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1. Introduction 
 

Lightweight and stiff, sandwich panels are a vital 

element of many modern aircraft interior designs. Rein-

forcing and edge finishing of such panels can be costly and 

time consuming, but it is essential. Thin and thick panels 

and shells have been studied during the past decades for 

different: (a) geometric configurations such as flat, single 

curved (cylindrical, conical, etc), doubly curved (spherical, 

etc.) (Reddy 2003, Qatu 2004, Qatu and Asadi 2012); (b) 

materials such as conventional and modern composites 

(Vinson and Sierakowski 2006); (c) loading conditions 

(statically, dynamically and thermally) by various theories 

and models (Amabili 2008, Leissa and Qatu 2011) 

indicating extensive applications of this structural element 

in a wide variety of engineering fields. These structures are 

subjected to vibrations in different loading conditions and 

consequently susceptible to lose their strength and safety. 

The main purpose of this paper is therefore to analyze the 

free vibration of doubly curved sandwich panels (DCSP) for 

their optimum design. Such an optimization requires accurate 
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models and theories in such a way that all of the governing 

conditions on DCSP such as continuity conditions of 

displacements at the face sheets - core interfaces and 

boundary conditions are satisfied. Selecting a suitable 

model is a fundamental step in DCSP analysis and 

extremely depends on mechanical (face-to-core stiffness 

ratio) and geometrical parameters. A typical DCSP consists 

of two thin high-density face sheets that are very stiff with a 

high strength and usually are made of metallic or laminated 

composite material. A considerable amount of discussions 

about the main aspects considered in the design, analysis 

and construction of sandwich structures are existed in the 

literature (Noor et al. 1996). 

To select a suitable model for analysis of sandwich 

shells, two main parameters of the complex mechanical 

behavior of sandwich shells as well as the presence of 

 1 ±
𝑧

𝑅
  term in the basic equations should be considered. 

 1 ±
𝑧

𝑅
  term appears in both the strain displacement and 

the stress resultant equations, since the curvature of each 

parallel surface through the thickness of the shell is 

different. The analysis by Bhimaraddi (1984) accounted for 

the  1 ±
𝑧

𝑅
  terms in the stress-resultant, but truncated the 

terms beyond the order of  
ℎ3

𝑅3 . Later, Chang (1992) and 

Leissa and Chang (1996) considered this term, but truncated 

it using a geometric series expansion and neglected the 
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terms beyond the order of  
ℎ

𝑅
 . They showed that by 

considering the  1 ±
𝑧

𝑅
  terms with only FSDT gives more 

accurate results than higher-order theories in which the term 

is neglected as reported in Refs (Librescu et al. 1989). Liew 

and Lim (1996) developed a zigzag deformation higher-

order theory for vibration of isotropic thick doubly curved 

shallow shells. Taking into account the  1 ±
𝑧

𝑅
  terms and 

neglecting the terms beyond the order of  
ℎ

𝑅
 , they 

accounted for the cubic distribution of transverse shear 

strains through the shell thickness in contrast with existing 

parabolic shear distribution theories (PSDTs). Khalili et al. 

(2012) used the term in free vibration analysis of 

homogenous isotropic circular cylindrical shells based on a 

new 3D refined higher order theory. Qatu (2004) 

incorporated the  1 ±
𝑧

𝑅
  terms in the framework of FSDT 

for the free vibration analysis of laminated deep thick 

shells. He did not truncate the series expansion of the 

 1 ±
𝑧

𝑅
  terms (in the denominator of the stress-resultant 

integrands) and calculated the integrals of the stress-

resultant accurately by exact integration through the 

thickness of the shell. He showed that the accurate stress-

resultants are needed for laminated composite deep thick 

shells, especially if the shell is not spherical. He concluded 

that using the plate approximation equations for stiffness 

parameters of isotropic thick shells leads to an error of 2%. 

Nevertheless, to the best of the authors’ knowledge, this 

term has not yet been used for three-layer thick laminated 

DCSP. The current article therefore employs this term to 

increase the accuracy of the analysis. 

In general, there are three main approaches to analyze 

sandwich structures: (a) 3D elasticity approaches in which 

the equations of motion expressed without considering any 

assumption for the displacement field are solved and the 

stresses, strains and displacement components are obtained. 

Therefore, this theory is the most exact theory for analyzing 

mechanical behavior of constructions. (b) Equivalent single 

layer (ESL) theories in which all the unknown displacement 

field functions do not depend on the considered layer. It 

means that all layers have the same degrees of freedom 

(DOF); and (c) Layer wise (LW) theories in which the 

unknown displacement field functions depend on the 

considered layer. 

There are few exact 3D elasticity solutions for static and 

dynamic analysis of the composite sandwich plates (Pagano 

1970, Kardomateas 2005). The 3D elasticity approaches are 

perfect, but 2D models are preferred in sandwich structures 

because of their required computational efforts. ESL models 

are Classical Laminated Plate Theory (CLPT), FSDT and 

HSDT. The classical laminated plate theory (CLPT) based 

on Love–Kirchhoff yields sufficiently accurate results 

when: (1) length to thickness ratio is large; (2) the material 

anisotropy is not severe; (3) the dynamic excitation are 

within the low- frequency range (Toorani and Lakis 2000). 

FSDT based on Rissner–Mindlin (RM) kinematics field 

does not satisfy the transverse shear stresses boundary 

conditions on the top and the bottom surfaces of the shells 

or plates (Librescu and Khdeir 1989, Thai et al. 2012, 

Valizadeh et al. 2013, Kapoor and Kapania 2012). For this 

reason, in application of such theories based on these 

kinematic relations, shear correction factors for equilibrium 

considerations are needed (Reissner and Wan 1982). Hence, 

some researchers (Frostig et al. 2004, Jedari Salami 2016, 

Kant and Swaminathan 2001, Wu et al. 2008) applied third 

model of ESL, i.e., HSDT to avoid using shear correction 

factors. ESL models also can predict global behavior of thin 

and thick laminates, but they are not able to distinguish 

some of dynamic and static behaviors such as local modes 

of buckling (wrinkling), high mode of vibration and local 

bending. So, these models cannot account for the 

discontinuities in the displacement field and transverse 

strains at the interfaces between the layers with different 

stiffness properties. LW theories improved ESL 

disadvantages and were used in many research works 

(Hause and Librescu 2006, Ferreira 2005), but the main 

problem in using LW theories is that the amount of 

unknown quantities increases by increasing layer number 

and so finding an analytical solution for them becomes 

impossible. In this case, it seems that using theories such as 

Frostig theory (Frostig 1992) which divides the whole 

structure into three layers and has constant unknown 

quantities is helpful. Fares and Youssif (2001) studied a 

refined ESL model of doubly curved shells using an 

extension of Reissner’s mixed variation of formula based on 

Maupertuis’ principle. In their study, the stresses were 

continuous through the shell thickness and were consistent 

with the surface conditions and none of shear correction 

factors were used. Singh used Rayleigh–Ritz method to 

obtain the natural frequencies of doubly curved open deep 

sandwich shells with ESL model in which the displacement 

fields are defined by Bezier surface patches (Singh 1999). 

The dynamic analysis of anisotropic and multi-layered 

shells and panels with different curvatures by using HSDT 

in which the displacement field having a fixed nine degrees 

of freedom was investigated by Viola et al. (2013). The 

equations have been solved numerically using the 

Generalized Differential Quadrature (GDQ) technique. Free 

and forced vibrations of cross-ply laminated composite 

arches under various boundary conditions were investigated 

by Khedeir and Reddy (Khdeir and Reddy 1997). Their 

formulation included ESL third, second, first and classical 

theories. Hohe et al. (2006) investigated the dynamic 

buckling and the post buckling analysis of the flat and 

curved sandwich panels with transversely compressible core 

in which the standard Kirchhoff-Love hypothesis for the 

face sheets and a first/second order power series expansion 

for the core were used. They neglected the transverse shear 

strains of the core layer. Biglari and Jafari (2010) presented 

a complex three-layer theory for the free vibration and 

bending analysis of doubly-curved sandwich structures with 

flexible core. In their model, Donell’s shallow shell theory 

was used for the face sheets. Malekzadeh Fard et al. (2014) 

studied bending analysis of doubly curved sandwich panels 

subjected to multiple loading conditions using improved 

high order sandwich panel theory and second computational 

Frostig’s model (2004). In their formulation, the in-plane 

hoop stresses of the core and the trapezoidal shape factor 

 1 +
𝑧

𝑅
  were considered. 
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To the best of the authors’ knowledge, no research work 

on free vibrations of thick doubly curved sandwich panels 

and shells with compressible/incompressible core using 

higher order shear deformation theory is reported 

adequately in the existed literature. The current research 

work presents the free vibration of simply-supported three-

layer thick doubly-curved orthotropic sandwich panel using 

a new type of high-order sandwich panel theory. In this 

model, face sheets are orthotropic laminated composite and 

the FSDT is applied to them. Additionally all stress 

components, except normal stress for face sheets are 

considered. The core is made of compressible and 

incompressible orthotropic material and a third order 

pattern for both the in-plane and the vertical displacement 

was used. Also, all six stress components of the core were 

considered. Different radii of curvatures for the face sheets 

and the core (𝑅𝛼 , 𝑅𝛽 ) were taken into account using the 

terms  1 +
𝑧

𝑅𝛼
  and  1 +

𝑧

𝑅𝛽
  due to their effects on 

accuracy of stress resultants. These coefficients have 

significant role in free vibration analysis of thick DCSP. In 

order to validate the present model and formulations, the 

obtained numerical results of the analysis are compared 

with those available in the literature. Also, parametric study 

including the effect of radius of curvature, core to face sheet 

thickness ratio and flexibility of the core are carried out. 
 

 

2. Analytical model for thick DCSP 
 

2.1 Structural model 
 

A three-layer DCSP is considered as shown in Fig. 1. 

The DCSP is composed of two orthotropic laminated 

composite face sheets separated by an orthotropic thick 

compressible or incompressible core. The global coordinate 

system (α, β, z) is orthogonal curvilinear shown in Fig. 1. 

The origin of the coordinate system (α, β, z) is located on 

one corner of the mid plane of the sandwich panel. The α 

and β curves are lines of curvature on the sandwich panel 

mid surface, z = 0. The z-axis is a straight line normal to 

shell mid surface. The thickness of the top face, core and 

bottom face layers are 𝑡𝑡 , 𝑡𝑐 , 𝑡𝑏  respectively and H is the 

total thickness of DCSP and 𝑅𝛼
𝑖 , 𝑅𝛽

𝑖   𝑖 = 𝑡, 𝑐, 𝑏  denote the 

radii of curvature to mid surface of the top, core and bottom 

layers in the α and β directions. 𝑅𝛼𝛽
𝑖   𝑖 = 𝑡, 𝑐, 𝑏  is the 

radii of twist of the surface. When the direction of α and β 

coordinate axes coincide with principle directions, then 
 

 

𝑅𝛼
𝑖 ,  𝑅𝛽

𝑖  are called as the radii of principle curvature and 

𝑅𝛼𝛽
𝑖  is infinity. The DCSP may be circular cylindrical shell 

with 𝑅𝛼
𝑖 = 𝑅𝑖  and 𝑅𝛽

𝑖 = 𝑅𝛼𝛽
𝑖 = ∞  or 

𝑅𝛼
𝑖

𝑅𝛽
𝑖 =

𝑅𝛼
𝑖

𝑅𝛼𝛽
𝑖 = 0 , a 

spherical panel with 𝑅𝛼
𝑖 = 𝑅𝛽

𝑖 = 𝑅𝑖  or 
𝑅𝛼
𝑖

𝑅𝛽
𝑖 = 1. Noted that 

the curvature effect of layers is considered in this paper. 
 

