memory-dependent derivative. In recent 
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times, various types of definition and approaches of 

fractional order derivatives have become popular amongst 

many researchers. The reason behind introduction of the 

fractional theory is that it predicts retarded response to 

physical stimuli, as is found in nature, as opposed to 

instantaneous response predicted by the generalized theory 

of thermoelasticity. The first application of fractional 

derivatives was given by Abel, who applied fractional 

calculus in the solution of an integral equation that arises in 

the formulation of the tautochrone problem. Caputo and 

Mainardi (1971) used fractional derivatives and their results 

found good agreement with the empirical evidences for 

description of viscoelastic materials. Recently, some efforts 

have been done to modify the classical Fourier law of heat 

conduction by using the fractional calculus (Povstenko 

2011, Sherief et al. 2010, Ezzat 2011, 2012, Yu et al. 2013, 

Ezzat and El-Bary 2017 and Kumar and Sharma 2017). One 

can refer to Podlubny (1999) for a survey of applications of 

fractional calculus. 

The memory-dependent derivative is defined in an 

integral form of a common derivative with a kernel function 

on a slipping interval. So this kind of definition is better 

than the fractional one for reflecting the memory effect 

(instantaneous change rate depends on the past state). Its 

definition is more intuitionistic for understanding the 

physical meaning and the corresponding memory-

dependent differential equation has more expressive force 

(Wang and Li 2011). Recently, many works were devoted to 

investigate various theoretical and practical aspects in 

continuum mechanics with memory-dependent heat 

transfer. Yu et al. (2014) introduced memory-dependent 

derivative (MDD), instead of fractional calculus, into the 

Lord and Shulman generalized thermoelasticity. Ezzat et al. 

(2014, 2015 and 2017) constructed a new generalized 
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thermo-viscoelasticity theory with memory–dependent 

derivatives. 

Functionally graded materials (FGMs) are composite 

materials which are fabricated with combination of two or 

more materials with continuously varying material 

composition to obtain material properties suitable for 

specific application (Naebe and Shirvanimoghaddam 2016). 

The increasing technological demand regarding 

variability, durability and other properties of materials led 

to the development of novel categories of high-performance 

composites, such as FGMs. Within a FGM the mechanical 

properties continuously vary in one or more directions. This 

is preferable over layered composites as it eliminates the 

possibility of delamination failure. The material properties 

of a FGM can be subtly adjusted and optimized for its 

application (Willert and Popov 2017). 

Recently, various problems in solid mechanics are being 

studied where the elastic coefficients are no longer constant 

but they are functions of position. The investigations result 

from the fact that idea of non-homogeneity in elastic 

coefficients is not at all hypothetical, but more realistic. 

Elastic properties in soil may vary considerably with 

positions. The earth crust itself is non-homogeneous. Beside 

these, some structural materials such as functionally graded 

materials (FGMs) have distinct non-homogeneous 

character. For example, the functionally graded metal-

ceramic composites have been used as thermal barriers or 

thermal shields in various applications (Lee et al. 1996 and 

Tsukamoto 2010). Especially, in severe temperature 

environments, such as extremely high temperature and 

thermal shock, widely potential applications are opening for 

FGMs. Containing various advantageous properties, FGMs 

are appropriate for various engineering applications and 

gained intense interest by several researchers (Javaheri and 

Eslami 2002, Chakraborty et al. 2003, Zhang 2013, 

Zenkour and Abouelregal 2015 and  Shirvanimoghaddam 

2016, 2017). 

In this work we solve a thermal shock problem for a 

functionally graded perfect electrically conducting half 

space with memory-dependent derivative heat transfer and 

variable Lamé‟s modulii. Laplace transforms and 

perturbation techniques are used to solve the problem. The 

inversion of the Laplace transforms is carried out using a 

numerical approach proposed by Honig and Hirdes (1984). 

Some comparisons have been shown in figures to estimate 

the effects of time-delay, different forms of kernel function 

and Alfven velocity on all the studied fields. 
 

