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1. Introduction 

 
Linear differential equations are very simple to solve 

than nonlinear differential equations. There is an explicit 
formula for the solutions to all linear equations but there is 
no general formula for solutions to all nonlinear equations. 
There are different types of nonlinear equations using 
particular methods, and arrived at different formulas for 
their solutions. It is possible to prove that a large class of 
nonlinear deferential equations actually have solutions. 
Nonlinear deferential equations are more difficult to solve 
that the linear ones. That is why one tries to find 
information about solutions of deferential equations without 
having to actually solve the equations. One of the most 
interesting areas in many physics and engineering problems 
is nonlinear vibrations. It is very important in mechanical 
and structural dynamics for the comprehensive under-
standing and accurate prediction of their motions. In the 
past few decades many researchers have been working on 
the analytical and numerical methods in nonlinear 
vibrations such as: Variational Iteration Method (Wazwaz 
2007), Homotopy Perturbation Method (HPM) (Shou 2012) 
Energy Balance Method (EBM) (Ganji et al. 2011), Max-
Min Method (Zeng 2009), Frequency-Amplitude 
Formulation (Ren and Gui 2011), Parameter Expansion 
Method (Kaya and Demirbağ 2013), Variational approach 
(He 2007), Hamiltonian approach (He 2010) other methods 
(Bayat et al. 2015, 2017, Pakar and Bayat 2015, Pakar et al. 
2016, Ganji and Sadighi 2007, Ganji et al. 2007, Tari et al. 
2007a, b, Sadighi and Ganji 2007, Jamshidi and Ganji 2007, 
Samaee et al. 2015, He 2002, Beléndez et al. 2010, Fu et al. 
2011, Nayfeh 2973, Pirbodaghi and Hoseini 2010). 
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Among these methods, Variational Approach (VA) and 

Hamiltonian Approach (HA) is considered to solve the 
nonlinear vibration equations in this paper. 

The paper has been collocated as follows: 
First, we describe the basic concept of Variational 

Approach (VA) and Hamiltonian Approach (HA). Then the 
applications of Variational Approach (VA) and Hamiltonian 
Approach (HA) have been studied to demonstrate the 
applicability and preciseness of the method for two 
examples. Some comparisons between analytical and 
numerical solutions are presented. Eventually we show that 
VA and HA can converge to a precise cyclic solution for 
nonlinear systems. 

 
 

2. Basic idea of Variational Approach (VA) 
 
He suggested a variational approach which is different 

from the known variational methods in open literature (He 
2007). Hereby we give a brief introduction of the method 

 

( ) 0u f u   (1)
 

Its variational principle can be easily established 
utilizing the semi-inverse method (He 2007) 
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Where Tis period of the nonlinear oscillator, .f
u

F





Assume that its solution can be expressed as 
 

   cosu t A t  (3)
 

Where A and ω are the amplitude and frequency of the 
oscillator, respectively. Substituting Eq. (3) into Eq. (2) 
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results in 
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Applying the Ritz method, we require 
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J

A
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(5)
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But with a careful inspection, for most cases we find 
that 
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Thus, we modify conditions Eqs. (5) and (6) into a 
simpler form 

0
J







 (8)

 

From which the relationship between the amplitude and 
frequency of the oscillator can be obtained. 

 
 

3. Basic idea of Hamiltonian Approach (HA) 
 
Recently, He (2010) has proposed the Hamiltonian 

approach to overcome the shortcomings of the energy 
balance method. This approach is a kind of energy method 
with a vast application in conservative oscillatory systems. 
In order to clarify this approach, consider the following 
general oscillator 

 

( , , ) 0u f u u u     (9)
 

With initial conditions 
 

   0 , 0 0.u A u   (10)
 

Oscillatory systems contain two important physical 
parameters, i.e., the frequency ω and the amplitude of 
oscillation A. It is easy to establish a variational principle 
for Eq. (9), which reads 
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 Where Tis period of the nonlinear oscillator, .f
u

F





 

In the Eq. (11), 2

2

1
u is kinetic energy and F(u) potential 

energy, so the Eq. (11) is the least Lagrangian action, from 
which we can immediately obtain its Hamiltonian, which 
reads 

   21
constant

2
H u u F u    (12)

 

From Eq. (12), we have 
 

0
H

A


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
 (13)

 

Introducing a new function, ),(uH defined as 
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Eq. (14) is, then, equivalent to the following one 
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H
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 (15)

 

or 
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H
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From Eq. (16) we can obtain approximate frequency–

amplitude relationship of a nonlinear oscillator. 
 
