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Abstract. In this paper, an exact analytical solution for simply supported sandwich plate which considers the permeation effect
of adhesives is presented. The permeation layer is described as functionally graded material (FGM), the elastic modulus of
which is assumed to be graded along the thickness following the exponential law. Based on the exact three-dimensional (3-D)
elasticity theory, the solution of stresses and displacements for each layer is derived. By means of the recursive matrix method,
the solution can be efficiently obtained for plates with many layers. The present solution obtained can be used as a benchmark to
access other simplified solutions. The comparison study indicates that the finite element (FE) solution is close to the present one
when the FGM layer in the FE model is divided into a series of homogeneous layers. However, the present method is more
efficient than the FE method, with which the mesh division and computation are time-consuming. Moreover, the solution based
on Kirchhoff-Love plate theory is greatly different from the present solution for thick plates. The influence of the thickness of
the permeation layer on the stress and displacement fields of the sandwich plate is discussed in detail. It is indicated that the
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permeation layer can effectively relieve the discontinuity stress at the interface.
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1. Introduction

Thanks to the advantages of high strength, high
stiffness, low density, anti-fatigue and corrosion resistance,
composite structures are increasingly used in civil,
mechanical and aeronautical engineering. Additionally, the
mechanical property of composite structures can be tailored
by changing material type and the compose pattern. The
sandwich plate (Iivani et al. 2016, Yan and Song 2016,
Arani et al. 2016, Huang and Liew 2016, Nguyen et al.
2016 and Qu et al. 2016) is a typical application, which
consists of face, core and adhesive layers, as shown in Fig.
1.

However, in practice the adhesive will permeate into the
core and face layers, as shown in Fig. 2. The permeation
layer is the mixture of face (or core) layer and the adhesive.
It is widely known that the interfacial damage and
debonding of sandwich structures often occurs because of
the large discontinuity stress at the interface. The permea-
tion layer makes the material property of the sandwich plate
continuously vary along the thickness, which is similar to
FGM. The continuous material distributions are good to
reduce discontinuity stress at the interface. Such a problem
deserves to be deeply investigated.

The simplified plate theories, such as the Kirchhoff plate
theory, the Mindlin plate theory and the higher-order shear
deformation theory, are widely used to study the mechanical
behaviors of FGM plates. Mantari and Monge (2016)
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developed an analytical solution to study the buckling, free
vibration and bending behaviors of simply supported FGM
sandwich plates subjected to transverse and axial
mechanical loads. By using the nonlocal hyperbolic refined
model, Belkorissat et al. (2015) studied the free vibration
property of FGM plates. Li et al. (2016) proposed a four-
variable refined plate theory to analyze the thermo-
mechanical bending of FGM sandwich plates. The face and
core layers were both modeled by FGM. Bouchafa et al.
(2015) proposed a mnovel refined hyperbolic shear
deformation theory, which involves only four unknown
functions, to analyze the thermoelastic bending behavior of
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FGM sandwich plates. The buckling problem of FGM
plates subjected to thermal and mechanical loads was
analyzed by Yu et al. (2017). The deformation of the plate is
represented by the Mindlin plate theory. Based on the
higher-order shear deformation theory, the bending,
vibration and buckling behaviors of FGM sandwich plates
were investigated by Nguyen et al. (2015a). The dynamic
response of FGM steel composite cylindrical panels in
steady-state thermal environments subjected to impulsive
loads was firstly investigated by Isavand et al. (2015). By
means of the discrete singular convolution method, Civalek
(2017) investigated the free vibration of annular plates
made of composite FGM based on Mindlin plate theory. By
using the Laplace transformation method, Li e al. (2014)
studied the time-dependent behavior of two-layer FGM
structures sandwiching a thin viscoelastic interlayer. A
refined shear deformation theory was proposed by Thai and
Uy (2013) to analyze the buckling behavior of FGM plate.
The position of neutral surface is determined and the
governing stability equations were obtained. Tebboune ef al.
(2015) presented a trigonometric shear deformation theory
for thermal buckling analysis of FGM plates. This theory
accounted for sinusoidal distribution of transverse shear
stress without using the shear correction factor. Based on
the non-polynomial higher order shear deformation theory,
Mantari et al. (2014) investigated the free vibration of
functionally graded plates resting on elastic foundation.
Yarasca et al. (2016) presented the static analysis for
functionally graded sandwich structures by using the
7DOFs quasi-3D hybrid element. Viola et al. (2012)
presented an unconstrained third-order shear deformation
theory to evaluate the tangential and normal stresses in
moderately thick functionally graded cylindrical panels.