 

2. Mathematical model 
 

We shall consider a thermoelastic medium of perfect 

conductivity permeated by an initial magnetic field Ho. This 

produces an induced magnetic field h and induced electric 

field E, which satisfy the linearized equations of electro-

magnetism and are valid for slowly moving media. The first 

set of equations constitutes the equations of electro-

dynamics of slowly moving bodies 
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Here the J is the electric current density vector, u is the 

displacement vector, t is the time, μo, εo are magnetic and 

electric permeability, respectively. 

The second group of equations is the equations of 

motion 
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where ρ is the density and ζij is the stress tensor represents 

the constitutive equation 
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where λ, μ are Lamé‟s modulii, eij are the components of 

strain tensor, δij is the Kronecker delta, αT is the coefficient 

of thermal expansion and θ = T ‒ To where T is the absolute 

temperature, To is the temperature of the medium in its 

normal state such that | θ |  1. 

The above equations should be supplemented by the 

relations between strain and displacements 
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and heat conduction equation with memory-dependent 

derivative 
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(8) 

 

where k is the thermal conductivity and CE is the specific 

heat at constant strain. 

The previous Eqs. (1)-(8) constitute a complete system 

of generalized magneto-thermoelasticity for a perfectly 

conducting medium with memory-dependent derivative 

heat transfer. 
 

 

3. One dimensional physical problem 
 

In this work, we consider a homogeneous isotropic 

electrically conducting thermoelastic solid with perfect 

conductivity occupying the region x ≥ 0 composed of a 

FGM material whose Lamé's parameters depend on the 

vertical distance “x” from the surface. The surface of the 

half-space is taken to be traction free and is subjected to a 

thermal shock that is a function of time. The initial 

conditions are assumed to be homogenous and the initial 

magnetic field Ho acts in the direction of the z-axis and has 

the components (0, 0, Ho). The displacement vector will 
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thus have the components (u, 0, 0). We assume also that 

there are no body forces or heat sources inside the medium. 

From the physics of the problem, it is clear that all the 

variables depend on x and t only. 

Given the above assumptions, we have 
 

(1) The Maxwell equations 
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(2) The constitutive relation 
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(3) The equation of motion 
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The generalized energy equation with memory-

dependent derivative 
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From now on, we shall take λ and μ in the form 
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where λo, μo and “a” are constants. Thus, the Eqs. (12)-(14) 
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We assume that the boundary conditions consist of: 
 

(a) A thermal shock is applied to the boundary plane x = 

0 in the form 
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(2) Mechanical boundary condition 

The bounding plane x = 0 is taken to be traction-free 
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   
 

  


 

2 2

2

2

1 0

( ) 1
1 , 0,

2 ( ) 2
( ) 1 ( )

1 ( ) 0 / 2

(1 ) 1,

if m n

t
if m n

n m t
K t t

t if m n

t
if m n



 
 

  





 



   

 
      

   
 

  
  

(27) 

 

where m and n are constants. 

 

 

4. The solutions in the Laplace-transform domain 
 
Performing the Laplace transform with parameter s 

defined by the relation 

0

L{g( , )} g( , ) e g( , ) dstx t x s x t t



  
 

of both sides Eqs. (19)-(24), with the homogeneous initial 

conditions 
 

( ,0) ( ,0) ( ,0) ( ,0) ( ,0) ( ,0) 0u x u x x x x x         

( ,0) ( ,0) ( ,0) ( ,0) ( ,0) ( ,0) 0u x u x x x x x         ,
 

 

we get a coupled system of the following equations: 

 

 2 2J h V s u  D  (28) 

 

h u D  (29) 

 

E s u  (30) 

 

 2 2axs u e u u      D D D , (31) 

 

 2 (1 ) axs G e u     D D , (32) 

 

 e ax u  D  (33) 

