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Abstract. This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic
functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient
theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The
effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended
rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are
derived using Hamilton’s principle and solved by employing differential quadrature method (DQM). The effect of various
parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material
length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the
nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering
magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically
damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has
the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam
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decreases the frequency of the system.
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1. Introduction

During last two decades, the need to design the high
performance and efficiency structures with low dimensions
has attracted the researchers to study the nano/micro
electromechanical systems (MEMS/NEMS) which incorpo-
rate the structural elements like beams, plates and
membranes in micro/nano scale. Curved beams are one
types of beam which are used in micro and nano-scale
devices and systems such as biosensors, atomic force
microscopes (AFM), micro/nano-electromechanical systems
(MEMS/NEMS), civil and aerospace engineering. In order
to better understand the behavior of these systems, the
theoretical analysis and numerical methods play a
significant role in capturing the size effects on the static and
dynamic responses. Many investigations have been done by
researchers using the size-dependent theories. For example,
dynamic analysis of an embedded single-walled carbon
nanotube (SWCNT) traversed by a moving nanoparticle,
which was modeled as a moving load, was investigated by
Simsek (2011) based on the nonlocal Timoshenko beam
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theory, including transverse shear deformation and rotary
inertia. Yang et al. (2017) presented a size-dependent
mathematical model of a FG-CNTs- reinforced microbeam
based on the nonlocal stress and strain gradient theories.
They studied nonlinear dynamic behavior of the microbeam
subjected to electrostatic, piezoelectric actuation and
thermal loading. Ebrahimi and Salari (2015) sought thermal
buckling and free vibration analysis of the functionally
graded (FG) nanobeams in thermal environments. They
developed the size-dependent model of the nanobeam based
on Timoshenko beam theory and considered the structure
subjected to an in-plane thermal loading. Ghadiri and
Shafiei (2016) analyzed vibration behavior of rotating FG
microbeam based on modified couple stress theory. They
also used Timoshenko beam theory and considered different
temperature distributions. Ilkhani and Hosseini-Hashemi
(2016) also applied modified couple stress theory to
proposed size-dependent vibro-buckling analysis of a
rotating beam. They derived the equations of motion by
combining Euler-Bernoulli and Timoshenko beam theories
and studied the effects of scale parameter, rotational speed,
tangential load value and direction. In addition, Dehrouyeh-
Semnani et al. (2015) presented a size-dependent mathe-
matical formulation of a FG viscoelastically damped
sandwich microbeam based on modified couple stress
theory. They used Navier’s solution method to examine the
influence of material length scale parameter, power index
and loss factor ratios on the natural frequency. Zenkour and
Abouelregal (2016) investigated the vibration phenomenon
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of a nanobeam subjected to a time-dependent heat flux. The
vibration analysis of a cantilever microbeam is applied by
Abdollahi et al. (2016). Chen and Meguid (2015)
investigated the effects of boundary condition, residual
axial force, arch shape and temperature changes on the
buckling behavior of a curved microbeam. They developed
the governing equations using Euler-Bernoulli beam theory
and solved them applying Galerkin decomposition
approach. Ghayesh er al. (2017) sought the vibration
behavior of a geometrically imperfect shear-deformable
microbeam. They considered all the translational and
rotational displacements and developed the mathematical
formulation based on the modified couple stress theory
Also, Simsek (2015) analyzed the nonlinear vibration
behavior of an axially functionally graded (AFG)
microbeam by developing a size-dependent theoretical
model based on the Euler-Bernoulli and modified couple
stress theories. He used Galerkin approach to examine the
effects of the length scale parameter, vibration amplitude,
boundary conditions and material variation on the
frequencies of the structure. Also, Wang et al. (2013)
studied the size-dependent vibration behavior of a three-
dimensional cylindrical microbeams using modified couple
stress. They considered only one single material length
scale parameter. Tang ef al. (2014) and Shafiei et al. (2016)
are the other researchers which employed modified couple
stress theory to capture the size effect on the vibrational
behavior of the microbeams. A size-dependent model for
the free vibration analysis of FG microbeams based on
strain gradient theory is proposed by Ansari et al. (2011).
They assumed the material properties to be graded along the
thickness direction on the basis of Mori-Tanaka approach.
Ghayesh et al. (2016) studied the viscoelastically coupled
size-dependent dynamics of the microbeams using Kelvin-
Voigt viscoelastic model. Zamanian and Karimiyan (2015)
presented the bending and vibration analysis of a doubled
microbeam under electrostatic actuation. A non-classical
beam model based on the Eringen’s nonlocal elasticity
theory was proposed by Simgek (2014) for nonlinear
vibration of nanobeams with axially immovable ends. Jia et
al. (2015) sought the size effect on the free vibration
behavior of the FG microbeams under combined electro-
static force, temperature change and Casimir force. A
nonlocal trigonometric shear deformation beam theory
based on neutral surface position was developed by Ahouel
et al. (2016) for bending, buckling, and vibration of
functionally graded (FG) nanobeams using the nonlocal
differential constitutive relations of Eringen. Togun and
Bagdatli (2016) presented a nonlinear vibration analysis of
the tensioned nanobeams with simple—simple and clamped—
clamped boundary conditions. The size dependent Euler—
Bernoulli beam model was applied to tensioned nanobeam.
To the best of authors’ knowledge, magneto-thermo-
mechanical vibration and damping analysis of a FG-CNTs-
reinforced curved microbeam resting on viscoelastic
medium is not reported in available literature. The structure
is considered subjected to magnetic loads. Timoshenko
beam and strain gradient theories are employed to develop
the mathematical formulation which is able to capture the
small scale effects. The equivalent mechanical properties of
the microbeam are obtained using the extended rule of
mixture. Also, the governing equations are derived based on
the energy method and using Hamilton’s principle. The
imaginary and real parts of eigenfrequency and damping
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Fig. 1 (a) A schematic of FG-CNT reinforced curved
micro beam; (b) different distribution of CNTs
(1) UD; (2) FGA; (3) FGO; (4) FGX

