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1. Introduction 

 
Thanks to the advantages of high strength, high 

stiffness, low density, anti-fatigue and corrosion resistance, 
composite structures are increasingly used in civil, 
mechanical and aeronautical engineering. Additionally, the 
mechanical property of composite structures can be tailored 
by changing material type and the compose pattern. The 
sandwich plate (Iivani et al. 2016, Yan and Song 2016, 
Arani et al. 2016, Huang and Liew 2016, Nguyen et al. 
2016 and Qu et al. 2016) is a typical application, which 
consists of face, core and adhesive layers, as shown in Fig. 
1. 

However, in practice the adhesive will permeate into the 
core and face layers, as shown in Fig. 2. The permeation 
layer is the mixture of face (or core) layer and the adhesive. 
It is widely known that the interfacial damage and 
debonding of sandwich structures often occurs because of 
the large discontinuity stress at the interface. The permea-
tion layer makes the material property of the sandwich plate 
continuously vary along the thickness, which is similar to 
FGM. The continuous material distributions are good to 
reduce discontinuity stress at the interface. Such a problem 
deserves to be deeply investigated. 

The simplified plate theories, such as the Kirchhoff plate 
theory, the Mindlin plate theory and the higher-order shear 
deformation theory, are widely used to study the mechanical 
behaviors of FGM plates. Mantari and Monge (2016) 
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Fig. 1 Components schematic of sandwich structure 
 
 

Fig. 2 Permeation effect of adhesives 
 
 

developed an analytical solution to study the buckling, free 
vibration and bending behaviors of simply supported FGM 
sandwich plates subjected to transverse and axial 
mechanical loads. By using the nonlocal hyperbolic refined 
model, Belkorissat et al. (2015) studied the free vibration 
property of FGM plates. Li et al. (2016) proposed a four-
variable refined plate theory to analyze the thermo-
mechanical bending of FGM sandwich plates. The face and 
core layers were both modeled by FGM. Bouchafa et al. 
(2015) proposed a novel refined hyperbolic shear 
deformation theory, which involves only four unknown 
functions, to analyze the thermoelastic bending behavior of 

 
 
 

Analytical solutions for sandwich plates considering 
permeation effect by 3-D elasticity theory 

 
Ruili Huo, Weiqing Liu, Peng Wu and Ding Zhou 

 
College of Civil Engineering, Nanjing Tech University, 211800 Nanjing, China 

 
 

(Received March 14, 2017, Revised June 12, 2017, Accepted June 17, 2017) 
 

Abstract.  In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect 
of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of 
which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D) 
elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method, 
the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to 
access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one 
when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more 
efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based 
on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of 
the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the 
permeation layer can effectively relieve the discontinuity stress at the interface. 
 

Keywords:  sandwich plate; permeation effect; functionally graded material; elasticity solution; recursive matrix method 

 

127



 
Ruili Huo, Weiqing Liu, Peng Wu and Ding Zhou 

FGM sandwich plates. The buckling problem of FGM 
plates subjected to thermal and mechanical loads was 
analyzed by Yu et al. (2017). The deformation of the plate is 
represented by the Mindlin plate theory. Based on the 
higher-order shear deformation theory, the bending, 
vibration and buckling behaviors of FGM sandwich plates 
were investigated by Nguyen et al. (2015a). The dynamic 
response of FGM steel composite cylindrical panels in 
steady-state thermal environments subjected to impulsive 
loads was firstly investigated by Isavand et al. (2015). By 
means of the discrete singular convolution method, Civalek 
(2017) investigated the free vibration of annular plates 
made of composite FGM based on Mindlin plate theory. By 
using the Laplace transformation method, Li et al. (2014) 
studied the time-dependent behavior of two-layer FGM 
structures sandwiching a thin viscoelastic interlayer. A 
refined shear deformation theory was proposed by Thai and 
Uy (2013) to analyze the buckling behavior of FGM plate. 
The position of neutral surface is determined and the 
governing stability equations were obtained. Tebboune et al. 
(2015) presented a trigonometric shear deformation theory 
for thermal buckling analysis of FGM plates. This theory 
accounted for sinusoidal distribution of transverse shear 
stress without using the shear correction factor. Based on 
the non-polynomial higher order shear deformation theory, 
Mantari et al. (2014) investigated the free vibration of 
functionally graded plates resting on elastic foundation. 
Yarasca et al. (2016) presented the static analysis for 
functionally graded sandwich structures by using the 
7DOFs quasi-3D hybrid element. Viola et al. (2012) 
presented an unconstrained third-order shear deformation 
theory to evaluate the tangential and normal stresses in 
moderately thick functionally graded cylindrical panels. 