Besides the classical plate theory and higher-order
theories, some numerical methods presented recently are
efficient for analysis of FGM plates. Based on the
isogeometric approach, the static, dynamic and buckling
behaviors of FGM plates were studied by Thai et al.
(2014a) and Nguyen et al. (2015b). The main advantages of
the isogeometric approach are the ability to exactly
represent domains with conic sections and can achieve
better approximation with arbitrarily high smoothness. By
means of the meshfree method, the static and dynamic
problems for layered FGM plates were investigated by Vu
et al. (2017) and Bui et al. (2011, 2013). In the meshfree
method, the domain of mechanic problems is discretized by
scattered nodes and no elements are required. Bui ef al.
(2016) presented a displacement-based finite element
formulation associated with a novel third-order shear
deformation plate theory to analyze the bending and natural
frequencies of functionally graded plates under high
temperature field. Based on the isogeometric analysis and
the quasi-3D hyperbolic shear deformation theory, Liu et al.
(2017) studied the bending, free vibration and buckling
behaviors of functionally graded plates. Five unknowns per
node are included, and the shear locking phenomenon is
avoided. Thai et al. (2014b) developed a quasi-3D
hyperbolic shear deformation theory for functionally graded
plates. Both shear deformation and thickness stretching
effects were considered.

The 3-D elasticity theory is always recognized as
benchmark to access other simplified solution (Chen and
Lee 2004). Pagano (1969, 1970) presented analytical
solutions for laminate plates composed of arbitrary numbers
of layers. Using p-Ritz method, Wang et al. (2000) tackled
free vibration for skew sandwich plates composed of two
laminated facings sandwiching an orthotropic core. Based
on the 3-D elasticity theory, Zenkour (2007) presented
analytical solutions with high accuracy for single-layer
FGM plates subjected to transverse load. The stress and
displacement components were derived by using the state
space method which greatly simplifies the analytical
process.

In this study, based on the exact 3-D elasticity theory, a
refined sandwich plate model which considers the permea-
tion effect of adhesives is developed. The permeation layer
is described as FGM, which is exponentially graded along
the thickness. Unlike the single-layer FGM plate from
Zenkour (2007), the present multilayer plate is composed of
alternate fully homogeneous layers and FGM layers which
follow a simple exponential law same as that used by
Zenkour (2007). A typical example is the laminate glued by
the macrovoid materials such as balsa wood. By means of
the recursive matrix method, the solution of stresses and
displacements can be efficiently obtained for the plate with
many layers. The influence of the thickness of the
permeation layer on the stresses and displacements of the
plate is discussed in detail.

2. Elasticity solution for the sandwich plate model
2.1 Basic equations

Without loss of generality, we consider a sandwich plate
with length a, width b and thickness H, consisting of
alternate fully homogeneous layers and FGM with each
thickness #;, as shown in Fig. 3. The plate is subjected to
normal load g(x, y) acting on the top surface and is simply
supported at four edges. Two Cartesian coordinate systems
are established: the global coordinate system O-xyz with
origin O at the bottom of the plate and the local coordinate
system O;-xyz; with origin O; at the bottom of the ith layer.

The permeation layer is a mixture one made of face (or
core) layer material and the adhesive material. It is difficult
to explicitly describe its mechanical properties unless the
experimental measurement is carried out. Here, we assume
the material property of the permeation layer is graded
along the thickness following the exponential law, i.e.,
E.(z,)=Eje"" ,where E|denotes the elastic modulus at
the lower surface of the ith layer and k; denotes the gradient
index for the ith layer. This model has two features: (1) the
parameters used to describe the mixture layer is the fewest.
Only the thickness of the layer and the elasticity moduli at
the lower and upper surfaces of the layer is needed. (2) A
fully homogeneous layer can also include in the model by
letting k; = 0 only. The elastic modulus at the upper and
lower surfaces of the permeation layers are continuous, i.e.,
Ei(h) = E4, and E(0) = E;;. The Poisson’s ratio y; is
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Fig. 3 Geometric shape and Cartesian coordinates
of the sandwich plate

assumed to be constant in each layer.