ratio of the system are obtained using DQM and the effects
of parameters such as structural damping, boundary
conditions, viscoelastic medium, volume percent and
distribution types of CNTS, magnetic field, material length
scale parameters, temperature change and central angle of
the curved microbeam are studied on the vibration and
damping analysis of system.

2. Geometry of problem

A FG-CNTs-reinforced curved microbeam of length L,
radius R and thickness # is illustrated in Fig. 1(a).

The microbeam is surrounded by a viscoelastic medium
which is modeled with spring, damper and shear elements.
Different types of CNTs distribution, including UD, FGA,
FGO and FGX are considered which are shown in Fig. 1(b).

3. Theories and mathematical formulation
3.1 Extended rule of mixture

The effective material properties of the CNTs-reinforced
composite beam are obtained by employing the extended
rule of mixture. According to this method, the CNTs are
assumed as short fibers which are aligned and straight.
Hence, the effective Young’s modulus and shear modulus of
the CNTs-reinforced composite beam can be expressed as
(Zhang et al. 2015)

E\ =nVenrE +(=Veyr)ET, ©))
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where E,, E» and G,, represent Young’s and shear
moduli of CNTs, respectively. Also, E,, and G, are the
mechanical properties of the matrix material, and Veyr
indicates the volume fraction of CNTs. In addition, #; (i = 1,
2, 3) denotes the CNT efficiency parameters. Here, CNTs
are considered to be distributed uniformly (UD) or
functionally graded (FG) through the thickness direction of
the composite curved microbeam. Four different CNTs
distribution types can be defined as below

UD: Ve =Venrs 4)
2z ) .
FGA : VCNT (Z ) = (1 _TJVCNT 5 (5)
2|z| .
FGO: Vi (2) =2 1_7 Venr (6)
2,
FGX : VCNT (Z) =2 7 VCNT’ (7)
in which
V;NT = Yo 4 (8)