Besides the classical plate theory and higher-order 
theories, some numerical methods presented recently are 
efficient for analysis of FGM plates. Based on the 
isogeometric approach, the static, dynamic and buckling 
behaviors of FGM plates were studied by Thai et al. 
(2014a) and Nguyen et al. (2015b). The main advantages of 
the isogeometric approach are the ability to exactly 
represent domains with conic sections and can achieve 
better approximation with arbitrarily high smoothness. By 
means of the meshfree method, the static and dynamic 
problems for layered FGM plates were investigated by Vu 
et al. (2017) and Bui et al. (2011, 2013). In the meshfree 
method, the domain of mechanic problems is discretized by 
scattered nodes and no elements are required. Bui et al. 
(2016) presented a displacement-based finite element 
formulation associated with a novel third-order shear 
deformation plate theory to analyze the bending and natural 
frequencies of functionally graded plates under high 
temperature field. Based on the isogeometric analysis and 
the quasi-3D hyperbolic shear deformation theory, Liu et al. 
(2017) studied the bending, free vibration and buckling 
behaviors of functionally graded plates. Five unknowns per 
node are included, and the shear locking phenomenon is 
avoided. Thai et al. (2014b) developed a quasi-3D 
hyperbolic shear deformation theory for functionally graded 
plates. Both shear deformation and thickness stretching 
effects were considered. 

The 3-D elasticity theory is always recognized as 
benchmark to access other simplified solution (Chen and 
Lee 2004). Pagano (1969, 1970) presented analytical 
solutions for laminate plates composed of arbitrary numbers 
of layers. Using p-Ritz method, Wang et al. (2000) tackled 
free vibration for skew sandwich plates composed of two 
laminated facings sandwiching an orthotropic core. Based 
on the 3-D elasticity theory, Zenkour (2007) presented 
analytical solutions with high accuracy for single-layer 
FGM plates subjected to transverse load. The stress and 
displacement components were derived by using the state 
space method which greatly simplifies the analytical 
process. 

In this study, based on the exact 3-D elasticity theory, a 
refined sandwich plate model which considers the permea-
tion effect of adhesives is developed. The permeation layer 
is described as FGM, which is exponentially graded along 
the thickness. Unlike the single-layer FGM plate from 
Zenkour (2007), the present multilayer plate is composed of 
alternate fully homogeneous layers and FGM layers which 
follow a simple exponential law same as that used by 
Zenkour (2007). A typical example is the laminate glued by 
the macrovoid materials such as balsa wood. By means of 
the recursive matrix method, the solution of stresses and 
displacements can be efficiently obtained for the plate with 
many layers. The influence of the thickness of the 
permeation layer on the stresses and displacements of the 
plate is discussed in detail. 

 
 

2. Elasticity solution for the sandwich plate model 
 
2.1 Basic equations 
 
Without loss of generality, we consider a sandwich plate 

with length a, width b and thickness H, consisting of 
alternate fully homogeneous layers and FGM with each 
thickness hi, as shown in Fig. 3. The plate is subjected to 
normal load q(x, y) acting on the top surface and is simply 
supported at four edges. Two Cartesian coordinate systems 
are established: the global coordinate system O-xyz with 
origin O at the bottom of the plate and the local coordinate 
system Oi-xyzi with origin Oi at the bottom of the ith layer. 

The permeation layer is a mixture one made of face (or 
core) layer material and the adhesive material. It is difficult 
to explicitly describe its mechanical properties unless the 
experimental measurement is carried out. Here, we assume 
the material property of the permeation layer is graded 
along the thickness following the exponential law, i.e., 

,)( 0
iziki

ii eEzE  where iE0 denotes the elastic modulus at 
the lower surface of the ith layer and ki denotes the gradient 
index for the ith layer. This model has two features: (1) the 
parameters used to describe the mixture layer is the fewest. 
Only the thickness of the layer and the elasticity moduli at 
the lower and upper surfaces of the layer is needed. (2) A 
fully homogeneous layer can also include in the model by 
letting ki = 0 only. The elastic modulus at the upper and 
lower surfaces of the permeation layers are continuous, i.e., 
Ei(hi) = Ei+1 and Ei(0) = Ei-1. The Poisson’s ratio μi is 
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Fig. 3 Geometric shape and Cartesian coordinates 
of the sandwich plate 