2.2. Basic assumptions 
 

(a) As the face sheets and the core deflections are small 

and the strains are infinitesimal, they are assumed to 

be linearly elastic. 

(b) The face sheets are made of orthotropic laminated 

composite and the core is made of incompressible 

material such as metallic honeycomb or balsa wood 

and a compressible core such as foam. 

(c) The interfaces between the layers and the face-core 

interfaces are perfectly bonded, so there is no 

delamination or interlayer slip between the layers. 

(d) Face sheets are sufficiently thin (compared to the 

core) to be treated as thin plate or shells and follow 

the FSDT assumption. 

(e) The face sheets and the core are of constant 

thicknesses and uniform throughout the entire DCSP. 
 

Considering a differential element of DCSP (see Fig. 1), 

the square of linear element ―dS‖ between the points 
 𝛼, 𝛽, 𝑧  and  𝛼, 𝛽, 𝑧 + 𝑑𝑧  is given by 

 

 𝑑𝑆 2 = 𝐴1
2 𝑑𝛼 2 + 𝐴2

2 𝑑𝛽 2 + 𝐴3
2 𝑑𝑧 2 (1) 

 

where A1, A2 and A3 are referred to geometrical scale factor 

quantities 
 

𝐴1 = 𝐴 1 +
𝑧

𝑅𝛼
 ,    𝐴2 = 𝐵 1 +

𝑧

𝑅𝛽
 ,    𝐴3 = 1 (2) 

 

In Eq. (2), 𝐴 and 𝐵 are Lame’ parameters. An infinite-

simal rectangular area of the surface at +𝑧 is given by 
 

𝑑𝐴𝑧 =  𝐴1𝐴2𝑑𝛼𝑑𝛽 (3) 
 

The volume of an infinitesimal element at +𝑧 is given 

by 

𝑑𝑉 =  𝐴1𝐴2𝑑𝛼𝑑𝛽𝑑𝑧 (4) 
 

It is to be noted that 𝐴 = 𝐵 = 1,  when the shell 

curvature is constant for example cylindrical, spherical and 

hyperbolic paraboloid. 

 

2.3 Definition of the 3D displacement field in the 
face sheets and the core 

 

Displacement field for an arbitrary point within top and 

bottom face sheets based on Mindlin–Reissner shell theory 

can be written as (Reddy 2003) 
 

𝑢𝑖 𝛼, 𝛽, 𝑧, 𝑡 = 𝑢0
𝑖  𝛼, 𝛽, 𝑡 + 𝑧𝑖𝜃𝛼

𝑖  𝛼, 𝛽, 𝑡  

𝑣𝑖 𝛼, 𝛽, 𝑧, 𝑡 = 𝑣0
𝑖  𝛼, 𝛽, 𝑡 + 𝑧𝑖𝜃𝛽

𝑖  𝛼, 𝛽, 𝑡  

𝑤𝑖 𝛼, 𝛽, 𝑧, 𝑡 = 𝑤𝑖 𝛼, 𝛽, 𝑡  

(5) 
 

Fig. 1 Geometry of doubly curved sandwich panel and 

curvilinear coordinate 
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Where 𝑢𝑖 , 𝑣𝑖  and 𝑤𝑖  (𝑖 = 𝑡, 𝑏) denote the displacement 

components of the face sheets of DCSP. In Eq. (5), 𝑢0
𝑖 , 𝑣0

𝑖  

and 𝑤𝑖  are the displacements at the mid surface in the 𝛼, 

𝛽 and 𝑧 directions. 𝜃𝛼
𝑖

 and 𝜃𝛽
𝑖 are rotations of a transverse 

normal around α and β curvilinear coordinates, respectively. 

The displacement components 𝑢𝑐 ,  𝑣𝑐  and 𝑤𝑐
 of a generic 

point in the core are related to midsurface displacement 

(𝑢0
𝑐  , 𝑣0

𝑐  , 𝑤0
𝑐) by 

 

𝑢𝑐 𝛼, 𝛽, 𝑧, 𝑡 = 𝑢0
𝑐 𝛼, 𝛽, 𝑡 + 𝑧𝑢1

𝑐 𝛼, 𝛽, 𝑡  

+𝑧2𝑢2
𝑐 𝛼, 𝛽, 𝑡 + 𝑧3𝑢3

𝑐 𝛼, 𝛽, 𝑡  

𝑣𝑐 𝛼, 𝛽, 𝑧, 𝑡 = 𝑣0
𝑐 𝛼, 𝛽, 𝑡 + 𝑧𝑣1

𝑐 𝛼, 𝛽, 𝑡  

+𝑧2𝑣2
𝑐 𝛼, 𝛽, 𝑡 + 𝑧3𝑣3

𝑐 𝛼, 𝛽, 𝑡  

𝑤𝑐 𝛼, 𝛽, 𝑧, 𝑡 = 𝑤0
𝑐 𝛼, 𝛽, 𝑡 + 𝑧𝑤1

𝑐 𝛼, 𝛽, 𝑡  

+𝑧2𝑤2
𝑐 𝛼, 𝛽, 𝑡 + 𝑧3𝑤3

𝑐 𝛼, 𝛽, 𝑡  

(6) 

 

In Eq. (6), 𝑢1
𝑐 , 𝑣1

𝑐  and 𝑤1
𝑐  functions are rotational, the 

parameters 𝑢2
𝑐  , 𝑢3

𝑐  , 𝑣2
𝑐  , 𝑣3

𝑐  , 𝑤2
𝑐  and 𝑤3

𝑐  are the higher-

order terms in the Taylor’s series expansion. 
 

2.4 Strain-displacement equations 
 

Considering DCSP (see Fig. 1) as an element, the mid 

surface vector 𝑈    at any point within the DCSP is 

introduced by the following relation 
 

𝑈   = 𝑢𝑖 𝛼 + 𝑣𝑖 𝛽 +  𝑤𝑖 𝑛𝑧  (7) 
 

Where 𝑖 𝛼  and 𝑖 𝛽  are the tangent unit vectors and 𝑖 𝑛𝑧  

is the normal unit vector to mid surface as shown in Fig. 1. 

The strain-displacement equations of a 3D DCSP in 

curvilinear coordinate with small displacements assumption 

and using Mainardi-Codazzi equations are (Qatu 2004) 
 

𝜕

𝜕𝛽
 
𝐴

𝑅𝛼
 =

1

𝑅𝛽

𝜕𝐴

𝜕𝛽
+ 

1

𝐵

𝜕

𝜕𝛼
 
𝐵2

𝑅𝛼𝛽
 , 

𝜕

𝜕𝛼
 
𝐵

𝑅𝛽
 =

1

𝑅𝛼

𝜕𝐵

𝜕𝛼
+ 

1

𝐴

𝜕

𝜕𝛽
 
𝐴2

𝑅𝛼𝛽
  

(8) 

 

Gauss characteristic equation is 
 

𝜕

𝜕𝛼
 

1

𝐴

𝜕𝐵

𝜕𝛼
 +

𝜕

𝜕𝛽
 

1

𝐵

𝜕𝐴

𝜕𝛽
 = −

𝐴𝐵

𝑅𝛼𝑅𝛽
+

𝐴𝐵

𝑅𝛼𝛽
2 (9) 

 

The strains are found to be (Qatu 2004) 
 

𝜀𝛼 =
1

 1 + 𝐶0
𝑧

𝑅𝛼
 
 

1

𝐴

𝜕𝑢

𝜕𝛼
+

𝑣

𝐴𝐵

𝜕𝐴

𝜕𝛽
+
𝑤

𝑅𝛼
  

𝜀𝛽 =
1

 1 + 𝐶1
𝑧

𝑅𝛽
 
 

1

𝐵

𝜕𝑣

𝜕𝛽
+

𝑢

𝐴𝐵

𝜕𝐵

𝜕𝛼
+
𝑤

𝑅𝛽
  

𝜀𝑧 =
𝜕𝑤

𝜕𝑧
 

𝛾𝛼𝛽 =
1

 1 + 𝐶0
𝑧

𝑅𝛼
 
 

1

𝐴

𝜕𝑣

𝜕𝛼
−

𝑢

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤

𝑅𝛼𝛽
  

(10) 

+
1

 1 + 𝐶1
𝑧

𝑅𝛽
 
 

1

𝐵

𝜕𝑢

𝜕𝛽
−

𝑣

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

𝑤

𝑅𝛼𝛽
  

𝛾𝛼𝑧 =
1

𝐴  1 + 𝐶0
𝑧

𝑅𝛼
 

𝜕𝑤

𝜕𝛼
 

+𝐴 1 + 𝐶0

𝑧

𝑅𝛼
 
𝜕

𝜕𝑧
 

𝑢

𝐴  1 + 𝐶0
𝑧

𝑅𝛼
 
  

−
𝑣

𝑅𝛼𝛽  1 + 𝐶0
𝑧

𝑅𝛼
 
 

𝛾𝛽𝑧 =
1

𝐵  1 + 𝐶1
𝑧

𝑅𝛽
 

𝜕𝑤

𝜕𝛽
 

+𝐵 1 + 𝐶1

𝑧

𝑅𝛽
 
𝜕

𝜕𝑧
 

𝑣

𝐵  1 + 𝐶1
𝑧

𝑅𝛽
 
  

−
𝑢

𝑅𝛼𝛽  1 + 𝐶1
𝑧

𝑅𝛽
 
 

(10) 

 

The above equations can be easily applied for flat plate, 

cylindrical, spherical shells, etc. The kinematic relations for 

the top and bottom face sheets and the core in terms of mid 

surface displacement are obtained by substituting displace-

ment field from Eqs. (5) and (6) into Eq. (10) yields the 

Eqs. (11a) and (11b) and Eqs. (12a) and (12b) for the face 

sheets and the core, respectively, as follows 
 

𝜀𝛼
𝑖 =

1

 1 + 𝐶0
𝑧 𝑖

𝑅𝛼
 
 𝜀0𝛼

𝑖 + 𝑧𝑖𝜅𝛼
𝑖   

𝜀𝛼𝛽
𝑖 =

1

 1 + 𝐶0
𝑧 𝑖

𝑅𝛼
 
 𝜀0𝛼𝛽

𝑖 + 𝑧𝑖𝜒𝛼𝛽
𝑖   

𝛾𝛼𝛽
𝑖 = 𝜀𝛼𝛽

𝑖 + 𝜀𝛽𝛼
𝑖  

𝛾𝛼𝑧
𝑖 =

𝛾𝑜𝛼𝑧
𝑖

 1 + 𝐶0
𝑧 𝑖

𝑅𝛼
 
 

𝜀𝛽𝛼
𝑖 =

1

 1 + 𝐶1
𝑧 𝑖

𝑅𝛽
 
 𝜀0𝛽𝛼

𝑖 + 𝑧𝑖𝜒𝛽𝛼
𝑖   

𝛾𝛽𝑧
𝑖 =

𝛾𝑜𝛽𝑧
𝑖

 1 + 𝐶1
𝑧 𝑖

𝑅𝛽
 
 

(11a) 

 

In the above equations 𝑖 stands for face sheets, 𝑖 = 𝑡 
means the top face sheets and 𝑖 = 𝑏 means the bottom face 

sheet where 
 

𝜀0𝛼
𝑖 =

1

𝐴

𝜕𝑢0
𝑖

𝜕𝛼
+
𝑣0
𝑖

𝐴𝐵

𝜕𝐴

𝜕𝛽
+
𝑤0
𝑖

𝑅𝛼
 

𝜀0𝛽
𝑖 =

1

𝐵

𝜕𝑣0
𝑖

𝜕𝛽
+
𝑢0
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝛼
+
𝑤0
𝑖

𝑅𝛽
 

(11b) 
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General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core... 