Wenr (pCNT ! P )_ (p ent ! P )WCNT

in which weyr denote the mass fraction of CNTs; p,, and
pcvr are the mass densities of matrix and CNTs,
respectively.  Also, the effective thermal expansion
coefficients and mass density of the CNTs-reinforced
composite beam can be calculated based on the extended
rule of mixture as below

az(g) = (1 TV )VCNT &, )
+(1+vm )(I—VCNT )

ay =Venr &, +(1 V(NT)

a, =V,

P =V ey, (1 —Venr )pm > (10)

where a,;; and ., represent the thermal expansion
coefficients of CNT in the longitudinal and transverse
directions, respectively. In addition, p,, and p, indicate the
mass densities of matrix and CNT, respectively. It should be
noted that the Poisson’s ratio is assumed to be constant in
direction of the thickness.

3.2 Timoshenko beam theory

Based on Timoshenko beam theory, the displacement

field at any point of the microbeam can be considered as
follows (Liu and Reddy 2011)

ux(x,z,t)=u(x,t)—z(p(x,t),#

(11)
u, (x,z,t)=w(x,t),

in which u(x, ¢) and w(x, ?) are the displacement components

of the mid-plane along x and z directions, ¢(x, f) is the total

bending rotation of the microbeam cross section and ¢

denotes time. The strain tensor components can be

calculated using following relation

1
& :E(u;’,j +uj,i)7 (12)

Substituting Eq. (11) into Eq. (12) we have

g€, = Qu + ¥z a_q), (13a)
ox R ox
e, = @1—3n%ﬁ—i- (13b)
“ 2o R R)?)

3.3 Strain gradient theory

The strain gradient theory is proposed by Lam (2003).
This theory captures the size effect by considering three
independent material length scale parameters and defines
the potential energy as a function of the symmetric strain
tensor, the dilatation gradient vector, the deviatoric stretch
gradient tensor and the symmetric rotation gradient tensor.
So, the potential strain energy of the microbeam can be
expressed as below (Lam ef al. 2003)

1
U =E,[( ’/ +p ’Y, +T§11k)nf/1k) +m1/Xz/ }iV D) (14)
Vv

where y;, 77, and y; indicate the dilatation gradient vector,
the deviatoric stretch gradient and the symmetric rotation
gradient tensors, respectively and may be defined by the
following relations

Yi = 8mm,i > (lsa)
1 1
Nk = 5(8,/1(,1' t&y; TE€ . ) _ESU( mmk T 2€0 )
| (15b)
- E[S/k (8mm S mr Jm ) + 8kz (Smm N 8mj,m ):I’
;1
Xy =50, +0,,), (15¢)

in which u; and J;; denote the displacement vector and the
knocker delta, respectively. Also, the rotation vector (6;) can
be defined as follows

6, =(%curi(u)j . (16)
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The total potential strain energy of the microbeam based
on Timoshenko beam theory can be rewritten as

U :%J(Gxxsxx +2szsxz +pxyX +pzyz

el el + el + 3 ) (47

Xxx xxz  lxxz yyx n yyx

+T
zzx

1) (1) 1) () s 8 s 8
+3rw Ny, + 3t,.m,. + 2mxy o +2myz Az )dV

Using Egs. (11)-(13b), the dilatation gradient vector, the
deviatoric stretch gradient and the symmetric rotation
gradient tensors can be simplified as

Ou Low T

=g = +Z_, 18a
Vo = B ox? R ox ox? (182)
0
Yz :8xx z Z_(P’ (18b)
“ o Ox
1(Ou, Ou, u,
e) [ -4
o2 oz ox R
(19)
:l( _ow u oz j
2\* 7% TRTRY)
o 20w 1ow ¢, | j (20a)
= — —_—— P [} a
o 5lax? R ox ox’ 2R 7
1{op 0w 1 ou z |0
o __ 195 —_— 1= =, 20b
nzzz 5(6){: axz R ax ( Rjax ( )
noy =N, =N, =
4(0p ow 1 ou ( z )6({) (20c)
L s S —— |l |,
15\éx  ox* R ox R )ox
O _ o0 _ () _
nyyx _nyxy _nxyy -
(o 1ow %) 1 (20d)
R 2+——+Z > +t——0,
5{ox* R ox Ox I5R
Mae =12, =T, =
(20e)