Consider the ith (i = 1, 2...p) layer within the local
coordinate system O;-xyz;. According to the 3-D elasticity
theory, the constitutive relations are given by
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where o, o, o-ii, 7., T, and 7, denote the stress
components; u’, v and w' denote the displacement
components in x, y and z directions, respectively; A’ and G'
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Substituting Eq. (1) into Eq. (3), one has
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The simply supported boundary conditions can be
expressed as (Wu et al. 2017)

cl=vi=w'=0 at x=0,a,

x
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The displacement components are expanded into double
Fourier series
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Substituting Eq. (6) into Eq. (4), one has
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By eliminating U, (z,) andV/ (z,) in Eq. (7), a fourth-
order differential equation of W/ (z,) is obtained as

follows "
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where ¢, = \/ (mrx/a)® + (nz/b)*. The solution of the above
equation is
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and F! are the undecided coefficients and the
.» Pmn and g, are given in Eq. (Al) in
Appendix. Substituting Egs. (8), (10) and (11) into Eq. (1),
the expressions of stresses are derived out
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in which, the details of I ,J) ,
N are given in Eq. (A2) in Appendix.
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2.2 Load conditions and continuous conditions

The load acting on the plate surfaces can be described as
of (xy.h,)==q(xy), 7 (xp.h,)=0,

. (x,,h,)=0, ol (x,y,0)=0, (13)
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in which, the load function ¢(x, y) is expanded into double
Fourier series form, as follows
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The adjacent layers are perfectly connected at the inter-
face, i.e.
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2.3 Recursive matrix

The stress and displacement components in Eqgs. (11)
and (12) are rearranged into the vector form, as follows
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Where Ur’;m (Zi)9 Vnin (Zi )5 Wr;n (Zi )5 Z;nn (Zi )’ X;nn (Zi) and
Y! (z,) can be derived out by substituting Egs. (11) and
(12) into Eq. (16), as follows
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where the elements in the matrix I'! (z,) are defined in Eq.
(A3) in Appendix. By taking z; as 0 and 4; in Eq. (17),
respectively, we have
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The continuous conditions of Eq. (15) are rewritten as
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Combination of Eq. (19) with Eq. (20) yields a relation-
ship of stresses and displacements between the top surface
and the bottom surface of the plate
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According to the loading conditions of Eq. (13), one has
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Decomposing Eq. (23), two equations are obtained
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Combining Eq. (19) with Eq. (20), ¥/ (h,) can be
derived out, as follows
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Finally, the coefficients in the stress and displacement
components can be determined

@, =T, (), (). (28)

By substituting the coefficients back into Egs. (11) and
(12), the solution of stresses and displacements of the plate
is obtained finally.

It should be mentioned that as the layer number p
increases, only the computation effort in Eq. (22) increases
slightly. Thus, the present method is computational
efficiently for plates with any number of layers. Moreover,
the present method can be extended to plates with other
boundary conditions. For example, the clamped end can be
equivalent to the simply supported one acted by the
unknown horizontal reaction which can be determined from
the zero displacement condition at the clamped end (Xu et
al. 2008).
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3. Numerical examples

In the following examples, the series terms in stress and
displacement components are truncated up to N, i.e., m, n =
1, 2, 3... N. The elastic modulus in the permeation layer is
determined by the adjacent layers, as follows

hf{lﬂ(EHl/Ei—l)
E(z)=E " .

(29)
The location of the plate is identified by the global
coordinate system O-xyz

(30)

3.1 Convergence and comparison studies

Consider a refined sandwich plate composed of nine
layers with dimensions ¢ = 1500 mm, » = 700 mm and H =
200 mm, subjected to uniform load with g(x, y) = 1 N/mm”
acting on the top surface. The layer distribution along the
thickness direction is shown in Fig. 2. The thickness, elastic
modulus and Poisson's ratio of each layer are listed in Table
1. The solutions of stresses and displacements with different
series terms N = 1, 2...15, are given in Table 2. It can be
seen from Table 2 that the present solution is rapidly
convergent and are highly accurate with at least three

Table 1 The thickness, elastic modulus and Poisson's ratio for
a nine-layer refine sandwich plate

i h; [mm] E; (Mpa) Hi

1 18 20950 0.25
2 10 Ele[zz In(E3/E1))/y 0.25
3 2 3500 0.25
4 10 Eyelzam(Es/Es)n 0.25
5 120 70 0.25
6 10 Ese[z6 in(E7/E5)) 6 0.25
7 2 3500 0.25
] 10 E,elsin(Es/E7)ng 0.25
9 18 20950 0.25

significant digits when N = 15. Thus, the term of number is
fixed at N=15 for the following calculations.