 

where 
x





D  

2 2
2

2 2

2 2 2
( ) (1 )(1 ) ( 2 )s sn m m

G s e m n e
s s s

 

  

       
 

 

and m and n are constants such that 

2 2

[(1 )], 0

1 1
[1 (1 )], 0,

2
{ ( )} ( ) 1

[(1 ) (1 ) ], 0,
2

2 2
[(1 ) (1 )], 1

s

s

s s s

s

e m n

e m n
s

L D f t F s
e e e m n

s

e m n
s s





   




 



 





  



   

    



 
     




    

 

2 2

[(1 )], 0

1 1
[1 (1 )], 0,

2
{ ( )} ( ) 1

[(1 ) (1 ) ], 0,
2

2 2
[(1 ) (1 )], 1

s

s

s s s

s

e m n

e m n
s

L D f t F s
e e e m n

s

e m n
s s





   




 



 





  



   

    



 
     




      
2

( ) {( )} ( )ax axu
F s L e s e Du

t x t


    

   
    

 

and the boundary conditions (26) and (27) become 
 

(0, ) ( ), (0, ) 0s f s s    (34) 

 

We shall use the perturbation method to solve the above 

equations. By expanding the temperature, displacement and 

stress functions as follows 
 

(0) (1) 2 (2)a a        
(0) (1) 2 (2)u u au a u     
(0) (1) 2 (2)a a        
(0) (1) 2 (2)E E a E a E     

 

where 
)(i and ,)(iu i = 1, 2 are functions to be determined. 

Eqs. (30-(33) gives, upon equating the coefficients of 

“a” in both sides up to order 1 

 
2 (0) (0) 2 (0)(1 ) u s u    D D  (35) 

 

2 (1) (1) 2 (1) 2 (0) (0) (0)(1 ) u s u x s u u         D D D 
2 (1) (1) 2 (1) 2 (0) (0) (0)(1 ) u s u x s u u         D D D  

(36) 

 

 2 (0) (0) (0)(1 )s G u    D D  (37) 

 

 2 (1) (1) (1) (0)(1 ) (1 )s G u x s G u        D D D 

 2 (1) (1) (1) (0)(1 ) (1 )s G u x s G u        D D D  
(38) 

 
(0) (0) (0)u  D  (39) 

 
(1) (1) (1) (0)u x     D  (40) 

 
(0) (0)E s u  (41a) 

 
(1) (1)E s u  (41b) 

 
(0) (0)h u D  (42a) 

 
(1) (1)h u D  (42b) 

 

Eliminating )0( between Eqs. (35) and (37), we obtain 

180



 

A functionally graded magneto-thermoelastic half space with memory-dependent derivatives heat transfer 

 4 2 2 3 (0)(1 )( 1) (1 ) 0s s G s G u           D D  

 4 2 2 3 (0)(1 )( 1) (1 ) 0s s G s G u           D D  
(43) 

 

where ς = 1/1 + β. 

The general solution of Eq. (43) which is bounded for x 

≥ 0 has the form 
 

2
(0)

1

( , ) ik x

i i

i

u x s A k e 



   (44) 

 

where ki, i = 1, 2 are the roots of the characteristic equation 

with positive real parts of 
 

4 2 2 3(1 )( 1) (1 ) 0k s s G k s G           
, 

 

satisfying the relations 
 

2 2 2

1 2

2 2 3

1 2

(1 )( 1)

(1 )

k k s s G

k k s G

  



    

 

 (45) 

 

and Ai, i = 1, 2 are parameters depending on s to be 

determined from the boundary conditions of the problem. 