𝜀0𝛼𝛽
𝑖 =

1

𝐴

𝜕𝑣0
𝑖

𝜕𝛼
−
𝑢0
𝑖

𝐴𝐵

𝜕𝐴

𝜕𝛽
+

𝑤0
𝑖

𝑅𝛼𝛽
 

𝜀0𝛽𝛼
𝑖 =

1

𝐵

𝜕𝑢0
𝑖

𝜕𝛽
−
𝑣0
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝛼
+

𝑤0
𝑖

𝑅𝛼𝛽
 

𝛾0𝛼𝛽
𝑖 = 𝜀0𝛼𝛽

𝑖 + 𝜀0𝛽𝛼
𝑖  

𝛾0𝛼𝑧
𝑖 =

1

𝐴

𝜕𝑤0
𝑖

𝜕𝛼
−
𝑢0
𝑖

𝑅𝛼
−

𝑣0
𝑖

𝑅𝛼𝛽
+𝜃𝛼

𝑖  

𝛾0𝛽𝑧
𝑖 =

1

𝐵

𝜕𝑤0
𝑖

𝜕𝛽
−
𝑣0
𝑖

𝑅𝛽
−

𝑢0
𝑖

𝑅𝛼𝛽
+ 𝜃𝛽

𝑖  

𝜅𝛼
𝑖 =

1

𝐴

𝜕𝜃𝛼
𝑖

𝜕𝛼
+
𝜃𝛽
𝑖

𝐴𝐵

𝜕𝐴

𝜕𝛽
 

𝜅𝛽
𝑖 =

1

𝐵

𝜕𝜃𝛽
𝑖

𝜕𝛽
+
𝜃𝛼
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝛼
 

𝜒𝛼𝛽
𝑖 =

1

𝐴

𝜕𝜃𝛽
𝑖

𝜕𝛼
−
𝜃𝛼
𝑖

𝐴𝐵

𝜕𝐴

𝜕𝛽
 

𝜒𝛽𝛼
𝑖 =

1

𝐵

𝜕𝜃𝛼
𝑖

𝜕𝛽
−
𝜃𝛽
𝑖

𝐴𝐵

𝜕𝐵

𝜕𝛼
 

(11b) 

 

For the core 

 

𝜀𝛼
𝑐 =

1

1 + 𝑐𝑜
𝑧𝑐

𝑅𝛼

 𝜀0𝛼
𝑐 + 𝑧𝑐𝜅𝛼

𝑐 + 𝑧𝑐2𝜀0𝛼
∗𝑐 + 𝑧𝑐3𝜅𝛼

∗𝑐  

𝜀𝛽
𝑐 =

1

1 + 𝑐1
𝑧𝑐

𝑅𝛽

 𝜀0𝛽
𝑐 + 𝑧𝑐𝜅𝛽

𝑐 + 𝑧𝑐2𝜀0𝛽
∗𝑐 + 𝑧𝑐3𝜅𝛽

∗𝑐  

𝜀𝑧
𝑐 = 𝜀0𝑧

𝑐 + 𝑧𝑐𝜅𝑧
𝑐 + 𝑧𝑐2𝜀0𝛼

∗𝑐  

𝜀𝛼𝛽
𝑐 =

1

1 + 𝑐𝑜
𝑧𝑐

𝑅𝛼

 𝜀0𝛼𝛽
𝑐 + 𝑧𝑐𝜒𝛼𝛽

𝑐 + 𝑧𝑐2𝜀0𝛼𝛽
∗𝑐 + 𝑧𝑐3𝜒𝛼𝛽

∗𝑐   

𝜀𝛽𝛼
𝑐 =

1

1 + 𝑐1
𝑧𝑐

𝑅𝛽

 𝜀0𝛽𝛼
𝑐 + 𝑧𝑐𝜒𝛽𝛼

𝑐 + 𝑧𝑐2𝜀0𝛽𝛼
∗𝑐 + 𝑧𝑐3𝜒𝛽𝛼

∗𝑐   

𝛾𝛼𝑧
𝑐 =

1

1 + 𝑐𝑜
𝑧𝑐

𝑅𝛼

 𝜀0𝛼𝑧
𝑐 + 𝑧𝑐𝜒𝛼𝑧

𝑐 + 𝑧𝑐2𝜀0𝛼𝑧
∗𝑐 + 𝑧𝑐3𝜒𝛼𝑧

∗𝑐   

+ 𝜀0𝑧𝛼
𝑐 + 𝑧𝑐𝜒𝑧𝛼

𝑐 + 𝑧𝑐2𝜀0𝑧𝛼
∗𝑐   

𝛾𝛽𝑧
𝑐 =

1

1 + 𝑐1
𝑧𝑐

𝑅𝛽

 𝜀0𝛽𝑧
𝑐 + 𝑧𝑐𝜒𝛽𝑧

𝑐 + 𝑧𝑐2𝜀0𝛽𝑧
∗𝑐 + 𝑧𝑐3𝜒𝛽𝑧

∗𝑐   

+ 𝜀0𝑧𝛽
𝑐 + 𝑧𝑐𝜒𝑧𝛽

𝑐 + 𝑧𝑐2𝜀0𝑧𝛽
∗𝑐   

(12a) 

 

where 

 

𝜀0𝛼
𝑐 =

1

𝐴
𝑢0,𝛼
𝑐  

+
𝑣0
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤0
𝑐

𝑅𝛼
 

𝜅𝛼
𝑐 =

1

𝐴
𝑢1,𝛼
𝑐  

𝜀0𝛽
𝑐 =

1

𝐵
𝑣0,𝛽
𝑐  

+
𝑢0
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤0
𝑐

𝑅𝛽
 

𝜅𝛽
𝑐 =

1

𝐵
𝑣1,𝛽
𝑐  

𝜀0𝑧
𝑐 = 𝑤1

𝑐  

𝜅𝑧
𝑐 = 2𝑤2

𝑐  

 

(12b) 

+
𝑣1
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤1
𝑐

𝑅𝛼
 

𝜀0𝛼
∗𝑐 =

1

𝐴
𝑢2,𝛼
𝑐  

+
𝑣2
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤2
𝑐

𝑅𝛼
 

𝜅𝛼
∗𝑐 =

1

𝐴
𝑢3,𝛼
𝑐  

+
𝑣3
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤3
𝑐

𝑅𝛼
 

+
𝑢1
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤1
𝑐

𝑅𝛽
 

𝜀0𝛽
∗𝑐 =

1

𝐵
𝑣2,𝛽
𝑐  

+
𝑢2
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤2
𝑐

𝑅𝛽
 

𝜅𝛽
∗𝑐 =

1

𝐵
𝑣3,𝛽
𝑐  

+
𝑢3
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤3
𝑐

𝑅𝛽
 

𝜀0𝑧
∗𝑐 = 3𝑤3

𝑐  

𝜀0𝛼𝛽
𝑐 =

1

𝐴
𝑣0,𝛼
𝑐  

−
𝑢0
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤0
𝑐

𝑅𝛼𝛽
 

𝜒𝛼𝛽
𝑐 =

1

𝐴
𝑣1,𝛼
𝑐  

−
𝑢1
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤1
𝑐

𝑅𝛼𝛽
 

𝜀0𝛼𝛽
∗𝑐 =

1

𝐴
𝑣2,𝛼
𝑐  

−
𝑢2
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤2
𝑐

𝑅𝛼𝛽
 

𝜒𝛼𝛽
∗𝑐 =

1

𝐴
𝑣3,𝛼
𝑐  

−
𝑢3
𝑐

𝐴𝐵
𝐴,𝛽 +

𝑤3
𝑐

𝑅𝛼𝛽
 

𝜀0𝛽𝛼
𝑐 =

1

𝐵
𝑢0,𝛽
𝑐  

−
𝑣0
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤0
𝑐

𝑅𝛽
 

𝜒𝛽𝛼
𝑐 =

1

𝐵
𝑢1,𝛽
𝑐  

−
𝑣1
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤1
𝑐

𝑅𝛽
 

𝜀0𝛽𝛼
∗𝑐 =

1

𝐵
𝑢2,𝛽
𝑐  

−
𝑣2
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤2
𝑐

𝑅𝛽
 

𝜒𝛽𝛼
∗𝑐 =

1

𝐵
𝑢3,𝛽
𝑐  

−
𝑣3
𝑐

𝐴𝐵
𝐵,𝛼 +

𝑤3
𝑐

𝑅𝛽
 

𝜀0𝛼𝑧
𝑐 =

1

𝐴
𝑤0,𝛼
𝑐  

−
𝑢0
𝑐

𝑅𝛼
−

𝑣0
𝑐

𝑅𝛼𝛽
 

𝜒𝛼𝑧
𝑐 =

1

𝐴
𝑤1,𝛼
𝑐  

−
𝑢1
𝑐

𝑅𝛼
−

𝑣1
𝑐

𝑅𝛼𝛽
 

𝜀0𝛼𝑧
∗𝑐 =

1

𝐴
𝑤2,𝛼
𝑐  

−
𝑢2
𝑐

𝑅𝛼
−

𝑣2
𝑐

𝑅𝛼𝛽
 

𝜒𝛼𝑧
∗𝑐 =

1

𝐴
𝑤3,𝛼
𝑐  

−
𝑢3
𝑐

𝑅𝛼
−

𝑣3
𝑐

𝑅𝛼𝛽
 

𝜀0𝑧𝛼
𝑐 = 𝑢1

𝑐  

𝜒𝑧𝛼
𝑐 = 2𝑢2

𝑐  

𝜀0𝑧𝛼
∗𝑐 = 3𝑢3

𝑐  

𝜀0𝛽𝑧
𝑐 =

1

𝐵
𝑤0,𝛽
𝑐  

−
𝑣0
𝑐

𝑅𝛽
−

𝑢0
𝑐

𝑅𝛼𝛽
 

𝜒𝛽𝑧
𝑐 =

1

𝐵
𝑤1,𝛽
𝑐  

−
𝑣1
𝑐

𝑅𝛽
−

𝑢1
𝑐

𝑅𝛼𝛽
 

𝜀0𝛽𝑧
∗𝑐 =

1

𝐵
𝑤2,𝛽
𝑐  

−
𝑣2
𝑐

𝑅𝛽
−

𝑢2
𝑐

𝑅𝛼𝛽
 

𝜒𝛽𝑧
∗𝑐 =

1

𝐵
𝑤3,𝛽
𝑐  

−
𝑣3
𝑐

𝑅𝛽
−

𝑢3
𝑐

𝑅𝛼𝛽
 

𝜀0𝛽𝑧
𝑐 = 𝑣1

𝑐  

𝜒𝛽𝑧
𝑐 = 2𝑣2

𝑐  

𝜀0𝛽𝑧
∗𝑐 = 3𝑣3

𝑐  

 