2
_i 6_(p+8wz _la_u+(1_z_)a_(p ,
15{ox  ox R oOx R Jox

1{op ow 1 0u ( zj@(p
W 4 —— | l-= |, 20
L= 5[6x ox? R ox R Jox (200)
ne =nl =n =
1(ou 1ow o) 4 (21a)
—| =tttz —
5{ox° R ox ox

C 1(oe, @, 1
(= T+ = = —0. (21b)

= 20y oz

Also, the classical stress tensor, o, the higher-order
1) '
stresses, p;, T and my; can be defined as

o, =Areo; +2ue;, (22a)
P, =203y, (220)
rlijk = 2/111277iljk , (22¢)

my =2ul;y, (22d)
where (ly, /;, 1) denote the independent material length
scale parameters, 4 and y are the bulk and shear modulus,
respectively. Substituting Egs. (13a), (13b) and (18a)-(21b)
into (22a)-(22d) we have

0 0
0. =0, (2)e. =Q11(z)[§+%+z gj (233)

ow u z (23b)
— 4| 1-= ,
Q22 (Z )(( ax R ( R )(pj]
) (0 1 ow o)
p, =2ulyy, =2ul; F+——8x + ) (24a)
2 2 09
p. =2ulyy. =2uly =, (24b)
2 ou 1 ow e 1 j
Ay L A +—0 |, 25
- 5“1[8):2 R ox | ox’ R’ (252)
2 op Ow 1 ou z \op
W —_Zpr =4+ ===,
S 5ul [6}( ox* R ox ( Rj x) (25b)

2
o =iullz a_‘P+6_W2_l_a_“+ -0 , (25¢)
15 ox  Ox R

R Ox X
) = —% lf(;;uz +%%+z 2;(5]+%M112(P3 (25d)
e e B
) =—%ullz {g—z+%g—:+z 2:([:}—%“112% (25%)
m, =t [S_ng %izgﬁj (262)
o=ty (26b)
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where

(27a)

sz(z)zGu(z)(l+g—j,

(27b)

in which g represents the structural damping constant.

3.4 Hamilton’s principle

In this work, the governing equations of the microbeam
are derived using Hamilton’s principle which can be defined
as follows

[ (6U ~ (5K +w )it =0. (28)

In which U represent the total potential strain energy; K
and W are the kinetic energy and the work done by the
external forces, respectively. In addition, 0 denote the
vibration operator.

The kinetic energy of the microbeam can be calculated

_ Pt Ou, ’ Ou, ’
K_Zjo L(( 8tj +[atnd/1dx, (29)

in which p is the mass density of the nanocomposite
microbeam. Also, the work done by surrounding elastic
medium and axial magnetic field can be obtained as follows
(Kolahchi et al. 2016b, Shen and Zhang 2011)

as

2
kow i +k, W
1 L w d gax2
W == wdx , (30)
270 , 0w
+nAH
T T ox?

where k,, and k, denote the spring constant of the Winkler
type and the shear constant of the Pasternak type,
respectively. Also, ¢, represents the damper constant of
foundation; # is the magnetic field permeability and
H.denotes the axial magnetic field. Furthermore, the
foundation stiffness k, for the soft medium may be
considered as (Shen and Zhang 2011)

k= E,
" 4L (1—1/02)(2—(:1)2 (313.)
[5 - (2;/12 +6y, + S)exp (27, )] ,
in which

C, =(7/1 +2)exp(—}/1), (31b)

HS
71 _To (31¢)

E
(31d)

(le)

in which E, v, H,; denote Young’s modulus, Poisson’s ratio
and depth of the foundation, respectively. In this work, it is
assumed that E; is temperature-dependent while v, is a
constant.