 

4. Application 
 
In order to assess the advantages and the accuracy of the 

Variational approach and Hamiltonian Approach, we will 
consider thefollowing examples: 

 

4.1 Example 1 
 

These systems include shallow arches, ship roll 
dynamics, some electrical circuits, microperforated panel 
absorber and heavy symmetric gyroscope. We shall solve 
the following conservative Helmholtz–Duffing oscillator 
with VA and HA 

 

  2 31 0,u u u u       (17)
 

with initial conditions 
 

   0 , 0 0u A u   (18)
 

where σ is an asymmetric parameter representing the extend 
of asymmetry and an over dot denotes differentiation with 
respect to t. When σ = 1, Eq. (11) is a classical Duffing 
oscillator. Eq. (17) becomes a Helmholtz oscillator with a 
single-well potential when σ = 0. 

 
4.1.1 Solution using VA 
Variational formulation can be readily obtained Eq. (11) 

as follows 
 

   2 2 3 3 4

0

1 1 1 1 1

2 2 3 3 4

t
J u u u u u u dt       (19)
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Choosing the trial function u(t) = A cos (ωt) into Eq. (13) 
we obtain 
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The stationary condition with respect to A leads to 
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Solving Eq. (16), according to ω, we have 
 

2 2 3

2
2 3 3 40

2

2

2

0

cos cos

cos cos

A t A t
dt

A t A t

dtA sin t





 


 
    




 (23)

 

Then we have 
 

23 8 1 8
1

4 3 3V A
A A A

 
 

     (24)

 

According to u(t) = A cos (ωt) and Eq. (18), we can 
obtain the following approximate solution 
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4.1.2 Solution using HA 
The Hamiltonian of Eq. (9) is constructed as 
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Integrating Eq. (12) with respect to τ from 0 to T/4, we 
have 
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Assume that the solution can be expressed as 
 

   cosu t A t  (28)
 

Substituting Eq. (14) into Eq. (13), we obtain 
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Solving the above equation, an approximate frequency 
as a function of amplitude equals 
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According to Eqs. (14) and (17), we can obtain the 
following approximate solution 
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4.2 Example 2 
 
The motion of a particle on a rotating parabola .The 

governing equation of motion and initial conditions can be 
expressed as (Nayfeh 1973) 

 

 2 2 2 21 4 4 0q u u q u u u         0 , 0 0u A u  (33)

 

Where q > 0 and Δ > 0 are known positive constants. 
 
4.2.1 Solution using VA 
Its variational formulation can be readily obtained Eq. 

(19) as follows 
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Choosing the trial function u(t) = A cos (ωt) into Eq. (20) 
we obtain 
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The stationary condition with respect to A leads to 
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Solving Eq. (23), according to ω, we have 
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Then we have 
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According to Eqs. (3) and (25), we can obtain the 
following approximate solution 
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The exact period is 
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4.2.2 Solution using HA 
The Hamiltonian of Eq. (9) is constructed as: 
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Integrating Eq. (12) with respect to τ from 0 to T/4, we 
have 
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Assume that the solution can be expressed as 
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Substituting Eq. (14) into Eq. (13), we obtain 
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Solving the above equation, an approximate frequency 
as a function of amplitude equals 

2 21
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According to Eqs. (14) and (17), we can obtain the 
following approximate solution 
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5. Results and discussions 
 

To illustrate and verify the accuracy of this new 
approximate analytical approaches, some comparison of the 
time history oscillatory displacement responses with the 
numerical solutions are presented in Figs. 1-3 for examples 
1, and Table 1, and Figs. 4 to 6 for examples 2 and Table 2. 

Tables 1 and 2 are the compared solutions of analytical 
methods and numerical ones. The maximum error is less 
than 2.1%. 

In example 1, Figs. 1(a) and (b) represent the high 
accuracy of the variational approach and Hamitonian 

 
 

(a) A = 0.5, σ = 1.2 
 

(b) A = 2.5, σ = 0.4 

Fig. 1 (Ex1) Comparison of analytical solutions of u(t) 
based on time with the RKM solution 
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(a) 
 

(b) 

Fig. 2 (Ex1) Effect of asymmetric parameter (σ) on 
nonlinear frequency 

 
 

approach with the Runge Kutta’s algorithm. Figs. 2 and 3 
show the effect of parameters of (σ) and (A) to the nonlinear 
frequency of the system. 