(12b) 

 

2.5 The continuity conditions of the interface 
displacements 

 

Reminding that there is no slipping between the face 

sheets and the core, the following relations can be written 

(Kheirikhah et al. 2012) 
 

 

 𝑢𝑐  
𝑧=

𝑡𝑐

2

=  𝑢𝑡 
𝑧=

𝑡𝑐

2

 𝑢𝑐  
𝑧=−

𝑡𝑐

2

=  𝑢𝑏  
𝑧=−

𝑡𝑐

2

 ,  

 𝑣𝑐  
𝑧=

𝑡𝑐

2

=  𝑣𝑡 
𝑧=

𝑡𝑐

2

 𝑣𝑐  
𝑧=−

𝑡𝑐

2

=  𝑣𝑏  
𝑧=−

𝑡𝑐

2

  

,  

 𝑤𝑐  
𝑧=

𝑡𝑐

2

=  𝑤𝑡 
𝑧=

𝑡𝑐

2

 𝑤𝑐  
𝑧=−

𝑡𝑐

2

=  𝑤𝑏  
𝑧=−

𝑡𝑐

2

  

(13) 
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By substituting Eqs. (5) and (6) into Eq. (13), 𝑢0
𝑐 , 𝑢1

𝑐 ,  
𝑣0
𝑐 , 𝑣1

𝑐 , 𝑤0
𝑐 , 𝑤1

𝑐are obtained as follows 
 

𝑢0
𝑐 =

𝑢0
𝑡 + 𝑢0

𝑏

2
+

1

4
 𝑡𝑏𝜃𝛼

𝑏 − 𝑡𝑡𝜃𝛼
𝑡  −  

𝑡𝑐

2
 

2

𝑢2
𝑐  

𝑢1
𝑐 =

𝑢0
𝑡 − 𝑢0

𝑏

𝑡𝑐
−

1

2𝑡𝑐
 𝑡𝑏𝜃𝛼

𝑏 + 𝑡𝑡𝜃𝛼
𝑡  −  

𝑡𝑐

2
 

2

𝑢3
𝑐  

𝑣0
𝑐 =

𝑣0
𝑡 + 𝑣0

𝑏

2
+

1

4
 𝑡𝑏𝜃𝛽

𝑏 − 𝑡𝑡𝜃𝛽
𝑡  −  

𝑡𝑐

2
 

2

𝑣2
𝑐  

𝑣1
𝑐 =

𝑣0
𝑡 − 𝑣0

𝑏

𝑡𝑐
−

1

2𝑡𝑐
 𝑡𝑏𝜃𝛽

𝑏 + 𝑡𝑡𝜃𝛽
𝑡 −  

𝑡𝑐

2
 

2

𝑣3
𝑐  

𝑤0
𝑐 =

𝑤𝑡 + 𝑤𝑏

2
−  

𝑡𝑐

2
 

2

𝑤2
𝑐 , 

 𝑤1
𝑐 =

𝑤𝑡 −𝑤𝑏

𝑡𝑐
−  

𝑡𝑐

2
 

2

𝑤3
𝑐  

(14) 

 

2.6 Constitutive equations 
 

Since the face sheets and the core are assumed to have 

linear elastic behavior, the stress-strain relation according to 

the Hook’s law is 
 

 𝜍 =  𝑄  𝜀  (15) 
 

If the principle axes (1, 2, 3) (local axes) coincides the 

geometric axes  𝛼, 𝛽, 𝑧  (global axes) (i.e., Fig. 1), the 

constitutive equation for a fiber–reinforced composite 

lamina can be written as follows 
 

 
 
 

 
 
𝜍1

𝜍2

𝜍3

𝜏12

𝜏13

𝜏23 
 
 

 
 
𝑖

=

 
 
 
 
 
 
𝐶11 𝐶21 𝐶13 0 0 0
𝐶12 𝐶22 𝐶23 0 0 0
𝐶13 𝐶23 𝐶33 0 0 0
0 0 0 𝐶44 0 0
0 0 0 0 𝐶55 0
0 0 0 0 0 𝐶66 

 
 
 
 
 
𝑖

 
 
 

 
 
𝜀1

𝜀2

𝜀3

𝛾12

𝛾13

𝛾23 
 
 

 
 
𝑖

 (16) 

 

where the [Q] matrix refers to the elastic stiffness in the 

principle material axes (1, 2, 3) and Cij’s elements are 

defined as follows (Garg et al. 2006) 
 

𝐶11 =
𝐸11 1 − 𝜈23𝜈32 

𝜈∗
,     𝐶12 =

𝐸11 𝜈21 − 𝜈31𝜈23 

𝜈∗
, 

𝐶13 =
𝐸11 𝜈31 + 𝜈21𝜈32 

𝜈∗
 

𝐶22 =
𝐸22 1 − 𝜈13𝜈31 

𝜈∗
,     𝐶23 =

𝐸22 𝜈32 + 𝜈12𝜈31 

𝜈∗
, 

𝐶33 =
𝐸33 1 − 𝜈12𝜈21 

𝜈∗
 

𝐶44 = 𝐺12 , 𝐶55 = 𝐺13 , 𝐶66 = 𝐺23  

𝜈∗ = 1 − 𝜈12𝜈21 − 𝜈23𝜈32 − 𝜈13𝜈31 − 2𝜈32𝜈13𝜈21 

(17) 

 

In general, the principle axes of materials may not 

necessarily coincide the geometric axes. Since the loading 

is defined in geometric directions, it is required to consider 

the relationship between the two axes. The stress-strain 

relation in coordinate axes  𝛼, 𝛽, 𝑧  can be written as 

 

Fig. 2 Lamina reference axes,  𝛼, 𝛽, 𝑧  (Garg et al. 2006) 

 

 

 𝜍𝑖𝑗  =  𝑄   𝜀𝑖𝑗   (18) 
 

Where (Reddy 2003) 
 

 𝑄  =  𝑇 −1 𝑄  𝑇 −𝑇 (19) 
 

 𝑄   refers to reduced elastic stiffness matrix of the 

orthotropic material. It corresponds with 𝐾𝑡ℎ lamina and 

is expressed in terms of the orientation 𝜃 and material 

properties. Superscript 𝑇  denotes transformation matrix 

[𝑇] and is defined as 
 

 𝑇 =   
𝑐2 𝑠2 2𝑐𝑠
𝑠2 𝑐2 −2𝑐𝑠
−𝑐𝑠 𝑐𝑠 𝑐2 − 𝑠2

  (20) 

 

Where 𝑐 = cos 𝜃 , 𝑠 = sin 𝜃 and are measured counter-

clockwise from the 1-axis (Fig. 2). 
 

2.7 Stress (Force and Moment) Resultant 
 

By substituting Eqs. (11a), (11b), (12a) and (12b) in 

constitutive Eq. (18) and integrating through the thickness, 

Eq. (18) can be expressed by vectors of mid-surface strains 

𝜀  and stress resultant 𝜍  as follows 
 

 𝜍  =  𝐷  𝜀   (21a) 
 

in which 
 

 𝐷 =   
 𝐷𝑓

𝑖  
𝑎× 𝑎

0

0 𝑘𝑜 𝐷𝑠
𝑖 𝑏× 𝑏

 , 

 𝐷𝑓
𝑖  =  

 𝐴 𝑐× 𝑐
𝑖  𝐵 𝑐× 𝑑

𝑖

 𝐸 𝑑× 𝑐
𝑖  𝐷 𝑑× 𝑑

𝑖
  

(21b) 

 

Dimensions of the matrix 𝐷 for the core are: 𝑎 = 19, 

𝑏 = 14, 𝑐 = 10,𝑑 = 9, and for the face sheets are: 𝑎 =
14, 𝑏 = 6, 𝑐 = 4,𝑑 = 4. Also, the elements of [𝐷] for the 

core and the face sheets are given in Appendix A. 

Where 𝑘𝑜  parameter is called as shear correction factor 

of FSDT which is equal to 
5

6
 (Reissner 1953). Components 

of 𝜀  and 𝜍  for the face sheets and the core are defined as 

(Garg et al. 2006) 
 

 𝜀 𝑐 = {𝜀0𝛼
𝑐 , 𝜀0𝛽

𝑐 , 𝜀0𝛽𝛼
𝑐 , 𝜀0𝛼𝛽

𝑐 , 𝜀0𝛼
∗𝑐 , 𝜀0𝛽

∗𝑐 , 𝜀0𝛽𝛼
∗𝑐 , 𝜀0𝛼𝛽

∗𝑐 , 𝜀0𝑧
𝑐 , 

𝜀0𝑧
∗𝑐  , 𝜅𝛼

𝑐 , 𝜅𝛽
𝑐 , 𝜒𝛽𝛼

𝑐 , 𝜒𝛼𝛽
𝑐 , 𝜅𝛼

∗𝑐 , 𝜅𝛽
∗𝑐 , 𝜒𝛽𝛼

∗𝑐 , 𝜒𝛼𝛽
∗𝑐 , 

𝜅𝑧
𝑐 , 𝜀0𝑧𝛼

𝑐 , 𝜀0𝛼𝑧
𝑐 , 𝜀0𝑧𝛽

𝑐 , 𝜀0𝛽𝑧
𝑐 , 𝜀0𝑧𝛼

∗𝑐 , 

(22a) 
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𝜀0𝑧𝛽
∗𝑐 , 𝜀0𝛼𝑧

∗𝑐 , 𝜀0𝛽𝑧
∗𝑐 , 𝜒𝑧𝛼

𝑐 , 𝜒𝛼𝑧
𝑐 , 𝜒𝑧𝛽

𝑐 , , 𝜒𝛽𝑧
𝑐 , 𝜒𝛼𝑧

∗𝑐 , 𝜒𝛽𝑧
∗𝑐 }𝑇 (22a) 

 