Substitution from Eq. (44) into Eq. (35), we get 
 

2
(0) 2 2

1

( , ) [(1 ) ] ik x

i i

i

x s A k s e   



    (46) 

 

The boundary conditions (34) become 
 

(0) (0, ) ( ),s f s   (47a) 

 
(1) (0, ) 0s   (47b) 

 
(0) (0, ) 0s   (47c) 

 
(1) (0, ) 0s   (47d) 

 

In order to determine Ai, i = 1, 2 we shall use the 

boundary conditions (34) to obtain 
 

2 2 2 2

2 1
1 22 2 2 2 2 2

1 2 1 2

( ), ( )
( ) ( )

s k s k
A f s A f s

s k k s k k

    
  

 
 

 

Eliminating )1(u  between Eqs. (36) and (38), and using 

Eqs. (44) and (46) we obtain 
 

      1 22 2 2 2 (1)

1 2 1 2 3 4

k x k x
k k x e x e  

     D D  

      1 22 2 2 2 (1)

1 2 1 2 3 4

k x k x
k k x e x e  

     D D  
(48) 

 

which has a general solution in the form 
 

   1 2(1) 2 2

1 1 2 2 3 4

k x k x
B L x L x e B L x L x e  

       (49) 

 

where 

2 2 2 2 2

1 1 1 1 2 1 1 1(1 )(2 ) , 2 (1 )( ) ,k s G s k A k s G k s A        
 

2 2 2 2 2

1 1 1 1 2 1 1 1(1 )(2 ) , 2 (1 )( ) ,k s G s k A k s G k s A        
 

2 2 2 2 2

3 2 2 2 4 2 2 2(1 )(2 ) , 2 (1 )( ) ,k s G s k A k s G k s A        
 

2 2 2 2 2

3 2 2 2 4 2 2 2(1 )(2 ) , 2 (1 )( ) ,k s G s k A k s G k s A        
 

2 2

1 1 2
1 2 2 12 2 2 2 2 2

1 1 2 1 1 2 1 1 2

51
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k k
L L
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51
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k k
L L
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3 1 2
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2 1 2 1 1 2 1 1 2

51
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L L

k k k k k k k k k
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   

    
2 2

3 1 2
3 4 4 32 2 2 2 2 2

2 1 2 1 1 2 1 1 2

51
, ,

4 ( ) 2 ( ) 2 ( )

k k
L L

k k k k k k k k k

 
   

     
 

In the same manner the displacement distribution 
)1(u

satisfies the differential equation 
 

      1 22 2 2 2 (1)

1 2 1 2 3 4

k x k x
k k m x m e m x m e  

     D D  

      1 22 2 2 2 (1)

1 2 1 2 3 4

k x k x
k k m x m e m x m e  

     D D  
(50) 

 

and has the general solution in the form 
 

   1 2(1) 2 2

3 1 2 4 3 4

k x k x
u B M x M x e B M x M x e

 
      

   1 2(1) 2 2

3 1 2 4 3 4

k x k x
u B M x M x e B M x M x e

 
       

(51) 

 

where 
 

2 2 2 2 2

1 1 1 1 2 1 1(1 )( ) , (3 1) (1 ) ,m k s G s k s A m k s s G A                   
2 2 2 2 2

1 1 1 1 2 1 1(1 )( ) , (3 1) (1 ) ,m k s G s k s A m k s s G A                     
2 2 2 2 2

3 2 1 2 2 1 2(1 )( ) , (3 1) (1 ) ,m k s G s k s A m k s s G A                    
2 2 2 2 2

3 2 1 2 2 1 2(1 )( ) , (3 1) (1 ) ,m k s G s k s A m k s s G A                     
2 2

1 1 2
1 2 2 12 2 2 2 2 2

1 1 2 1 1 2 1 1 2

51
, ,

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

  
   

    
2 2

1 1 2
1 2 2 12 2 2 2 2 2

1 1 2 1 1 2 1 1 2

51
, ,

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

  
   

     
2 2

3 1 2
3 4 4 32 2 2 2 2 2

2 1 2 1 1 2 1 1 2

51
, .

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

 
   

    
2 2

3 1 2
3 4 4 32 2 2 2 2 2

2 1 2 1 1 2 1 1 2

51
, .