 
 

assumed to be constant in each layer. 
Consider the ith (i = 1, 2…p) layer within the local 

coordinate system Oi-xyzi. According to the 3-D elasticity 
theory, the constitutive relations are given by 
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where ,i

x ,i
y ,i

iz ,i
iyz i

ixz and i
xy denote the stress 

components; ui, vi and wi denote the displacement 
components in x, y and z directions, respectively; λi and Gi 
are the Lame constants, defined as 
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The equilibrium equations are 
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Substituting Eq. (1) into Eq. (3), one has 
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The simply supported boundary conditions can be 

expressed as (Wu et al. 2017) 
 

0 iii
x wv    at   x = 0, a, 

0 iii
y wu    at   y = 0, b. 

(5)

 
The displacement components are expanded into double 

Fourier series 
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Substituting Eq. (6) into Eq. (4), one has 
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By eliminating )( i

i
mn zU and )( i

i
mn zV in Eq. (7), a fourth-

order differential equation of )( i
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mn zW is obtained as 
follows 
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where .)()( 22 bnammn   The solution of the above 
equation is 
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where ,i
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mnD are the undecided coefficients 

and 
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Identically, )( i
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mn zU  and )( i

i
mn zV  can also be derived 

out, as follows 
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where 
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mnE  and 

i
mnF  are the undecided coefficients and the 

details of ,
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mnR  pmn and qmn are given in Eq. (A1) in 
Appendix. Substituting Eqs. (8), (10) and (11) into Eq. (1), 
the expressions of stresses are derived out 

 

,

)}sin(   

)]([

)cos()]({[

)}sin(   

)]([

)cos()]({[

)}sin(   

)]([

)cos()]({[

)}sin(   

)]([

)cos()({[(  

)(

33447

34438

43348

44337

11225

12216

21126

22115

i
mn

izmnqi
mn

izmnp

i
mn

izmns
imn

mnmnmnmnmn

imnmnmnmnmnmn

i
mn

izmns
imn

mnmnmnmnmn

imnmnmnmnmnmn

i
mn

izmnr
imn

mnmnmnmnmn

imnmnmnmnmnmn

i
mn

izmnr
imn

mnmnmnmnmn

imnmnmnmnmnmn

i
i

mn

Fe
an

bm
Ee

an

bm

De
n

b
zt

RTRT
a

m
R

ztRTRT
a

m
R

Ce
n

b
zt

RTRT
a

m
R

ztRTRT
a

m
R

Be
n

b
zt

RTRT
a

m
R

ztRTRT
a

m
R

Ae
n

b
zt

RTRT
a

m
R

ztRTRT
a

m
R

zV










































 

(11)

 

},
22

   

)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]cos()cos({[   

sinsin   

),,(

)(
0

)(
0

)(43

)(43

)(21

)(21

1 1

i
mn

izikmnqii
mn

izikmnpi

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i
x

FeG
a

m
EeG

a

m

DeztIztI

CeztIztI

BeztIztI

AeztIztI

b

yn

a

xm

zyx









































(12)

130



 
Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory 

},
22

   

)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]cos()cos({[   

sinsin),,(

)(
0

)(
0

)(43

)(43

)(21

)(21

1 1

i
mn

izikmnqii
mn

izikmnpi

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i
y

FeG
a

m
EeG

a

m

DeztJztJ

CeztJztJ

BeztJztJ

AeztJztJ

b

yn

a

xm
zyx





























 





},)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]sin()cos({[   

sinsin),,(

)(43

)(43

)(21

)(21

1 1

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i
iz

DeztKztK

CeztKztK

BeztKztK

AeztKztK

b

yn

a

xm
zyx

























 

},)(   

)(   

)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]sin()cos({[   

coscos),,(

)(
2

22

2

22
0

)(
2

22

2

22
0

)(43

)(43

)(21

)(21

1 1

i
mn

izikmnq
i

i
mn

izikmnp
i

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i
xy

Fe
a

m

b

n

n

bG

Ee
a

m

b

n

n

bG

DeztLztL

CeztLztL

BeztLztL

AeztLztL

b

yn

a

xm
zyx











































 

},   

)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]sin()cos({[   

sincos),,(

)(
0

)(
0

)(43

)(43

)(21

)(21

1 1

i
mn

izikmnq
mn

ii
mn

izikmnp
mn

i

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i

ixz

FeqGEepG

DeztMztM

CeztMztM

BeztMztM

AeztMztM

b

yn

a

xm
zyx





























 