 𝜍 𝑐 = {𝑁𝛼
𝑐  , 𝑁𝛽

𝑐 , 𝑁𝛽𝛼
𝑐 , 𝑁𝛼𝛽

𝑐 , 𝑁𝛼
∗𝑐 , 𝑁𝛽

∗𝑐 , 𝑁𝛽𝛼
∗𝑐 , 𝑁𝛼𝛽

∗𝑐 , 𝑁𝑧
𝑐 , 𝑁𝑧

∗𝑐 , 

𝑀𝛼
𝑐 , 𝑀𝛽

𝑐 , 𝑀𝛽𝛼
𝑐 , 𝑀𝛼𝛽

𝑐 , 𝑀𝛼
∗𝑐 , 𝑀𝛽

∗𝑐 , 𝑀𝛽𝛼
∗𝑐 , 𝑀𝛼𝛽

∗𝑐 , 𝑀𝑧
𝑐 , 

𝑄𝑧𝛼
𝑐  , 𝑄𝛼𝑧

𝑐 , 𝑄𝑧𝛽
𝑐 , 𝑄𝛽𝑧

𝑐 , 𝑄𝑧𝛼
∗𝑐 , 𝑄𝑧𝛽

∗𝑐 , 𝑄𝛼𝑧
∗𝑐 , 𝑄𝛽𝑧

∗𝑐 , 

𝑆𝑧𝛼
𝑐 , 𝑆𝛼𝑧

𝑐 , 𝑆𝑧𝛽
𝑐 , 𝑆𝛽𝑧

𝑐 , 𝑆𝛼𝑧
∗𝑐 , 𝑆𝛽𝑧

∗𝑐}𝑇 

(22b) 

 

 𝜀 𝑖 = {𝜀0𝛼
𝑖 , 𝜀0𝛽

𝑖 , 𝜀0𝛽𝛼
𝑖 , 𝜀0𝛼𝛽

𝑖 , 𝜅𝛼
𝑖 , 𝜅𝛽

𝑖 , 𝜒𝛽𝛼
𝑖 , 𝜒𝛼𝛽

𝑖 , 

𝜀0𝑧𝛼
𝑖 , 𝜀0𝛼𝑧

𝑖 , 𝜀0𝑧𝛽
𝑖 , 𝜀0𝛽𝑧

𝑖 , 𝜒𝛼𝑧
𝑖 , 𝜒𝑧𝛽

𝑖 }𝑇    that   𝑖 = 𝑡, 𝑏 
(22c) 

 

 𝜍 𝑖 = {𝑁𝛼
𝑖  , 𝑁𝛽

𝑖 , 𝑁𝛽𝛼
𝑖 , 𝑁𝛼𝛽

𝑖 , 𝑀𝛼
𝑖 , 𝑀𝛽

𝑖 , 𝑀𝛽𝛼
𝑖 , 𝑀𝛼𝛽

𝑖 ,  

𝑄𝑧𝛼
𝑖 , 𝑄𝛼𝑧

𝑖 , 𝑄𝑧𝛽
𝑖 , 𝑄𝛽𝑧

𝑖 , 𝑆𝛼𝑧
𝑖 , 𝑆𝑧𝛽

𝑖 }𝑇    that   𝑖 = 𝑡, 𝑏 
(22d) 

 

Superscript 𝑇 denotes here as transpose. The components 

of stress resultant vectors  𝜍   are forces and moments per 

unit of length which act along the lines of constant 𝛼 or 𝛽 

in the face sheets and the core of DCSP (Garg et al. 2006) 
 

 
 
 
 
 
 
𝑁𝛼
𝑐

𝑁𝛽
𝑐

𝑁𝑧
𝑐

𝑁𝛼𝛽
𝑐

𝑁𝛽𝛼
𝑐

𝑁𝛼
∗𝑐

𝑁𝛽
∗𝑐

𝑁𝑧
𝑐∗

𝑁𝛼𝛽
∗𝑐

𝑁𝛽𝛼
∗𝑐

𝑀𝛼
𝑐

𝑀𝛽
𝑐

𝑀𝑧
𝑐

𝑀𝛼𝛽
𝑐

𝑀𝛽𝛼
𝑐

𝑀𝛼
∗𝑐

𝑀𝛽
∗𝑐

0
𝑀𝛼𝛽

∗𝑐

𝑀𝛽𝛼
∗𝑐
 
 
 
 
 
 

 

=  

 
 
 
 
 
𝑘2
𝑐

0
0
0
0

0
𝑘1
𝑐

0
0
0

0
0

𝑘1
𝑐𝑘2

𝑐

0
0

0
0
0
𝑘2
𝑐

0

0
0
0
0
𝑘1
𝑐 
 
 
 
 

 
 
 

 
 
𝜍𝛼
𝜍𝛽
𝜍𝑧
𝜏𝛼𝛽
𝜏𝛽𝛼 

 
 

 
 
𝑐

 1, 𝑧2, 𝑧, 𝑧3 𝑑𝑧
 

𝑧

 

(23a) 

 

 
 
 
 
 
𝑄𝛽𝑧
𝑐

𝑄𝑧𝛽
𝑐

𝑄𝛼𝑧
𝑐

𝑄𝑧𝛼
𝑐

𝑄𝛽𝑧
∗𝑐

𝑄𝑧𝛽
∗𝑐

𝑄𝛼𝑧
∗𝑐

𝑄𝑧𝛼
∗𝑐

𝑆𝛽𝑧
𝑐

𝑆𝑧𝛽
𝑐

𝑆𝛼𝑧
𝑐

𝑆𝑧𝛼
𝑐

𝑆𝛽𝑧
∗𝑐

0
𝑆𝛼𝑧
∗𝑐

0  
 
 
 
 

 

=   

𝑘1
𝑐

0
0
0

0
𝑘1
𝑐𝑘2

𝑐

0
0

0
0
𝑘2
𝑐

0

0
0
0

𝑘1
𝑐𝑘2

𝑐

  

𝜏𝛽𝑧
𝜏𝑧𝛽
𝜏𝛼𝑧
𝜏𝑧𝛼

 

𝑐

 1, 𝑧2, 𝑧, 𝑧3 𝑑𝑧
 

𝑧

 

(23b) 

 

𝑘1
𝑐 =  1 +

𝑧

𝑅𝛼
𝑐
 ,      𝑘2

𝑐 =  1 +
𝑧

𝑅𝛽
𝑐  (23c) 

 

 
 
 
 
 
𝑁𝛼
𝑖

𝑁𝛽
𝑖

𝑁𝛼𝛽
𝑖

𝑁𝛽𝛼
𝑖

𝑀𝛼
𝑖

𝑀𝛽
𝑖

𝑀𝛼𝛽
𝑖

𝑀𝛽𝛼
𝑖
 
 
 
 
 

=   

𝑘2
𝑖

0
0
0

0
𝑘1
𝑖

0
0

0
0
𝑘2
𝑖

0

0
0
0
𝑘1
𝑖

  

𝜍𝛼
𝜍𝛽
𝜏𝛼𝛽
𝜏𝛽𝛼

 

𝑖

 1, 𝑧𝑖 𝑑𝑧𝑖
 

𝑧 𝑖
 (24a) 

 

 
 
 
 
 
𝑄𝛽𝑧
𝑖

𝑄𝑧𝛽
𝑖

𝑄𝛼𝑧
𝑖

𝑄𝑧𝛼
𝑖

𝑆𝛽𝑧
𝑖

0
𝑆𝛼𝑧
𝑖

0  
 
 
 
 

=   

𝑘1
𝑖

0
0
0

0
𝑘1
𝑖𝑘2

𝑖

0
0

0
0
𝑘2
𝑖

0

0
0
0

𝑘1
𝑖𝑘2

𝑖

  

𝜏𝛽𝑧
𝜏𝑧𝛽
𝜏𝛼𝑧
𝜏𝑧𝛼

 

𝑖

 1, 𝑧𝑖 𝑑𝑧𝑖
 

𝑧 𝑖
 (24b) 

 

𝑘1
𝑖 =  1 +

𝑧𝑖

𝑅𝛼
𝑖
 ,   𝑘2

𝑖 =  1 +
𝑧𝑖

𝑅𝛽
𝑖
 ,   that   𝑖 =  𝑡 , 𝑏 (24c) 

It is worth mentioning that Eqs. (23a) and (24a) clearly 

show that the symmetric property of stress tensor 

𝜏𝛼𝛽 = 𝜏𝛽𝛼  doesn’t imply the symmetry of stress resultants 

𝑁𝛼𝛽 ≠ 𝑁𝛽𝛼 , 𝑀𝛼𝛽 ≠ 𝑀𝛽𝛼 , because in general 𝑅𝛼 ≠ 𝑅𝛽 , 

except for structures such as plate and sphere in which 

𝑅𝛼 = 𝑅𝛽  and a thin panel or shell of any shape. 
 

2.8 Equations of motion 
 

Governing equations of motion for the free vibration 

analysis of DCSP and the boundary conditions are obtained 

using Hamilton’s principle (Reddy 2003) 
 

𝛿   𝐿  𝑑𝑡

𝑡2

𝑡1

= 𝛿   𝐸 –  𝑈 + 𝑊  𝑑𝑡 =  0

𝑡2

𝑡1

 (25) 

 

Where δ is the first variation operator, E is the kinetic 

energy, U and W denote the total strain energy due to the 

deformation and the potential of the external loads, 

respectively, and t is the time coordinate. For free vibration 

analysis, there is no damping and external forces on the 

system. Therefore, Hamilton’s principle in Eq. (25) can be 

written as follows 
 

𝛿   𝐸 –  𝑈 𝑑𝑡 =  0 
𝑡2

𝑡1

 (26) 

 

The kinetic energy for DCSP is given by (Reddy 2003) 
 

𝐸 =
1

2
  𝜌𝑖(𝑢 𝑖

2
+ 𝑣 𝑖

2
+ 𝑤 𝑖

2
)𝑑𝑉𝑖

 

𝑉 𝑖

𝑡,𝑏,𝑐

𝑖

 (27) 

 

Where 𝜌𝑖(𝑖 = 𝑡, 𝑏, 𝑐) is the mass per unit volume of 

the top and the bottom face sheets and the core respectively. 