3.5 Derivation of governing equations

Substituting Egs. (17), (29) and (30) into Eq. (28), the
motion equations of the microbeam can be obtained as
below

N, Q. 20T, 10T, 40T,
Ox R 5 ox*> 5R ox 5R ox
3 azTyyx +L aTyyz + 30T _ 62Px

5 o&x* 5R oOx 5 ox? ox?
1 aYXy_

L dQu_, ¢
2R Ox R R

(32)

N, 00, 20T, 10T_ 40T,
—— = 4 B — 2 x
R Ox SR oOx 5 Ox 5 ox
30T, 10T, 3 0or. 10P
—— - +_ — ZX X
SR ox 5 Ox? SR oOx

107, ow
+——2 -k w—cw+k
2 ox? " ¢ € o’

R Ox (33)

ow _J ow
ox? o’

+nAH

E

W_X_QYZ +LP¥_ _= gxx __Trxx _2 aT:zz
ox ’ R © 5 ox 5R 5 ox
1 oM_. 8oT,. 4 oM, 30°M,,
+— 4= -z 4 -
5R ox 5 ox SR oOx 5 ox
1 20T, 1 oM, 4
-— —_— ¥, T 34
5R ™ 5 ox (34

5R oOx 5R
3 azM zzZX. aZSY aF)z 1 aYXv l aXxv
o -+ 2 — d
5 oOx ox ox 2 ox 2R oOx

1 FoR0) ou

2R 7 ot o

where the stress resultants can be expressed as

N, :_[Gxdi :Ana_u"'AnvL"'Bna_(P
' ox R ox

2 2
+g| 4, Ou +4,, L ow +B,, 00 >
Otox R ot Otox

(35a)

M, =[o,zdd 5, % Y ip 2
' ox R ox

ou 1 ow o’
+g| By, +B,, +D,, P >
Otox R ot Otox

(35b)

ow u B
Q.= J-szdA =k, (Azz g —Ay E"" (Azz _%j(\o (36a)
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Substituting Eq. (352)-(391) into Egs. (32)-(34), the

governing equations can be obtained as below
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3.6 Boundary conditions

Three different size-dependent boundary conditions at
both ends of the nanocomposite curved microbeams,
including Simply Supported-Simply Supported (SS),
Clamped-Clamped (CC) and Clamped-Simply Supported
(CS) are considered which can be expressed as follows

For case (SS)
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4. Solution procedure

This paper employs the DQM to solve the governing
equations of the microbeam. According to the DQM, the
derivative of a function with respect to a space variable at a
given discrete point is approximated using a weighted linear
sum of the function values at all discrete points in the
domain. Therefore, the governing differential equations can
be turned into a set of first order algebraic equations. The
one-dimensional derivative of the function can be
considered as follows (Kolahchi and Moniribidgoli 2016,
Kolahchi ef al. 2016a-b, 2017)

d"fv(x[) — zci;n)f(xj)

e 2 n=L..,N-1. 47)
in which f{x) denotes the mentioned function, x; indicates a
sample point of the function domain, N represent number of
grid points, f; is the value of the function at ith sample point
and Cj; denote the weighting coefficients. So, choosing the
grid points and weighting coefficients plays an important
role in the accuracy of the results. The grid points are
defined based on Chebyshev polynomials which can be
considered as below

L i1
x L= i=1..N, 48

According to Eq. (48), the grid points are considered so
that are closer together near the borders and are far away
from each other in distant parts of the borders.