},   

)]cos()sin([   

)]sin()cos([   

)]cos()sin([   

)]sin()cos({[   

cossin),,(

)(0)(0

)(43

)(43

)(21

)(21

1 1

i
mn

izikmnq
mn

i
i
mn

izikmnp
mn

i

i
mn

izikmns
imnmnimnmn

i
mn

izikmns
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

i
mn

izikmnr
imnmnimnmn

m n

i
i

iyz

Feq
na

mbG
Eep

na

mbG

DeztNztN

CeztNztN

BeztNztN

AeztNztN

b

yn

a

xm
zyx





























 

(12)

 
 

in which, the details of ,
mnI ,

mnJ ,
mnK ,

mnL 
mnM  and 


mnN  are given in Eq. (A2) in Appendix. 

 

2.2 Load conditions and continuous conditions 
 
The load acting on the plate surfaces can be described as 
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in which, the load function q(x, y) is expanded into double 
Fourier series form, as follows 
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The adjacent layers are perfectly connected at the inter-

face, i.e. 
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2.3 Recursive matrix 
 
The stress and displacement components in Eqs. (11) 

and (12) are rearranged into the vector form, as follows 
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where ),( i
i
mn zU ),( i

i
mn zV ),( i

i
mn zW ),( i

i
mn zZ )( i

i
mn zX and 

)( i
i

mn zY  can be derived out by substituting Eqs. (11) and 
(12) into Eq. (16), as follows 
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where the elements in the matrix )( i

i
mn z are defined in Eq. 

(A3) in Appendix. By taking zi as 0 and hi in Eq. (17), 
respectively, we have 
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Elimination of i

mn  in Eq. (18) gives 
 

).0()0()()(
1 i

mn
i
mni

i
mni

i
mn hh 


 (19)

 
The continuous conditions of Eq. (15) are rewritten as 
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Combination of Eq. (19) with Eq. (20) yields a relation-

ship of stresses and displacements between the top surface 
and the bottom surface of the plate 
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where ,11
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According to the loading conditions of Eq. (13), one has 
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Decomposing Eq. (23), two equations are obtained 
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The solution of the second equation in Eq. (25) is 
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Combining Eq. (19) with Eq. (20), )( p

p
mn h can be 

derived out, as follows 
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Finally, the coefficients in the stress and displacement 

components can be determined 
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By substituting the coefficients back into Eqs. (11) and 

(12), the solution of stresses and displacements of the plate 
is obtained finally. 

It should be mentioned that as the layer number p 
increases, only the computation effort in Eq. (22) increases 
slightly. Thus, the present method is computational 
efficiently for plates with any number of layers. Moreover, 
the present method can be extended to plates with other 
boundary conditions. For example, the clamped end can be 
equivalent to the simply supported one acted by the 
unknown horizontal reaction which can be determined from 
the zero displacement condition at the clamped end (Xu et 
al. 2008). 
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3. Numerical examples 
 
In the following examples, the series terms in stress and 

displacement components are truncated up to N, i.e., m, n = 
1, 2, 3... N. The elastic modulus in the permeation layer is 
determined by the adjacent layers, as follows 
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The location of the plate is identified by the global 

coordinate system O-xyz 
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3.1 Convergence and comparison studies 
 
Consider a refined sandwich plate composed of nine 

layers with dimensions a = 1500 mm, b = 700 mm and H = 
200 mm, subjected to uniform load with q(x, y) = 1 N/mm2 
acting on the top surface. The layer distribution along the 
thickness direction is shown in Fig. 2. The thickness, elastic 
modulus and Poisson's ratio of each layer are listed in Table 
1. The solutions of stresses and displacements with different 
series terms N = 1, 2…15, are given in Table 2. It can be 
seen from Table 2 that the present solution is rapidly 
convergent and are highly accurate with at least three 

 
 

Table 1 The thickness, elastic modulus and Poisson's ratio for 
a nine-layer refine sandwich plate 

i hi [mm] Ei (Mpa) μi 

1 18 20950 0.25 

2 10    213ln2
1

hEEzeE  0.25 

3 2 3500 0.25 

4 10    435ln4
3

hEEzeE  0.25 

5 120 70 0.25 

6 10    657ln6
5

hEEzeE  0.25 

7 2 3500 0.25 

8 10    879ln8
7

hEEzeE  0.25 

9 18 20950 0.25 
 

 
 

significant digits when N = 15. Thus, the term of number is 
fixed at N=15 for the following calculations. 
It is well known that the reliability and accuracy of 
numerical solutions such as the FE solutions should be 
checked and evaluated through the comparison study with 
the strict solutions. The present solution is compared with 
the FE solution obtained from the software ANSYS. 
Consider the plate described in Section 3.1, however, 
subjected to sinusoidal load with q(x, y) = sin (πx / a) sin (πy 