4 ( ) 2 ( ) 2 ( )

m k k
M M m m

k k k k k k k k k

 
   

     
 

From Eqs. (44), (49), (51) and (36) one can get 
 

2

3 2 1 1 2

1

1
(1 ) (1 )

(1 )
B s G M s G k B

k s G



       

 

2

3 2 1 1 2

1

1
(1 ) (1 )

(1 )
B s G M s G k B

k s G



       

 (52a) 

 

2

4 4 2 2 4

2

1
(1 ) (1 )

(1 )
B s G M s G k B

k s G



       

 

2

4 4 2 2 4

2

1
(1 ) (1 )

(1 )
B s G M s G k B

k s G



       

 (52b) 
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By using the boundary conditions (47b) and (47d) into 

Eqs. (49) and (51), we have 
 

1 2B B   (52c) 

 

1 3 2 4 2 4k L k L M M    (52d) 
 

Solving the above system, we have 
 

2 4
1 2 2

1 2

B
k k


 


 

 

The other constants can be easily obtained from Eqs. 

(52a)-(52c). 

The stress and induced magnetic and electric fields can 

be obtained from Eqs. (39)-(42). 

This completes the solution in the Laplace transform 

domain. 
 

 

5. Numerical inversion of the Laplace transforms 
 

We shall now outline the method used to invert the 
Laplace transforms in the above equations. Let )(sf  be 
the Laplace transform of a function f(t). The inversion 
formula for Laplace transforms can be written as Honig and 
Hirdes (1984) 

( ) ( ) d
2

dt
itye

f t e f d iy y






  ,

 
 

where d is an arbitrary real number greater than all the real 
parts of the singularities of ).(sf  

Expanding the function h(t) = exp(‒dt) f (t) in a Fourier 

series in the interval [0, 2L], we obtain the approximate 

formula 
 

0

1

1
( ) ( )

2

N

N k

k

f t f t c c


   ,   for   0 2t L   (53) 

 

where 
 

 /Re /
dt

ik t L

k

e
c e f d ik L

L

    
. (54) 

 

Two methods are used to reduce the total error. First, the 

„Korrektur‟ method is used to reduce the discretization 

error. Next, the ε-algorithm is used to reduce the truncation 

error and therefore to accelerate convergence. 

The Korrektur-method uses the following formula to 

evaluate the function f (t) 
 

2( ) ( ) ( ) (2 )dL

NK N Nf t f t f t e f L t

    . (55) 

 

 

We shall now describe the ε-algorithm that is used to 

accelerate the convergence of the series in Eq. (55). Let N 

be an odd natural number and let 
1

m

m k

k

s c


 , be the 

sequence of partial sums of (55).We define the ε-sequence 

by 

0, 1,0, , 1,2,3,...m m ms m   
 

and 

 1, 1, 1 , 1 ,1/ , , 1,2,3,....n m n m n m n m n m         
 

 

It can be shown from Honig and Hirdes (1984), that the 

sequence ε1,1, ε3,1,..., εN,1,... converges to f (t) ‒ c0/2 faster 

than the sequence of partial sums. 
 

 

6. Numerical results 
 

The method based on a Fourier series expansion 

proposed by Honig and Hirdes (1984) and developed in 

detail in many works such as Ezzat and Youssef (2010) is 

adopted to invert the Laplace transform in the previous 

Equations. The analysis is conducted for a copper material, 

whose physical data is given below in Table 1 (Ezzat and 

Fayik 2011) 

Let us consider that (𝑡) is varying sinusoidal pulse 

function with time described mathematically as 
 

 
2 2 2

1sin 0
( ) or ( )

0 otherwise

ast
a et a

f t f sa
a s






      
  


  

or 

 
2 2 2

1sin 0
( ) or ( )

0 otherwise

ast
a et a

f t f sa
a s






      
  




 
 

The computations were performed for one value of time, 

namely t = 0.12. The numerical technique outlined above 

was used to obtain the temperature, displacement, stress and 

induced magnetic and electric fields. The results are 

displayed graphically at different positions of x as shown in 

Figs. 1-5. 