The weighting coefficients can be determined through
the following simple algebraic relations

M(x,)

M(xj)(x,-_x/) for i#j, i,j=L2,.,N_,
4721w (49)
_;A"f for i=j, i,j=12,..N,

i#j
in which
NX
M(xi)=H(xi -x,) (50)
i

J#

In addition, the higher-order derivatives are defined as

X —X.
Al;'ﬂ) — n[/]j(inl)éi_l) _mtg( ! 2 J jﬂ.J (51)

Considering the grid points in the domain based on Eq.
(48) and substituting Egs. (47) into the governing Egs.
(402)-(40c), the eigenvalue problem can be obtained as the
following form

e \f;i (] z}} ol

d

where [K], [C] and [M] are stiffness matrix, damp
coefficient matrix and the mass matrix, respectively. Also,
{dy} and {d,} are the vectors contained boundary and
domain points, respectively. To simplify the solution
procedure, Eq. (52) can be reduced to the standard form of
eigenvalue problem. For this purpose, Eq. (52) takes the
following first order variable as

1z} =[A){z}, (53)

in which Z and [4] represent the state vector and state
matrix, respectively which are defined as

d o] ]
=) [A]:[—[M‘K] —[Mlcﬂ’ Y

in which [0] and [I] indicate the zero and unitary matrices,
respectively. It should be noted that the existence of the
damping because of the structural damping, leads to yield
the complex frequencies from the solution of Eq. (53).
Therefore, the results consist of two real and imaginary
parts. The real part is related to the system damping, and the
imaginary part indicates the system frequencies.

5. Numerical results

To study the effects of various parameters on the
vibration behavior of the structure, a nanocomposite curved
microbeam with central angle of 8 = 7/4, length to thickness
ratio of L/h = 20 and thickness to material length scale
parameter of 4/[ = 2 is considered. It should be noted that
Lam et al. (2003) obtained the material length scale
parameter for the homogeneous epoxy beam experimentally
as [ = 17.6 um. However, since no experimental data are
available for the nanocomposite curved microbeam at
present, in order to quantitatively analyze of the structure,
the corresponding length scale parameter is considered as /
=1o=10 =1L =15 ym in this work. The nanocomposite
curved microbeam is made from Poly methyl methacrylate
(PMMA) as the matrix material with Poisson’s ratios of v,,
= 0.34, temperature-dependent thermal coefficient of a,, =
(1 +0.0005AT7) x 10%K, and temperature-dependent Young
moduli of E,, = (3.52 — 0.00347) GPa so that T = T, + AT
and 7 = 300 K (room temperature). (10, 10) SWCNTs is
employed as the reinforcement with the material properties
listed in Table 1. Also, the elastic medium is made of Poly

Table 1 Temperature-dependent material properties of (10, 10)
SWCNT (L =9.26 nm, R = 0.68 nm, £ = 0.067 nm,
oM =0.175)

MD
(Zhang et al. 2015)

Ey (GPa) Ey (GPa) E;; (GPa) 15, Ex(GPa)
0.11 94.8 2.2 94.57  0.149 2.2 0.934
0.14  120.2 23 120.09 0.150 2.3 0.942
0.17 145.6 35 145.08 0.149 3.5 1.381

Rule of mixture

Venr 2
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Table 2 Convergence and accuracy of DQM for eigenvalues of
nanocomposite micro curved beam for different boundary
conditions and damper constant of viscoelastic medium

SS SC CcC

Cp=0 Cp=10 Cp=0 Cp=10 Cp=0 Cp=10

Im (Q) 2.1143 0.5512 3.7718 22081 3.0012 2.1124
Re (Q) -1.5181 -5.1231 -2.2012 -3.8812 -1.5418 -3.6617
-1.5181 -5.1231 -2.2012 -3.8812 -1.5418 -3.6617

Im (Q) 1.5981 0 2.8901 1.7123 2.5871 1.6112
11 -1.0888 -4.8901 -1.8001 -3.3126 -1.0908 -3.1222
Re () -1.0888 -1.7112 -1.8001 -3.3126 -1.0908 -3.1222
Im (Q) 1.5374 0 2.2244 1.0185 2.5253 1.5625
5 -1.0216 -4.3424 -1.0283 -2.9784 -1.0315 -2.9915
Re () -1.0216 -1.6925 -1.0283 -2.9784 -1.0315 -2.9915
Im (Q2) 1.5372 0 2.2241 1.0181 2.5251 1.5621
17 -1.0212 -4.3421 -1.0281 -2.9781 -1.031 -2.9912
@) -1.0212 -1.6923 -1.0281 -2.9781 -1.031 -2.9912

<4 0.5533 1.0810 0.4195 0.3782 0.9721 0.9144

dimethylsiloxane (PDMS) with Poisson’s ratios of v, =
0.48and Young moduli of E; = (3.22 — 0.00347) GPa
(Zhang et al. 2015).