/ b) N/mm2. In the FE model, each permeation layer is 
equivalent to n homogeneous layers along the thickness. 
The SOLID-185 element is employed to model all the plate 
layers. The FE mesh of each layer is created by dividing its 
length into 150 elements, its width into 70 elements, while 
the thicknesses of layers 1, 2, 3…9 are, respectively, 
divided into 4, n, 1, n, 12, n, 1, n, 4 elements. The FE 
results for different n are compared with present ones, as 
shown in Table 3. It can be found from Table 3 that the FE 
results tend to be convergent and close to the present ones 
with the increase of n. The errors of σ0, τ0 and w0 are 
1.84%, 0.948% and 1.34% when n = 25. However, the FE 
method becomes computationally expensive when n is 
large. 

By letting ki = 0 in the expression of Ei(zi), the FGM 
layer in the plate degenerates to the isotropic one. Consider 
a sandwich plate, which was studied by Foraboschi (2013) 
using the two-dimensional Kirchhoff-Love (KL) plate 

 
 

Table 2 Convergence study of the present results ,1
x  w

1 at 
x = 750 mm, y = 350 mm, z = 0 and ,1

z ,1
xz 1

xy  at 
x = 375 mm, y = 175 mm, z = 18 mm 

N 1
x  1

z  1
xz  1

xy  1w  

1 24.62 -0.0781 -0.5079 1.450 -7.556 

3 14.77 -0.1377 -0.2612 0.7811 -6.835 

5 17.39 -0.1175 -0.1614 0.6530 -6.913 

7 16.84 -0.1104 -0.1902 0.6714 -6.904 

9 16.95 -0.1126 -0.1975 0.6737 -6.905 

11 16.93 -0.1133 -0.1956 0.6734 -6.905 

13 16.93 -0.1131 -0.1951 0.6734 -6.905 

15 16.93 -0.1130 -0.1952 0.6734 -6.905 

*Note: The units of stresses and displacements are 
[Mpa] and [mm], respectively 

 
 

Table 3 Comparison of stresses and displacements between the present solution and the FE one 

FE solution with different n Present 
solution n 2 4 6 10 15 25 

σ0 [Mpa] -1.542 -1.938 -2.137 -2.245 -2.293 -2.295 -2.338 

Error (%) 34.0 17.1 8.6 3.97 1.92 1.84 / 

τ0 [Mpa] -0.6250 -0.6262 -0.6265 -0.6266 -0.6266 -0.6266 -0.6326 

Error (%) 1.20 1.01 0.972 0.952 0.946 0.948 / 

w0 [mm] -4.642 -4.660 -4.664 -4.666 -4.666 -4.667 -4.730 

Error (%) 1.86 1.48 1.40 1.36 1.35 1.34 / 
 

*Note: σ0 is 2
x  at x = 750 mm, y = 350 mm, z = 18 mm, τ0 is 

2
xz at x = 0, y = 350 mm, z = 18 mm and 

w0 is w2 at x = 750 mm, y = 350 mm, z = 18 mm. The error = |(FE-Present)/Present 
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Fig. 4 Comparisons of wm between the present solution 
and KL solution for different length-to-thickness 
ratios a/H (*Note: Relative error denotes (KL-
Present)/Present) 

 
 
Table 4 The thickness, elastic modulus and Poisson’s ratio for a 

seven-layer refine sandwich plate 

i hi [mm] Ei (Mpa) μi 

1 16 20950 0.25 

2 4 3500 0.25 

3 h3 
   324ln3

2
hEEzeE  0.25 

4 60-2h3 70 0.25 

5 h3 
   546ln5

4
hEEzeE  0.25 

6 4 3500 0.25 

7 16 20950 0.25 
 

 
 

theory. The parameters are taken as q(x, y) = 1 N/mm2, E1 = 
E3 = 58000 Mpa, E2 = 500 Mpa, μ1 = μ3 = 0.3, μ2 = 0.2, a = 
b, h1 = h3 = 50 mm, h2 = 0.5 mm. The comparison of the 
maximum plate deflection wm between the present solution 
and KL solution (Foraboschi 2013) for different length-to-
thickness ratios a/H is given in Fig. 4. It can be observed 
from Fig. 4 that the KL solution is close to the present ones 
for thin plates. However, the error from KL solution 
increases with the increase of a/H, which reaches about 
13% when a/H = 4. 