𝑢 𝑖 ,  𝑣 𝑖 , 𝑤 𝑖(𝑖 = 𝑡, 𝑏, 𝑐) are the velocities in the α, β and z 

direction respectively, ―.‖ denotes the first time derivative, 

𝑉𝑖(𝑖 = 𝑡, 𝑏, 𝑐) is the volume of the top and the bottom face 

sheets and the core, respectively and 𝑑𝑉𝑖  is the volume of 

an infinitesimal element (i.e., Eq. (4)). The first variation of 

the kinetic energy and integration by parts with respect to 

the time coordinate for DCSP are given by Eqs. (29) and 

(30), respectively as follows 
 

𝛿𝐸 =   𝜌𝑖(𝑢 𝑖𝛿𝑢 𝑖 + 𝑣 𝑖𝛿𝑣 𝑖 + 𝑤 𝑖𝛿𝑤 𝑖)𝑑𝑉𝑖

 

𝑉 𝑖

𝑡,𝑏,𝑐

𝑖

 (28) 

 

  𝛿𝐸𝑑𝑡
𝑡

0

= −    [𝜌𝑖(𝑢 𝑖𝛿𝑢𝑖 + 𝑣 𝑖𝛿𝑣𝑖
 

𝑉 𝑖

𝑡

0

 

𝑡,𝑏,𝑐

𝑖

+ 𝑤 𝑖𝛿𝑤𝑖) 

   𝑑𝑉𝑖]𝑑𝑡 +  𝜌𝑖(𝑢 𝑖𝛿𝑢 𝑖 + 𝑣 𝑖𝛿𝑣 𝑖
 

𝑣

+ 𝑤 𝑖𝛿𝑤 𝑖) 𝑑𝑉𝑖 
𝑡=0

𝑡
  

(29) 

 

Where 𝑢 𝑖 , 𝑣 𝑖 , 𝑤 𝑖(𝑖 = 𝑡, 𝑏, 𝑐)  are the accelerations in 

the α, β and z direction, respectively. Also, in Eq. (29), the 

second integral according to the initial assuming in Hamil-

ton’s principle is equal to zero, then Eq. (30) can be 
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rewritten as follows 
 

 𝛿𝐸𝑑𝑡
𝑡

0

 

= −     𝜌𝑖(𝑢 𝑖𝛿𝑢𝑖 + 𝑣 𝑖𝛿𝑣𝑖 + 𝑤 𝑖𝛿𝑤𝑖)𝑑𝑉𝑖 
 

𝑉 𝑖

𝑡

0

𝑑𝑡 

𝑡,𝑏,𝑐

𝑖

 

(30) 

 

By substituting the displacement field in Eqs. (5) and (6) 

into Eq. (30) and integration by parts with respect to the 

time coordinate, the variation of the kinetic energy is 

obtained as 
 

 𝛿𝐸𝑑𝑡
𝑡

0

=   𝛿𝐸𝑖𝑑𝑡
𝑡

0

𝑡,𝑏

𝑖

+  𝛿𝐸𝑐𝑑𝑡
𝑡

0

 

=   −  [
 

𝐴

𝑡

0

 𝐼0
𝑖𝑢 0

𝑖 + 𝐼1
𝑖𝜃 𝛼

𝑖  𝛿𝑢0
𝑖 +  𝐼1

𝑖𝑢 0
𝑖 + 𝐼2

𝑖𝜃 𝛼
𝑖  𝛿𝜃𝛼

𝑖  

𝑡,𝑏

𝑖

 

+ 𝐼0
𝑖𝑣 0

𝑖 + 𝐼1
𝑖𝜃 𝛽

𝑖  𝛿𝑣0
𝑖 +  𝐼1

𝑖𝑢 0
𝑖 + 𝐼2

𝑖𝜃 𝛽
𝑖  𝛿𝜃𝛽

𝑖  

 + (𝐼0
𝑖𝑤 𝑖)𝛿𝑤𝑖](𝐴𝑖𝐵𝑖𝑑𝛼𝑑𝛽)𝑑𝑡  

−  [ 𝐼0
𝑐𝑢 0

𝑐 + 𝐼1
𝑐𝑢 1

𝑐 + 𝐼2
𝑐𝑢 2

𝑐 + 𝐼3
𝑐𝑢 3

𝑐 𝛿𝑢0
𝑐

 

𝐴

𝑡

0

 

+ 𝐼1
𝑐𝑢 0

𝑐 + 𝐼2
𝑐𝑢 1

𝑐 + 𝐼3
𝑐𝑢 2

𝑐 + 𝐼4
𝑐𝑢 3

𝑐 𝛿𝑢1
𝑐  

+ 𝐼2
𝑐𝑢 0

𝑐 + 𝐼3
𝑐𝑢 1

𝑐 + 𝐼4
𝑐𝑢 2

𝑐 + 𝐼5
𝑐𝑢 3

𝑐 𝛿𝑢2
𝑐  

+ 𝐼3
𝑐𝑢 0

𝑐 + 𝐼4
𝑐𝑢 1

𝑐 + 𝐼5
𝑐𝑢 2

𝑐 + 𝐼6
𝑐𝑢 3

𝑐 𝛿𝑢3
𝑐  

+ 𝐼0
𝑐𝑣 0

𝑐 + 𝐼1
𝑐𝑣 1

𝑐 + 𝐼2
𝑐𝑣 2

𝑐 + 𝐼3
𝑐𝑣 3

𝑐 𝛿𝑣0
𝑐  

+ 𝐼1
𝑐𝑣 0

𝑐 + 𝐼2
𝑐𝑣 1

𝑐 + 𝐼3
𝑐𝑣 2

𝑐 + 𝐼4
𝑐𝑣 3

𝑐 𝛿𝑣1
𝑐  

+ 𝐼2
𝑐𝑣 0

𝑐 + 𝐼3
𝑐𝑣 1

𝑐 + 𝐼4
𝑐𝑣 2

𝑐 + 𝐼5
𝑐𝑣 3

𝑐 𝛿𝑣2
𝑐  

+ 𝐼3
𝑐𝑣 0

𝑐 + 𝐼4
𝑐𝑣 1

𝑐 + 𝐼5
𝑐𝑣 2

𝑐 + 𝐼6
𝑐𝑣 3

𝑐 𝛿𝑣3
𝑐  

+ 𝐼0
𝑐𝑤 0

𝑐 + 𝐼1
𝑐𝑤 1

𝑐 + 𝐼2
𝑐𝑤 2

𝑐 + 𝐼3
𝑐𝑤 3

𝑐 𝛿𝑤0
𝑐  

+ 𝐼1
𝑐𝑤 0

𝑐 + 𝐼2
𝑐𝑤 1

𝑐 + 𝐼3
𝑐𝑤 2

𝑐 + 𝐼4
𝑐𝑤 3

𝑐 𝛿𝑤1
𝑐  

+ 𝐼2
𝑐𝑤 0

𝑐 + 𝐼3
𝑐𝑤 1

𝑐 + 𝐼4
𝑐𝑤 2

𝑐 + 𝐼5
𝑐𝑤 3

𝑐 𝛿𝑤2
𝑐  

+(𝐼3
𝑐𝑤 0

𝑐 + 𝐼4
𝑐𝑤 1

𝑐 + 𝐼5
𝑐𝑤 2

𝑐 + 𝐼6
𝑐𝑤 3

𝑐)𝛿𝑤3
𝑐] 

(𝐴𝑐𝐵𝑐𝑑𝛼𝑑𝛽)𝑑𝑡 

(31) 

 

that 
 

𝐼𝑛
𝑖 =  𝜌𝑖

 

𝑧

 1 +
𝑧

𝑅𝛼
𝑖
  1 +

𝑧

𝑅𝛽
𝑖
  𝑧𝑛 𝑑𝑧, 

  𝑖 = 𝑡, 𝑏, 𝑐    and    𝑛 = 1   to   6 

(32) 

 

The first variation of the strain energy for DCSP during 

the elastic deformation is 
 

 𝛿 𝑈𝑐
𝑡2

𝑡1

𝑑𝑡 +   𝛿𝑈𝑖𝑑𝑡

𝑡2

𝑡1

𝑡,𝑏

𝑖

 

=    (ℎ𝛼𝜍𝛼
𝑐𝛿𝜀𝛼

𝑐 + ℎ𝛽𝜍𝛽
𝑐𝛿𝜀𝛽

𝑐 + 𝜍𝑧
𝑐𝛿𝜀𝑧

𝑐
 

𝐴

 

𝑧

𝑡

0

 

+ℎ𝛼𝛽 𝜏𝛼𝛽
𝑐 𝛿𝛾𝛼𝛽

𝑐 + 𝜏𝛼𝛽
𝑐 𝛿𝛾𝛼𝛽

𝑐 + 𝜏𝛽𝑧
𝑐 𝛿𝛾𝛽𝑧

𝑐 )𝑑𝐴𝑐  𝑑𝑧  𝑑𝑡 

(33) 

+     (𝜍𝛼
𝑖 𝛿𝜀𝛼

𝑖 + 𝜍𝛽
𝑖𝛿𝜀𝛽

𝑖 + 𝜏𝛼𝛽
𝑖 𝛿𝛾𝛼𝛽

𝑖

 

𝐴

 

𝑧 𝑖

𝑡

0

 

𝑡,𝑏

𝑖

 

+𝜏𝛼𝑧
𝑖 𝛿𝛾𝛼𝑧

𝑖 + 𝜏𝛽𝑧
𝑖 𝛿𝛾𝛽𝑧

𝑖 )𝑑𝐴𝑖  𝑑𝑧𝑖  𝑑𝑡 

(33) 

 

Noted that in the above relation, ℎ𝛼 = ℎ𝛽 = ℎ𝛼𝛽 = 0 

indicates the compressible core and ℎ𝛼 = ℎ𝛽 = ℎ𝛼𝛽 = 1 

presents the incompressible core. Eqs. (11), (12) and (4) are 

substituted into Eq. (33) and integration by parts is carried 

out with respect to α and β. For example variation of strain 

energy related to 𝛾𝛼𝛽
𝑖

 for the face sheet is 

 

   𝜏𝛼𝛽
𝑖 𝛿𝛾𝛼𝛽

𝑖  𝑑𝐴𝑖𝑑𝑧𝑖𝑑𝑡

 

𝑧 𝑖

 

𝐴𝑖

𝑡

0

 

=    𝜏𝛼𝛽
𝑖  

1

𝑘1
𝑖
 𝛿𝜀0𝛼𝛽

𝑖 + 𝑧𝑖𝛿χ𝛼𝛽
𝑖   

 

𝑧 𝑖

 

𝐴𝑖

𝑡

0

 

 +
1

𝑘1
𝑖
 𝛿𝜀0𝛽𝛼

𝑖 + 𝑧𝑖𝛿χ𝛽𝛼
𝑖   𝑑𝑧𝑖 𝐴𝑖𝐵𝑖𝑘1

𝑖𝑘2
𝑖  𝑑𝛼𝑑𝛽𝑑𝑡 

=    𝜏𝛼𝛽
𝑖  

1

𝑘1
𝑖
  

1

𝐴𝑖
𝛿  

𝜕𝑣0
𝑖

𝜕𝛼
 −

 𝐴,𝛽
𝑖  

𝐴𝑖𝐵𝑖
𝛿𝑢0

𝑖    

 

𝑧 𝑖

 

𝐴𝑖

𝑡

0

 

  +
1

𝑅𝛼𝛽
𝑖
𝛿𝑤0

𝑖 + 𝑧𝑖  
1

𝐴𝑖
𝛿  

𝜕𝜃𝛽
𝑖

𝜕𝛼
 −

 𝐴,𝛽
𝑖  

𝐴𝑖𝐵𝑖
𝛿𝜃𝛼

𝑖    

+
1

𝑘2
𝑖
  

1

𝐵𝑖
𝛿  

𝜕𝑢0
𝑖

𝜕𝛽
 −

 𝐵,𝛼
𝑖  

𝐴𝑖𝐵𝑖
𝛿𝑣0

𝑖 +
1

𝑅𝛼𝛽
𝑖
𝛿𝑤0

𝑖   

  +𝑧𝑖  
1

𝐵𝑖
𝛿  

𝜕𝜃𝛼
𝑖

𝜕𝛽
 −

 𝐵,𝛼
𝑖  

𝐴𝑖𝐵𝑖
𝛿𝜃𝛽

𝑖     

𝑑𝑧𝑖 𝐴𝑖𝐵𝑖𝑘1
𝑖𝑘2

𝑖  𝑑𝛼𝑑𝛽𝑑𝑡 

=  −    
𝜕

𝜕𝛼
 𝐵𝑖𝑁𝛼𝛽

𝑖   𝛿𝑣0
𝑖    

 