5.1 Convergence of DQM

In this section, convergence and accuracy analysis are
carried out to determine the minimum number of grid points
required to achieve the stable and accurate results. In Table
2 the dimensionless (Q=wL,/1,/4,,) eigenvalues of the
nanocomposite curved microbeam are listed for different
boundary conditions and damper constant of viscoelastic
medium. As can be observed, the sufficient number of grid
points which yields the accurate results for the present work
is seventeen (N = 17) for different boundary conditions.

5.2 Validation

To ensure the accuracy and validation of the present
study, the frequencies of the SS nanocomposite curved
microbeam calculated by the DQM are compared with the

Farshid Allahkarami, Mansour Nikkhah-Bahrami and Maryam Ghassabzadeh Saryazdi

results obtained from exact solution. A close agreement
between the results of these two methods can be observed
from Fig. 2 which demonstrates validation of the present
work.

5.3 The effect of different parameters

In this part, the effects of parameters such as volume
percent and distribution type of CNTs, temperature change,
magnetic field, boundary conditions, material length scale
parameter, central angle, viscoelastic medium and structural
damping on the frequency of the structure are examined.
Fig. 3 shows the effect of various boundary conditions on
the non-dimensional eigenfrequency parameter and
damping ratio versus different values of non-dimensional
damper constant (C, =c,L/h*\/p,E, ). It can be seen
that with increasing the damper constant, the imaginary part
of the eigenfrequency decreases for all boundary conditions
types. It is also observed that with increasing the damper
constant, the imaginary part of eigenfrequency becomes
zero for SS and CS boundary conditions which mean that
the system is critically damped while for CC boundary
condition this situation will be occurred at higher values of
damper constant (see Fig. 3(a)). Furthermore, the effect of
the damper constant on the real part of eigenfrequency is
depicted in Fig. 3(b). It is apparent that the structure with
SS or CS boundary condition is critically damped at the
lower values of damper constant with respect to the
structure with CC boundary condition. This indicates that
CC boundary condition restricts the displacements of the
structure and thus increases the stiffness of the system more
than two other boundary conditions. From Fig. 3c, three
regions, including under-damped (0 < ¢ < 1), critically
damped (¢ = 1) and over-damped (£ > 1) can be observed.

The effect of CNTs distribution types on the
eigenfrequency and the damping ratio of the structure is
plotted in Fig. 4. As can be seen, the highest frequency
belongs to the structure with FGX distribution type of CNTs
while the lowest one can be predicted for FGO distribution
type. Therefore, the structure with FGX distribution type
has higher stiffness and after that UD, FGA and FGO ones,
respectively. Also, it can be concluded that for a constant
value of Cp (for example Cp = 7.801) the structure with
FGX is under damped while about the other distribution
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Fig. 2 Comparison of result obtained by DQM and exact solution (a) imaginary part of eigenfrequency; (b) real part

of eigenfrequency; (c) damping ratio
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types, the structure is critically damped or over-damped.

Variation of the imaginary and real parts of the eigen-
frequency as well as damping ratio versus the volume
percent of CNTs is illustrated in Fig. 5. As expected, with
increasing the volume percent of CNTs, the stiffness of the
structure increases and thus, the frequency grows up. As it
can be seen, with increasing the volume percent of CNTs,
the over-damped system transforms to the under-damped
one and the critically damped situation occurs at higher
values of damper constant.