 
3.2 Parametric study 
 
Consider a refined sandwich square plate with 

dimensions a = b = 1000 mm and H = 100 mm, subjected to 
sinusoidal load with q(x, y) = sin (πx / a) sin (πy / b) N/mm2 
acting on the top surface. Here, we only consider the 
permeation effect of the adhesive into the core layer, i.e., 
the permeation layers i = 2, 8 in Fig. 2 are neglected. The 
thickness, elastic modulus and Poisson’s ratio of each layer 
are listed in Table 4. The stress and displacement distri-
butions along the plate thickness for different permeation 
thicknesses h3 = 0, 5, 10, 15 mm are plotted in Fig. 5. The 
special case h3 = 0 means the traditional sandwich plate 
model which neglects the permeation effect of the 
adhesives. It can be found from Fig. 5 that (i) the 
distributions of i

x  and i
xz  in the permeation layer (80 

mm ‒ h3 ≤ z ≤ 80 mm) become smooth with the increase of 
h3; (ii) i

z  is less influenced by h3; (iii) the deflection wi 
decreases with the increase of h3. 

 
 

(a1) 
i
x  at x = y = 500 mm (a2) Enlarged view of 

i
x  

  

(b1) 
i
xz  at x = 0, y = 500 mm (b2) Enlarged view of 

i
xz  

Fig. 5 Distributions of stresses and displacement along the plate thickness for different permeation thicknesses 
h3 = 0, 5, 10, 15 mm 
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4. Conclusions 

 
Based on the 3-D elasticity theory, a refined sandwich 

plate model which considers the permeation effect of 
adhesive is proposed. The solution of stress and 
displacement fields in the plate is obtained analytically. The 
boundary, loading conditions and continuous conditions are 
strictly satisfied. The following conclusions are 
summarized: 

 

 By use of the recursive matrix method, the solution 
of stress and displacement for sandwich plate with 
many layers can be efficiently obtained. 

 The present solution is rapidly convergent with high 
accuracy and is in good agreement with the finite 
element solution. 

 The FE solution is close to the present one when the 
FGM layer in the FE model is divided into a series 
of homogeneous layers. However, the present 
method is more efficient than the FE method, in 
which the mesh division and computation are time-
consuming. 

 The solution based on the Kirchhoff-Love plate 
theory is in agreement with the present solution for 
thin plates, but has considerable error for thick plate. 

 The permeation effect of adhesives has great effect 
on the stress and displacement distributions. The 
distributions of the longitudinal normal stress and 
the shear stress in the permeation layer become 
smooth in the thickness direction with the increase of 
the permeation thickness. The deflection decreases 
with the increase of the permeation thickness. 
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Appendix 
 

 
The details of the coefficients in Eqs. (11), (12) and (17) are 

given as follows 
 

,
)2()( 22222

222
1

mnimnmnmnmnimnmn

mnmnimnmn
mn

tktrrktr

rktr
T









,
)2()(

2
22222

2

mnimnmnmnmnimnmn

mnimnmn
mn

tktrrktr

rktr
T








,
)2()( 22222

222
3

mnimnmnmnmnimnmn

mnmnimnmn
mn

tktsskts

skts
T









,
)2()(

2
22222

4

mnimnmnmnmnimnmn

mnimnmn
mn

tktsskts

tkts
T








  

,])1()(

)3[(
)(

01222

323

0

001

a

mk
XXrXtr

Xtrr
aG

Gm
R

i
mnmnmnmnmnmn

mnmnmnmni

ii

mn











 

)],1(2

)3[(
)(

12

332

0

002








mnmnmnmnmn

mnmnmnmni

ii

mn

XtXtr

Xttr
aG

Gm
R


 

,])1()(

)3[(
)(

01222

323

0

003

a

mk
XXsXts

Xtss
aG

Gm
R

i
mnmnmnmnmnmn

mnmnmnmni

ii

mn











 

)],1(2

)3[(
)(

12

332

0

004








mnmnmnmnmn

mnmnmnmni

ii

mn

XtXts

Xtts
aG

Gm
R


 

,)(

)3(
01222

3235

mnmnmnmnmnmn

mnmnmnmnmn

XXrXtr

XtrrR




 

,2)-3( 123326
mnmnmnmnmnmnmnmnmnmn XtXtrXttrR   

,)(

)3(
01222

3237

mnmnmnmnmnmn

mnmnmnmnmn

XXsXts

XtssR




 