𝐴𝑖

 

𝑡

0

 

+ 𝑁𝛼𝛽
𝑖  𝐴,𝛽

𝑖    𝛿𝑢0
𝑖   −  

𝐴𝑖𝐵𝑖

𝑅𝛼𝛽
𝑖

𝑁𝛼𝛽
𝑖   𝛿𝑤0

𝑖   

+ 
𝜕

𝜕𝛼
 𝐵𝑖𝑀𝛼𝛽

𝑖   𝛿𝜃𝛽
𝑖    +  𝑀𝛼𝛽

𝑖  𝐴,𝛽
𝑖    𝛿𝜃𝛼

𝑖    

+ 
𝜕

𝜕𝛽
 𝐴𝑖𝑁𝛽𝛼

𝑖   𝛿𝑢0
𝑖  +  𝑁𝛽𝛼

𝑖  𝐵,𝛼
𝑖    𝛿𝑣0

𝑖    

 −  
𝐴𝑖𝐵𝑖

𝑅𝛼𝛽
𝑖

𝑁𝛽𝛼
𝑖   𝛿𝑤0

𝑖  +  
𝜕

𝜕𝛽
 𝐴𝑖𝑀𝛽𝛼

𝑖   𝛿𝜃𝛼
𝑖    

   +  𝑀𝛽𝛼
𝑖  𝐵,𝛼

𝑖    𝛿𝜃𝛽
𝑖     𝑑𝛼𝑑𝛽𝑑𝑡 

+     𝐵𝑖𝑁𝛼𝛽
𝑖   𝛿𝑣0

𝑖  +  𝐵𝑖𝑀𝛼𝛽
𝑖   𝛿𝜃𝛽

𝑖   
𝛼1

𝛼2

 

𝛽

𝑡

0

𝑑𝛽𝑑𝑡 

+    𝐴𝑖𝑁𝛽𝛼
𝑖   𝛿𝑢0

𝑖  +  𝐴𝑖𝑀𝛽𝛼
𝑖   𝛿𝜃𝛼

𝑖   
𝛽1

𝛽2

 

𝛼

𝑡

0

𝑑𝛼𝑑𝑡 

(34) 

 

Finally, by substituting Eqs. (31) and (33) into Eq. (26) 

and considering the Eq. (14) and collecting the coefficients 

of independent variations in 𝛿𝑢0
𝑡 , 𝛿𝑣0

𝑡 , 𝛿𝑤𝑡 , 𝛿𝜃𝛼
𝑡 , 𝛿𝜃𝛽

𝑡 ,  
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𝛿𝑢2
𝑐 ,   𝛿𝑣2

𝑐 ,   𝛿𝑤2
𝑐 ,   𝛿𝑢3

𝑐 ,   𝛿𝑣3
𝑐 ,   𝛿𝑤3

𝑐 ,   𝛿𝑢0
𝑏 ,   𝛿𝑣0

𝑏 ,   𝛿𝑤𝑏 ,   𝛿𝜃𝛼
𝑏 ,  

𝛿𝜃𝛽
𝑏  sixteen equations of motion for thick DCSP and 

sixteen boundary conditions (B.C.) are obtained. The equa-

tions of motion for thick DCSP are 

 

 
ℎ𝛼𝐵,𝛼

𝑐

2
  𝑁𝛼

𝑐 +  
ℎ𝛼𝐵

𝑐

2
  𝑁𝛼,𝛼

𝑐  +  
ℎ𝛼𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛼

𝑐   

+ 
ℎ𝛼𝐵

𝑐

𝑡𝑐
  𝑀𝛼,𝛼

𝑐  −  
ℎ𝛽𝐵,𝛼

𝑐

2
  𝑁𝛽

𝑐 −  
ℎ𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛽

𝑐  

+ 
ℎ𝛼𝛽𝐴,𝛽

𝑐

2
  𝑁𝛼𝛽

𝑐  +  
ℎ𝛼𝛽𝐴,𝛽

𝑐

2
  𝑁𝛽𝛼

𝑐   

+ 
ℎ𝛼𝛽𝐴

𝑐

2
  𝑁𝛽𝛼 ,𝛽

𝑐  +  
ℎ𝛼𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛼𝛽

𝑐   

+ 
ℎ𝛼𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛽𝛼

𝑐  +  
𝐴𝑐ℎ𝛼𝛽

𝑡𝑐
  𝑀𝛽𝛼 ,𝛽

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛼
𝑐
  𝑄𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼
𝑐
  𝑆𝛼𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑄𝑧𝛼

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑄𝛽𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

𝑐  +  𝐵,𝛼
𝑡   𝑁𝛼

𝑡   

+ 𝐵𝑡  𝑁𝛼,𝛼
𝑡  −  𝐵,𝛼

𝑡   𝑁𝛽
𝑡 +  𝐴,𝛽

𝑡   𝑁𝛼𝛽
𝑡   

+ 𝐴,𝛽
𝑡   𝑁𝛽𝛼

𝑡  +  𝐴𝑡  𝑁𝛽𝛼 ,𝛽
𝑡  +  

𝐴𝑡𝐵𝑡𝑘𝑠
𝑅𝛼
𝑡

  𝑄𝛼𝑧
𝑡   

+ 
𝐴𝑡𝐵𝑡𝑘𝑠
𝑅𝛼𝛽
𝑡   𝑄𝛽𝑧

𝑡   

=   𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 +

1

𝑡𝑐
𝐼1
𝑐   +

1

𝑡𝑐2 𝐼2
𝑐 +  𝐴𝑡𝐵𝑡 𝐼0

𝑡 𝑢 0
𝑡  

+  𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼1
𝑐    −

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐  

 + 𝐴𝑡𝐵𝑡 𝐼1
𝑡 𝜃 𝛼

𝑡 +  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐  +

1

2
𝐼2
𝑐  

 +
1

𝑡𝑐
𝐼3
𝑐 𝑢 2

𝑐 +  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐   

 +
1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑢 3

𝑐 +  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑢 0

𝑏  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐 𝜃 𝛼

𝑏  

(35a) 

 

− 
ℎ𝛼𝐴,𝛽

𝑐

2
  𝑁𝛼

𝑐 −  
ℎ𝛼𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛼

𝑐  +  
ℎ𝛽𝐴,𝛽

𝑐

2
  𝑁𝛽

𝑐  

+ 
ℎ𝛽𝐴

𝑐

2
  𝑁𝛽,𝛽

𝑐  +  
ℎ𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛽

𝑐  

+ 
ℎ𝛽𝐴

𝑐

𝑡𝑐
  𝑀𝛽,𝛽

𝑐  +  
ℎ𝛼𝛽𝐵,𝛼

𝑐

2
  𝑁𝛼𝛽

𝑐   

+ 
ℎ𝛼𝛽𝐵

𝑐

2
  𝑁𝛼𝛽 ,𝛼

𝑐  +  
ℎ𝛼𝛽𝐵,𝛼

𝑐

2
  𝑁𝛽𝛼

𝑐   

+ 
ℎ𝛼𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛼𝛽

𝑐  +  
ℎ𝛼𝛽𝐵

𝑐

𝑡𝑐
  𝑀𝛼𝛽 ,𝛼

𝑐   

+ 
ℎ𝛼𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛽𝛼

𝑐  +  
𝐴𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑄𝛼𝑧

𝑐   

(35b) 

+ 
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

2𝑅𝛽
𝑐   𝑄𝛽𝑧

𝑐   

+ 
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛽
𝑐   𝑆𝛽𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑄𝑧𝛽

𝑐   

− 𝐴,𝛽
𝑡   𝑁𝛼

𝑡 +  𝐴,𝛽
𝑡   𝑁𝛽

𝑡 +  𝐴𝑡  𝑁𝛽,𝛽
𝑡   

+ 𝐵,𝛼
𝑡   𝑁𝛼𝛽

𝑡  +  𝐵𝑡  𝑁𝛼𝛽 ,𝛼
𝑡  +  𝐵,𝛼

𝑡   𝑁𝛽𝛼
𝑡   

+ 
𝑘𝑠𝐴

𝑡𝐵𝑡

𝑅𝛼𝛽
𝑡   𝑄𝛼𝑧

𝑡  +  
𝑘𝑠𝐴

𝑡𝐵𝑡

𝑅𝛽
𝑡   𝑄𝛽𝑧

𝑡   

=   𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 +

1

𝑡𝑐
𝐼1
𝑐 +

1

𝑡𝑐2 𝐼2
𝑐 +  𝐴𝑡𝐵𝑡 𝐼0

𝑡 𝑣 0
𝑡  

+  𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼1
𝑐 −

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐   

 + 𝐴𝑡𝐵𝑡 𝐼1
𝑡 𝜃 𝛽

𝑡 +  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐   

 +
1

2
𝐼2
𝑐 +

1

𝑡𝑐
𝐼3
𝑐 𝑣 2

𝑐 +  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐   

 +
1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑣 3

𝑐 +  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑣 0

𝑏  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐 𝜃 𝛽

𝑏  

(35b) 

 

− 
ℎ𝛼𝐴

𝑐𝐵𝑐

2𝑅𝛼
𝑐

  𝑁𝛼
𝑐 −  

ℎ𝛼𝐴
𝑐𝐵𝑐

𝑡𝑐𝑅𝛼
𝑐
  𝑀𝛼

𝑐   

− 
ℎ𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛽
𝑐   𝑁𝛽

𝑐 −  
ℎ𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛽
𝑐   𝑀𝛽

𝑐  

− 
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑁𝑧

𝑐 −  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑁𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑀𝛽𝛼

𝑐  +  
𝐵,𝛼
𝑐

2
  𝑄𝛼𝑧

𝑐   

+ 
𝐵𝑐

2
  𝑄𝛼𝑧 ,𝛼

𝑐  +  
𝐵,𝛼
𝑐

𝑡𝑐
  𝑆𝛼𝑧

𝑐  +  
𝐵𝑐

𝑡𝑐
  𝑆𝛼𝑧 ,𝛼

𝑐   

+ 
𝐴,𝛽
𝑐

2
  𝑄𝛽𝑧

𝑐  +  
𝐴𝑐

2
  𝑄𝛽𝑧 ,𝛽

𝑐  +  
𝐴,𝛽
𝑐

𝑡𝑐
  𝑆𝛽𝑧

𝑐   

+ 
𝐴𝑐

𝑡𝑐
  𝑆𝛽𝑧 ,𝛽

𝑐  −  
𝐴𝑡𝐵𝑡

𝑅𝛽
𝑡   𝑁𝛼

𝑡  −  
𝐴𝑡𝐵𝑡

𝑅𝛽
𝑡   𝑁𝛽

𝑡  

− 
𝐴𝑡𝐵𝑡

𝑅𝛼𝛽
𝑡   𝑁𝛼𝛽

𝑡  −  
𝐴𝑡𝐵𝑡

𝑅𝛼𝛽
𝑡   𝑁𝛽𝛼

𝑡  + 𝑘𝑠 𝐵,𝛼
𝑡   𝑄𝛼𝑧

𝑡   

+ 𝑘𝑠𝐵
𝑡  𝑄𝛼𝑧 ,𝛼

𝑡  + 𝑘𝑠 𝐴,𝛽
𝑡   𝑄𝛽𝑧

𝑡  +  𝑘𝑠𝐴
𝑡  𝑄𝛽𝑧 ,𝛽

𝑡   

=   𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 +

1

𝑡𝑐
𝐼1
𝑐 +

1

𝑡𝑐2 𝐼2
𝑐 +  𝐴𝑡𝐵𝑡 𝐼0

𝑡 𝑤 𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 +

1

𝑡𝑐
𝐼3
𝑐 𝑤 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑤 3

𝑐  

+ 𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑤 𝑏  
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− 
ℎ𝛼𝑡