Fig. 6 shows the effect of thickness to material length

scale parameter ratio on the eigenfrequency of the system. It
is obvious that with increasing the thickness to material
length scale parameter ratio, the effect of size-scale
becomes less significant and gets smaller. So, as this ratio
increases, the stiffness of the structure decreases and as a
result, system is critically damped and over damped for
lower values of Cp,.

The effect of magnetic field on the eigenfrequency and
damping ratio of the system is probed in Fig. 7. From Fig.
7(a), it can be found that applying the magnetic field
increases the imaginary part of the eigenfrequency because
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the stiffness of the structure increases. In addition, it can be
concluded from Fig. 7(b) that with increasing the magnetic
field, the real part of the eigenfrequency curves intersect at
the higher values of damper constant and thus the system
will be in critically damped situation for higher values of
damper constant. On the other hand, with applying the
magnetic, the over-damped system transforms to the under-
damped one as the damper constant increases (see Fig.
7(c)).

Variation of the eigenfrequency and damping ratio for
different values of the central angle of the curved

microbeam is plotted in Fig. 8. It can be seen that increasing
the central angle decreases the frequency of the system.
Also, with increasing the central angle of the curved
microbeam, the critically damped situation occurs at lower
values of damper constant. It means that with the decrement
of the central angle, the system becomes more stable.

Fig. 9 shows the effect of temperature change on the
imaginary and real parts of the eigenfrequency and damping
ratio of the curved microbeam. As expected, increasing
temperature decreases the frequency of the structure. The
reason is that with increasing temperature, the mechanical,
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properties of the structure decreases and thus the stiffness of
the system lessens. Furthermore, as temperature increases
the critically damped situation happens at lower values of
the damper constant.

The effect of the elastic medium is examined by plotting
Fig. 10. As can be seen, considering the elastic medium
leads to an increase in the stiffness of the structure and thus
the frequency of the system increases. Moreover, the
structure with the Pasternak medium has the highest
stiffness with respect to Winkler medium. In addition,

studying the real part of the eigenfrequency and damping
ratio shows that with considering the elastic medium, the
critically damped situation occurs at higher values of
damper constant.

The variation of the eigenfrequency and damping ratio
of the structure versus the structural damping for different
values of damper constant is shown in Fig. 11. As can be
seen, considering the structural damping leads to the
increase of the frequency. Also, the non-visco-structure is
critically damped at the higher values of the damper
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constant with respect to the visco-structure.
6. Conclusions

In this paper, the vibration and damping behaviors of a
FG-CNTs-reinforced composite curved microbeam were
studied. The structure was considered to be subjected to a
longitudinal magnetic field. Timoshenko beam theory was
used to extend the mathematical model of the structure. In
addition, the surrounding viscoelastic medium was
simulated by normal springs, damper and shear elements.
Applying strain gradient theory, the small scale effects were
considered by three material length scale parameters. The
extended rule of mixture was employed to obtain the
effective material properties of the composite curved beam.
The governing equations of the structure were derived
based on Hamilton’s principle and the imaginary and real
parts of the eigenfrequency of the system were obtained
using DQM. The effects of various parameter such as
volume percent and distribution type of CNTs, temperature
change, magnetic field, boundary conditions, material
length scale parameter, central angle, viscoelastic medium
and structural damping were examined. Numerical results
show that the structure with SS or CS boundary condition
was critically damped at the lower values of damper
constant with respect to the structure with CC boundary
condition. It was deduced that for a constant value of Cj the
structure with FGX was under damped while about the
other distribution types the structure was critically damped
or over-damped. With increasing the volume percent of
CNTs, the over-damped system transforms to the under-
damped one and the critically damped situation occurs at
higher values of damper constant. It was found that
applying the magnetic field increases the imaginary part of
the eigenfrequency because the stiffness of the structure
increases. In addition, with increasing the central angle of
the curved microbeam, the critically damped situation
occurs at lower values of damper constant. Furthermore,
considering the elastic medium leads to an increase in the
stiffness of the structure and thus the frequency of the
system increases. Moreover, the non-visco-structure was
critically damped at the higher values of the damper
constant with respect to the visco-structure.
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