It is well known that the reliability and accuracy of
numerical solutions such as the FE solutions should be
checked and evaluated through the comparison study with
the strict solutions. The present solution is compared with
the FE solution obtained from the software ANSYS.
Consider the plate described in Section 3.1, however,
subjected to sinusoidal load with ¢(x, y) = sin (zx/a) sin (zy
/ b) N/mm®. In the FE model, each permeation layer is
equivalent to n homogeneous layers along the thickness.
The SOLID-185 element is employed to model all the plate
layers. The FE mesh of each layer is created by dividing its
length into 150 elements, its width into 70 elements, while
the thicknesses of layers 1, 2, 3...9 are, respectively,
divided into 4, n, 1, n, 12, n, 1, n, 4 eclements. The FE
results for different n are compared with present ones, as
shown in Table 3. It can be found from Table 3 that the FE
results tend to be convergent and close to the present ones
with the increase of n. The errors of o0y, 79 and w, are
1.84%, 0.948% and 1.34% when n = 25. However, the FE
method becomes computationally expensive when n is
large.

By letting k; = 0 in the expression of Ey(z;), the FGM
layer in the plate degenerates to the isotropic one. Consider
a sandwich plate, which was studied by Foraboschi (2013)
using the two-dimensional Kirchhoff-Love (KL) plate

1

Table 2 Convergence study of the present results !, w' at
x =750 mm, y =350 mm,z=0and o, zl, 7}, at
x=375mm, y=175 mm, z= 18 mm
N O')l( O'i Tiz '[}W wh
1 24.62 -0.0781  -0.5079 1.450 -7.556
3 14.77 -0.1377  -0.2612 0.7811 -6.835
5 17.39 -0.1175  -0.1614 0.6530 -6.913
7 16.84 -0.1104  -0.1902 0.6714 -6.904
9 16.95 -0.1126  -0.1975 0.6737 -6.905
11 16.93 -0.1133  -0.1956 0.6734 -6.905
13 16.93 -0.1131  -0.1951 0.6734 -6.905
15 16.93 -0.1130  -0.1952 0.6734 -6.905

*Note: The units of stresses and displacements are
[Mpa] and [mm], respectively

Table 3 Comparison of stresses and displacements between the present solution and the FE one

FE solution with different n

Present

n 2 4 6 10 15 25 solution

6o [Mpa] -1.542 -1.938 2.137 -2.245 -2.293 -2.295 -2.338
Error (%) 34.0 17.1 8.6 3.97 1.92 1.84 /

7o [Mpa] -0.6250 -0.6262 -0.6265 -0.6266 -0.6266  -0.6266  -0.6326
Error (%) 1.20 1.01 0.972 0.952 0.946 0.948 /

Wo [mm] -4.642 -4.660 -4.664 -4.666 -4.666 -4.667 -4.730
Error (%) 1.86 1.48 1.40 1.36 1.35 1.34 /

2

X

*Note: gpis o

atx =750 mm, y =350 mm, z= 18 mm, 7, is rf.z atx =0,y =350 mm, z= 18 mm and

wo is w? atx = 750 mm, y =350 mm, z= 18 mm. The error = |(FE-Present)/Present
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Fig. 4 Comparisons of w,, between the present solution
and KL solution for different length-to-thickness

Table 4 The thickness, elastic modulus and Poisson’s ratio for a

Ruili Huo, Weiqing Liu, Peng Wu and Ding Zhou

Relative error (%)

4 6 8 10 12 14 16

a/tH

18 20 22 24

ratios a/H (*Note: Relative error denotes (KL-

Present)/Present)

seven-layer refine sandwich plate

h; [mm]

E; (Mpa) Hi
1 16 20950 0.25
2 4 3500 0.25
3 hs Eze[z3 In(E4/ B2 )13 0.25
4 60-2/; 70 0.25
5 hs E4e[z5 In(Eg/E4)}/hs 0.25
6 4 3500 0.25
7 16 20950 0.25
100
801
—!13—0
— 60} _
£ ---!13—5n1m
£
= - 1732 10mm
40 ..,.,..hJ:lSmm
20¢
0
-60 -40 =20 ) 0 20 40 60
. [Mpa]
(al) ol atx=y=500 mm
100
80
—h =0
— 60 1377
g ---!:3—5mm
g
— weeh,=10mm
N 40 ?
e =15mm
3
20
0
-2 15 1 0.5 0

7! [Mpa]

(b1) i, atx=10,y =500 mm

theory. The parameters are taken as ¢(x, y) = 1 N/mm?, E; =
E;=58000 Mpa, E, =500 Mpa, it = u3 =03, 4, =0.2, a
b, hy = hy = 50 mm, &, = 0.5 mm. The comparison of the
maximum plate deflection w,, between the present solution
and KL solution (Foraboschi 2013) for different length-to-
thickness ratios a/H is given in Fig. 4. It can be observed
from Fig. 4 that the KL solution is close to the present ones
for thin plates. However, the error from KL solution
increases with the increase of a/H, which reaches about
13% when a/H = 4.