Fig. 1 depicts the space variation of temperature with 

distance x for different values of time-delay ω = 0.000, 

0.009, 0.09 when the kernel function has the form K(t, ξ) = 

1 ‒ (t ‒ ξ)/ω. We noticed that the solution corresponding to 

the coupled theory (Biot theory, ω = 0) that the thermal 

waves propagate with infinite speeds, so the value of the 

temperature is not identically zero (though it may be very 

small) for any large value of x. While, in the non-Fourier 

Table 1 Values of the constants 

ρ = 8954 kg/m3 k = 0.55 J/(m.sec.K) E = 525×107 N/m2 

CE = 381 J/(kg.K) λo = 7.76×(10)10 kg/(ms2) αT = 1.78(10)-5 K-1 

γ = 7.76(10)10 N/(m2K) η = 8886.73 sec/m2 c = 2200 m/sec 

To = 293 K μo = 3.86×(10)10 kg/(ms2) Ho = 1.0 C/m.sec 

ε = 0.0168 ω ≈ 10-4 sec a = 0.03 m-1 
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theory (ω > 0), the response to the thermal effect in FGMs 

does not reach infinity instantaneously but remains in a 

bounded region. We observed also that the temperature field 

has been affected by the time-delay ω, where the decreasing 

 

 

 

 

of the value of the parameter ω causes increasing in the 

amplitude of the thermal waves which are continuous 

functions and smooth. 

Figs. 2 and 3 depict the space variations of displacement 

 

Fig. 1 The variation of temperature for different values of time-delay ω kernal fuction K(t, ξ) = 1 ‒ (t ‒ ξ) ‒ ω 

 

Fig. 2 The variation of displacement for different forms of kernal function K(t, ξ) and time-delay ω = 0.009 
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and stress distributions for the different forms of kernel 

function K(t, ξ) = 1, 1 ‒ (t ‒ ξ), 1 ‒ (t ‒ ξ)/ω at one value of 

time-delay ω = 0.009. We learned from these figures that 

the displacement and stress fields in FGMs has been 

 

 

 

 

affected by the choosing of the form of kernel function K(t, 

ξ). As usual in dealing with problems of the theory of 

generalized thermoelasticity of FGMs with memory-

dependent derivative, the finite speed of wave propagation 

 

Fig. 3 The variation of stress for different forms of kernal function K(t, ξ) and time-delay ω = 0.009 

 

Fig. 4 The variation of induced magnetic field for different values of time-delay ω and Alfven velocity ao 
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is apparent. 

Figs. 5 and 6 show the variation of displacement and 

stress distributions for a kernel function namely, K(t, ξ) = 1 

‒ (t ‒ ξ) at different values of time-delay. It is clear that see 

that time-delay ω has a significant effect on the induced 

magnetic and electric fields so that the magnitude value of 

stress and displacement distributions have the same 

behavior as the temperature and the absolute of the 

maximum value of these distributions decreases when time-

delay increases. The Alfven velocity αo acts to decrease the 

displacement and magnitude of stress distributions. This is 

mainly due to the fact that the magnetic field corresponds to 

a term signifying a positive force that tends to accelerate the 

charge carries. 
 

 

7. Conclusions 
 

The electro–magneto–thermoelastic analysis problem of 

a perfect conducting FGM half space based upon memory-

dependent derivatives theory is presented. The main 

contribution in this article is to describe the effects of time-

delay and kernel function on temperature, displacement, 

and stress distributions. According to this theory we have to 

construct a new classification for FGMs materials according 

to their, time-delay ω where this parameter becomes a new 

indicator of its ability to conduct heat in conducting 

medium. The advantage of Fourier law of heat conduction 

with time-delay and kernel function by using the definition 

for reflecting the memory effect (instantaneous change rate 

depends on the past state) where kernel function and time-

delay can be arbitrarily chosen freely according to the 

necessity of applications. 
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