,2)-3( 123328
mnmnmnmnmnmnmnmnmnmn XtXtsXttsR   

  

,
2

4 22
mnii

mn

kk
p


 

 

,
2

4 22
mnii

mn

kk
q


   

(A1)

,
)2/()()( 000

2
0

22
00

2
000

iiii
imn

ii
mn

ii
i

mn GGkG

Gk
X







 

,
)2/()()(

)()(

000
2

0
22

00

2
000

2
0

2
1

iiii
imn

ii
mn

iiii
i

mn GGkG

GGk
X








 

,
)2/()()(

)2(

000
2

0
22

00

0002
iiii

imn
ii

iii
i

mn GGkG

GGk
X








 

.
)2/()()(

)(

000
2

0
22

00

0003
iiii

imn
ii

iii

mn GGkG

GG
X









(A1)

 
 

,)]([

))(2(

0
22115

0

2211
00

1

mn
i

mnmnmnmnmn
i

mnmnmnmn
ii

mn

rRTRT
a

m
R

RTRTG
a

m
I








 

,)]([

))(2(

0
21126

0

2112
00

2

mn
i

mnmnmnmnmn
i

mnmnmnmn
ii

mn

tRTRT
a

m
R

RTRTG
a

m
I








 

,)]([

))(2(

0
44337

0

4433
00

3

mn
i

mnmnmnmnmn
i

mnmnmnmn
ii

mn

sRTRT
a

m
R

RTRTG
a

m
I








 

 

,)]([

))(2(

0
43348

0

4334
00

4

mn
i

mnmnmnmnmn
i

mnmnmnmn
ii

mn

tRTRT
a

m
R

RTRTG
a

m
I








 

,)]()[2(     

)(     

0
22115

00

2211
0

1

mn
i

mnmnmnmnmn
ii

mnmnmnmn
i

mn

rRTRT
a

m
RG

RTRT
a

m

J











,)]()[2(     

)(     

0
21126

00

2112
0

2

mn
i

mnmnmnmnmn
ii

mnmnmnmn
i

mn

tRTRT
a

m
RG

RTRT
a

m

J











,)]()[2(     

)(     

0
44337

00

4433
0

3

mn
i

mnmnmnmnmn
ii

mnmnmnmn
i

mn

sRTRT
a

m
RG

RTRT
a

m

J











,)]()[2(     

)(     

0
43348

00

4334
0

4

mn
i

mnmnmnmnmn
ii

mnmnmnmn
i

mn

tRTRT
a

m
RG

RTRT
a

m

J











(A2)

137



 
Ruili Huo, Weiqing Liu, Peng Wu and Ding Zhou 

,)2( 5
000

1
mn

i
mn

ii
mn RrGK    

,)2( 6
000

2
mn

i
mn

ii
mn RtGK    

,)2( 7
000

3
mn

i
mn

ii
mn RsGK    

,)2( 8
000

4
mn

i
mn

ii
mn RtGK    

 

)],([

)(

22115
0

2211
0

1

mnmnmnmnmn
i

mnmnmnmn
i

mn

RTRT
a

m
RG

na

mb

RTRTG
b

n
L









 

)],([

)(

21126
0

2112
0

2

mnmnmnmnmn
i

mnmnmnmn
i

mn

RTRT
a

m
RG

na

mb

RTRTG
b

n
L









 

)],([

)(

44337
0

4433
0

3

mnmnmnmnmn
i

mnmnmnmn
i

mn

RTRT
a

m
RG

na

mb

RTRTG
b

n
L









 

)],([

)(

43348
0

4334
0

4

mnmnmnmnmn
i

mnmnmnmn
i

mn

RTRT
a

m
RG

na

mb

RTRTG
b

n
L









 
 

],)(

)[(

2112

2211
0

1

a

m
tRTRT

rRTRTGM

mnmnmnmnmn

mnmnmnmnmn
i

mn





 

],)(

)[(
2211

2112
0

2

mnmnmnmnmn

mnmnmnmnmn
i

mn

tRTRT

rRTRTGM




 

],)(

)[(

4334

4433
0

3

a

m
tRTRT

sRTRTGM

mnmnmnmnmn

mnmnmnmnmn
i

mn





 

],)(

)[(
4433

4334
0

4

mnmnmnmnmn

mnmnmnmnmn
i

mn

tRTRT

sRTRTGM





 
 

],)(

)([

2

22
21126

2211501

b

n
tRTRT

a

m
tR

rRTRT
a

m
rR

n

bG
N

mnmnmnmnmnmnmn

mnmnmnmnmnmnmn

i

mn










 