 
 

(a) 

Fig. 3 (Ex1) Effect of amplitude(A) on nonlinear frequency

(b) 

Fig. 3 Continued 
 
 

Table 1 Comparison of nonlinear frequency of approximate 
solution (VA) and (HA) with numerical solution 
(RKM) corresponding to various parameters of 
system (example 1) 

A σ VA&HA RKM Error % 

0.5 1.2 1.0678 1.0653 0.2339 

1 0.8 1.3303 1.3254 0.3714 

1.5 1 1.6394 1.6281 0.6838 

2 1.5 2.1567 2.1344 1.0329 

2.5 0.4 2.0367 2.0185 0.8930 

3 0.8 2.6286 2.5919 1.3961 

3.5 0.9 3.0929 3.0320 1.9681 

4 0.5 2.9492 2.9023 1.5899 

4.5 0.6 3.4118 3.3382 2.1566 

5 0.2 2.8540 2.8116 1.4849 

 
 
In example 2, Table 2 gives the comparison of the 

obtained results with the exact solution for different values 
of A, q, Δ and the maximum relative error is less than 1.8%. 
Figs. 4(a) and (b) represent comparison of the analytical 
solution of u(t) based on time with the numerical solution. 
Figs. 5 and 6 show the effects of Δ and q and amplitude of 

 
 

Table 2 Comparison of the approximate and exact frequencies 
corresponding to various parameters in Eq. (25) 
(Example 2) 

A q Δ ωVA&HA ωExact Error% 

0.5 1 0.5 0.5774 0.5721 0.9134 

1 0.5 1 0.8165 0.8039 1.5685 

1.5 0.8 1.5 0.6218 0.6139 1.2812 

2 0.7 0.5 0.3188 0.3163 0.7912 

2.5 0.5 2 0.6963 0.6872 1.3211 

3 1 3 0.3974 0.3950 0.6014 

3.5 0.2 1.5 0.8704 0.8544 1.8675 

4 0.4 3 0.7001 0.6928 1.0636 
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(a) 
 

(b) 
Fig. 4 Comparison of analytical solution of time history the 

exact solution for: (a) A = 1.5, q = 1.5, Δ = 0.8; (b) A 
= 3.5, q = 0.2, Δ = 1.5 

 
 

Fig. 5 (Ex 2) Effect of Δ and q on nonlinear frequency 
 
 

the oscillation. The comparison of analytical solutions 
based on time with the exact solution shows an excellent 
agreement of the proposed methods. 

Fig. 6 (Ex 2) Effect of amplitude (A) on nonlinear frequency
 
 

It is evident that VA and HA show high accuracy with 
the numerical solution and is quickly convergent and valid 
for a wide range of vibration amplitudes and initial 
conditions. The accuracy of the results shows that the VA 
and HA could be potentiality used for the analysis of 
strongly nonlinear oscillation problems. 

 
 

6. Conclusions 
 

In this study, new powerful approaches have been 
introduced and applied to high nonlinear vibration 
equations. Two strong examples have been studied and the 
effects of important parameters on the nonlinear frequency 
of the systems are figured. The accuracy of the proposed 
approaches are demonstrated by comparing with numerical 
solutions. It has been proven that the variational approach 
and Hamiltonian approach (HA) are very efficient, comfor-
table and sufficiently exact in engineering problems. The 
proposed approaches can be simply extended to any 
nonlinear equation for the analysis of nonlinear systems. 
The obtained results from the approximate analytical 
solutions are in excellent agreement with the corresponding 
exact solutions. 
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CC 

Appendix A 
Basic idea of Runge-Kutta’s method (RK) 

 
For the numerical approach to verify the analytic 

solution, the fourth RK (Runge-Kutta) method has been 
used. This iterative algorithm is written in the form of the 
following formulae for the second-order differential 
equation 
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Where, Δt is the increment of the time and h1, h2, h3 and 

h4 are determined from the following formulae 
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The numerical solution starts from the boundary at the 

initial time, where the first value of the displacement 
function and its first-order derivative are determined from 
initial condition. Then, with a small time increment Δt, the 
displacement function and its first-order derivative at the 
new position can be obtained using Eq. (2). This process 
continues to the end of the time limit. 
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