3.2 Parametric study

Consider a refined sandwich square plate with
dimensions a = b = 1000 mm and H = 100 mm, subjected to
sinusoidal load with ¢(x, y) = sin (mx/a) sin (zy/ b) N/mm*
acting on the top surface. Here, we only consider the
permeation effect of the adhesive into the core layer, i.e.,
the permeation layers i = 2, 8 in Fig. 2 are neglected. The
thickness, elastic modulus and Poisson’s ratio of each layer
are listed in Table 4. The stress and displacement distri-
butions along the plate thickness for different permeation
thicknesses /; = 0, 5, 10, 15 mm are plotted in Fig. 5. The
special case #; = 0 means the traditional sandwich plate
model which neglects the permeation effect of the
adhesives. It can be found from Fig. 5 that (i) the
distributions of ol and 7 in the permeation layer (80
mm — /; <z < 80 mm) become smooth with the increase of
hs; (i) o is less influenced by 4;3; (iii) the deflection w'
decreases with the increase of ;.

90
85
—80
g
E
WS —hg:{l
»»h}:Smm
70 .....h]=1[]mm
u---‘-hfISmm
65 ) 5
-20 -10 0 10 20
a\' [Mpa]
(a2) Enlarged view of o
90
85
—h =0
— 80 ]3,5
E - 13— mm
= wnh,=10mm
ERE e
-------- h;lSmm
70
65 i
-1.9 -1.8 -1.7 -1.6 -1.5

T,\L [Mpa]
(b2) Enlarged view of 7/,

Fig. 5 Distributions of stresses and displacement along the plate thickness for different permeation thicknesses

h;=0,5,10, 15 mm
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60
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a! [Mpa]
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100
80 :
o 1 '. _113:(}
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40 ; ¥
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20
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Fig. 5 Continued

4. Conclusions

Based on the 3-D elasticity theory, a refined sandwich
plate model which considers the permeation effect of
adhesive is proposed. The solution of stress and
displacement fields in the plate is obtained analytically. The
boundary, loading conditions and continuous conditions are
strictly ~ satisfied. The following conclusions are
summarized:

® By use of the recursive matrix method, the solution
of stress and displacement for sandwich plate with
many layers can be efficiently obtained.

e The present solution is rapidly convergent with high
accuracy and is in good agreement with the finite
element solution.

® The FE solution is close to the present one when the
FGM layer in the FE model is divided into a series
of homogeneous layers. However, the present
method is more efficient than the FE method, in
which the mesh division and computation are time-
consuming.

® The solution based on the Kirchhoff-Love plate
theory is in agreement with the present solution for
thin plates, but has considerable error for thick plate.

® The permeation effect of adhesives has great effect
on the stress and displacement distributions. The
distributions of the longitudinal normal stress and
the shear stress in the permeation layer become
smooth in the thickness direction with the increase of
the permeation thickness. The deflection decreases
with the increase of the permeation thickness.
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mn (Z ) [ mn Sln(tmn 1)
n?s (Zi) = [Kr?m COS(tm"

rj:: (Zi) = [ mn SIH(tmn 1)

__eqmn z

 (2) =

mn (Z ) e’mnzz Sln(tmn 1)
73n4 (Zi) = esngi Sin(tmn z)

Sil’l(t z, )]e(fnm +ki)z ,

mn

2 cos(t, z.)]jetmn ki)

mn mn I

Zi) + K:m Sin(tmnzi)]e(smn +ki)zi ,

K COS(tmn L)] (Ynm*kl)zl
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l(z,)=[M], cos(t,,z,)+ M2, sin(t,, z,)]e"m =

mn mn<i mn L

733 (ZI) = [MEVIVI Cos(tmn l) + M sin(tmn l)]e(sm'z +kl )Z’

(Z ) [an Sln(tlﬂ}’l i

) an COS(t

mn l

)]e(smn +ki )zl

55 _ i (Pmn +ki)zi i (q +kj)zi
mn (Zi) - Gopmne e, mn (Z ) Gqun e,

(Z ) [ mn COS(tmn 1) +N mn Sln(tng )]e(an iz >
62 _ 1 : ( ki )7
mn (Zi) - [Nmn Sln(tmn z) N COS(tmn z)]e i

mn (Z ) [ mn Cos(tmﬂ I) + mn Sln(tmnz )]e( Smn +kl )ZI

k
mn (Z ) [ mn Sln(tlﬂ}’! l) Cos(tmn l)]e(smn i l)ZI
i
( ) mbG ne(pmﬁk[)n’
mbG,

(Gmn+ki)z

wn(Z)=———"q,,¢
na

(A3)
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