],)(

)([

22115

2112602

mnmnmnmnmnmnmn

mnmnmnmnmnmnmn

i

mn

tRTRT
a

m
tR

rRTRT
a

m
rR

n

bG
N










 

],)(

)([

2

22
43348

4433703

b

n
tRTRT

a

m
tR

sRTRT
a

m
sR

n

bG
N

mnmnmnmnmnmnmn

mnmnmnmnmnmnmn

i

mn










(A2)

].)(

)([

44337

4334804

mnmnmnmnmnmnmn

mnmnmnmnmnmnmn

i

mn

tRTRT
a

m
tR

sRTRT
a

m
sR

n

bG
N








 (A2)

 
 

izmnr
imnmnmnmnmn

imnmnmnmnmnimn

eztRTRT

ztRTRTzf

)]sin()(

)cos()[()(
2112

221111




 

,)]sin()(

)cos()[()(
1122

122112

izmnr
imnmnmnmnmn

imnmnmnmnmnimn

eztRTRT

ztRTRTzf




 

,)]sin()(

)cos()[()(
4334

443313

izmns
imnmnmnmnmn

imnmnmnmnmnimn

eztRTRT

ztRTRTzf




 

,)]sin()(

)cos()[()(
3344

344314

izmns
imnmnmnmnmn

imnmnmnmnmnimn

eztRTRT

ztRTRTzf




 

,)(15 i
mn

izmnp
imn Eezf   ,)(16 i

mn
izmnq

imn Fezf   
 

,)}sin()]([   

)cos()]({[   

)(

21126

22115

21

izmnr
imnmnmnmnmnmn

imnmnmnmnmnmn

imn

e
n

b
ztRTRT

a

m
R

ztRTRT
a

m
R

zf












,)}sin()]([   

)cos()]({[   

)(

11225

12216

22

izmnr
imnmnmnmnmnmn

imnmnmnmnmnmn

imn

e
n

b
ztRTRT

a

m
R

ztRTRT
a

m
R

zf












, 

,)}sin()]([   

)cos()]({[   

)(

43348

44337

23

izmns
imnmnmnmnmnmn

imnmnmnmnmnmn

imn

e
n

b
ztRTRT

a

m
R

ztRTRT
a

m
R

zf












, 

,)}sin()]([   

)cos()]({[   

)(

33447

34438

24

izmns
imnmnmnmnmnmn

imnmnmnmnmnmn

imn

e
n

b
ztRTRT

a

m
R

ztRTRT
a

m
R

zf












 

,)(25 izmnp
imn e

an

bm
zf     ,)(26

mn
izmnq

i e
an

bm
zf 

 
 

),cos()(31
imn

izmnr
imn ztezf   ),sin()(32

imn
izmnr

imn ztezf   

),cos()(33
imn

izmns
imn ztezf   ),sin()(34

imn
izmns

imn ztezf   

,)]sin()cos([)( )(2141 izikmnr
imnmnimnmnimn eztKztKzf   

,)]cos()sin([)( )(2142 izikmnr
imnmnimnmnimn eztKztKzf   

,)]sin()cos([)( )(4343 izikmns
imnmnimnmnimn eztKztKzf   

,)]cos()sin([)( )(4344 izikmns
imnmnimnmnimn eztKztKzf   

(A3)

138



 
Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory 

,)]sin()cos([)( )(2151 izikmnr
imnmnimnmnimn eztMztMzf   

,)]cos()sin([)( )(2152 izikmnr
imnmnimnmnimn eztMztMzf   

,)]sin()cos([)( )(4353 izikmns
imnmnimnmnimn eztMztMzf   

,)]cos()sin([)( )(4354 izikmns
imnmnimnmnimn eztMztMzf   

,)( )(
0

55 izikmnp
mn

i
imn epGzf   ,)( )(

0
56 izikmnq

mn
i

imn eqGzf   
 

,)]sin()cos([)( )(2161 izikmnr
imnmnimnmnimn eztNztNzf   

,)]cos()sin([)( )(2162 izikmnr
imnmnimnmnimn eztNztNzf   

,)]sin()cos([)( )(4363 izikmns
imnmnimnmnimn eztNztNzf   

,)]cos()sin([)( )(4364 izikmns
imnmnimnmnimn eztNztNzf   

,)( )(065 izikmnp
mn

i

imn ep
na

mbG
zf   

.)( )(066 izikmnq
mn

i

imn eq
na

mbG
zf   

(A3)

 
 

139