𝑡𝐵,𝛼
𝑐

4
  𝑁𝛼

𝑐 −  
ℎ𝛼𝑡

𝑡𝐵𝑐

4
  𝑁𝛼,𝛼

𝑐   

− 
ℎ𝛼𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛼

𝑐  −  
ℎ𝛼𝑡

𝑡𝐵𝑐

2𝑡𝑐
  𝑀𝛼,𝛼

𝑐   

+ 
ℎ𝛽 𝑡

𝑡𝐵,𝛼
𝑐

4
  𝑁𝛽

𝑐 +  
ℎ𝛽𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛽

𝑐  

− 
ℎ𝛼𝛽 𝑡

𝑡𝐴,𝛽
𝑐

4
  𝑁𝛼𝛽

𝑐  −  
ℎ𝛼𝛽𝐴,𝛽

𝑐 𝑡𝑡

4
  𝑁𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐴𝑐

4
  𝑁𝛽𝛼 ,𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛽𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐴𝑐

2𝑡𝑐
  𝑀𝛽𝛼 ,𝛽

𝑐   

− 
𝑡𝑡𝐴𝑐𝐵𝑐

4𝑅𝛼
𝑐
  𝑄𝛼𝑧

𝑐  −  
𝑡𝑡𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛼
𝑐
  𝑆𝛼𝑧

𝑐   

+ 
𝑡𝑡𝐴𝑐𝐵𝑐

2𝑡𝑐
  𝑄𝑧𝛼

𝑐  −  
𝑡𝑡𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑄𝛽𝑧

𝑐   

− 
𝑡𝑡𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

𝑐  +  𝐵,𝛼
𝑡   𝑀𝛼

𝑡  +  𝐵𝑡  𝑀𝛼,𝛼
𝑡   

− 𝐵,𝛼
𝑡   𝑀𝛽

𝑡  +  𝐴,𝛽
𝑡   𝑀𝛼𝛽

𝑡  +  𝐴,𝛽
𝑡   𝑀𝛽𝛼

𝑡   

+ 𝐴𝑡  𝑀𝛽𝛼 ,𝛽
𝑡  +  

𝑘𝑠
𝑅𝛼
𝑡
𝐴𝑡𝐵𝑡  𝑆𝛼𝑧

𝑡   

−𝑘𝑠𝐴
𝑡𝐵𝑡 𝑄𝑧𝛼

𝑡  +  
𝑘𝑠𝑒𝛼
𝑅𝛼𝛽
𝑡 𝐴𝑡𝐵𝑡  𝑆𝛽𝑧

𝑡   

=   𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼1
𝑐 −

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐   

 + 𝐴𝑡𝐵𝑡 𝐼1
𝑡 𝑢 0

𝑡 +   𝐴𝑐𝐵𝑐  
𝑡𝑡

2

16
𝐼0
𝑐 +

𝑡𝑡
2

4𝑡𝑐
𝐼1
𝑐 +

𝑡𝑡
2
𝐼2
𝑐

4𝑡𝑐2 
  

 + 𝐴𝑡𝐵𝑡 𝐼2
𝑡 𝜃 𝛼

𝑡 +  𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐

2

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼1
𝑐   

 −
𝑡𝑡

4
𝐼2
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼3
𝑐 𝑢 2

𝑐 +  𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐2

16
𝐼1
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼2
𝑐   

 −
𝑡𝑡

4
𝐼3
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼4
𝑐 𝑢 3

𝑐 +  𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 +

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐 𝑢 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑏

4𝑡𝑐2 𝐼2
𝑐 𝜃 𝛼

𝑏  

(35d) 

 

− 
ℎ𝛽 𝑡

𝑡𝐴,𝛽
𝑐

4
  𝑁𝛽

𝑐 −  
ℎ𝛽𝑡

𝑡𝐴𝑐

4
  𝑁𝛽,𝛽

𝑐   

− 
ℎ𝛽 𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛽

𝑐 −  
ℎ𝛽 𝑡

𝑡𝐴𝑐

2𝑡𝑐
  𝑀𝛽,𝛽

𝑐   

+ 
ℎ𝛼𝑡

𝑡𝐴,𝛽
𝑐

4
  𝑁𝛼

𝑐 +  
ℎ𝛼𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

4
  𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐵,𝛼

𝑐 𝑡𝑡

4
  𝑁𝛼𝛽

𝑐   

(35e) 

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵𝑐

4
  𝑁𝛼𝛽 ,𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛼𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐵𝑐

2𝑡𝑐
  𝑀𝛼𝛽 ,𝛼

𝑐   

− 
𝑡𝑡

4𝑅𝛽
𝑐 𝐴

𝑐𝐵𝑐  𝑄𝛽𝑧
𝑐  −  

𝑡𝑡

2𝑡𝑐𝑅𝛽
𝑐 𝐴

𝑐𝐵𝑐  𝑆𝛽𝑧
𝑐   

+ 
𝑡𝑡

2𝑡𝑐
𝐴𝑐𝐵𝑐  𝑄𝑧𝛽

𝑐  −  
𝑡𝑡

4𝑅𝛼𝛽
𝑐 𝐴𝑐𝐵𝑐  𝑄𝛼𝑧

𝑐   

− 
𝑡𝑡

2𝑡𝑐𝑅𝛼𝛽
𝑐 𝐴𝑐𝐵𝑐  𝑆𝛼𝑧

𝑐   

+ 𝐴,𝛽
𝑡   𝑀𝛽

𝑡  +  𝐴𝑡  𝑀𝛽,𝛽
𝑡  −  𝐴,𝛽

𝑡   𝑀𝛼
𝑡   

+ 𝐵,𝛼
𝑡   𝑀𝛽𝛼

𝑡  +  𝐵,𝛼
𝑡   𝑀𝛼𝛽

𝑡  +  𝐵𝑡  𝑀𝛼𝛽 ,𝛼
𝑡   

+ 
𝑘𝑠
𝑅𝛽
𝑡 𝐴

𝑡𝐵𝑡  𝑆𝛽𝑧
𝑡  − 𝑘𝑠𝐴

𝑡𝐵𝑡 𝑄𝑧𝛽
𝑡   

+ 
𝑘𝑠𝑒𝛽

𝑅𝛼𝛽
𝑡 𝐴𝑡𝐵𝑡  𝑆𝛼𝑧

𝑡   

=   𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼1
𝑐 −

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐   

 + 𝐴𝑡𝐵𝑡 𝐼1
𝑡 𝑣 0

𝑡 +   𝐴𝑐𝐵𝑐  
𝑡𝑡

2

16
𝐼0
𝑐 +

𝑡𝑡
2

4𝑡𝑐
𝐼1
𝑐 +

𝑡𝑡
2
𝐼2
𝑐

4𝑡𝑐2 
  

 + 𝐴𝑡𝐵𝑡 𝐼2
𝑡 𝜃 𝛽

𝑡 +  𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐

2

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼1
𝑐   

 −
𝑡𝑡

4
𝐼2
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼3
𝑐 𝑣 2

𝑐 +  𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐2

16
𝐼1
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼2
𝑐   

 −
𝑡𝑡

4
𝐼3
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼4
𝑐 𝑣 3

𝑐 +  𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 +

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐 𝑣 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑏

4𝑡𝑐2 𝐼2
𝑐 𝜃 𝛽

𝑏  

− 
ℎ𝛽 𝑡

𝑡𝐴,𝛽
𝑐

4
  𝑁𝛽

𝑐 −  
ℎ𝛽𝑡

𝑡𝐴𝑐

4
  𝑁𝛽,𝛽

𝑐   

− 
ℎ𝛽 𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛽

𝑐 −  
ℎ𝛽 𝑡

𝑡𝐴𝑐

2𝑡𝑐
  𝑀𝛽,𝛽

𝑐   

+ 
ℎ𝛼𝑡

𝑡𝐴,𝛽
𝑐

4
  𝑁𝛼

𝑐 +  
ℎ𝛼𝑡

𝑡𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

4
  𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐵,𝛼

𝑐 𝑡𝑡

4
  𝑁𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵𝑐

4
  𝑁𝛼𝛽 ,𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑡𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛼𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑡𝐵𝑐

2𝑡𝑐
  𝑀𝛼𝛽 ,𝛼

𝑐   

− 
𝑡𝑡

4𝑅𝛽
𝑐 𝐴

𝑐𝐵𝑐  𝑄𝛽𝑧
𝑐  −  

𝑡𝑡

2𝑡𝑐𝑅𝛽
𝑐 𝐴

𝑐𝐵𝑐  𝑆𝛽𝑧
𝑐   

+ 
𝑡𝑡

2𝑡𝑐
𝐴𝑐𝐵𝑐  𝑄𝑧𝛽

𝑐  −  
𝑡𝑡

4𝑅𝛼𝛽
𝑐 𝐴𝑐𝐵𝑐  𝑄𝛼𝑧

𝑐   

(35e) 
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− 
𝑡𝑡

2𝑡𝑐𝑅𝛼𝛽
𝑐 𝐴𝑐𝐵𝑐  𝑆𝛼𝑧

𝑐  +  𝐴,𝛽
𝑡   𝑀𝛽

𝑡   

+ 𝐴𝑡  𝑀𝛽,𝛽
𝑡  −  𝐴,𝛽

𝑡   𝑀𝛼
𝑡  +  𝐵,𝛼

𝑡   𝑀𝛽𝛼
𝑡   

+ 𝐵,𝛼
𝑡   𝑀𝛼𝛽

𝑡  +  𝐵𝑡  𝑀𝛼𝛽 ,𝛼
𝑡  +  

𝑘𝑠
𝑅𝛽
𝑡 𝐴

𝑡𝐵𝑡  𝑆𝛽𝑧
𝑡   

−𝑘𝑠𝐴
𝑡𝐵𝑡 𝑄𝑧𝛽

𝑡  +  
𝑘𝑠𝑒𝛽

𝑅𝛼𝛽
𝑡 𝐴𝑡𝐵𝑡  𝑆𝛼𝑧

𝑡   

=   𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼1
𝑐 −

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐   

 +  𝐴𝑡𝐵𝑡 𝐼1
𝑡 𝑣 0

𝑡 +   𝐴𝑐𝐵𝑐   

   
𝑡𝑡

2

16
𝐼0
𝑐 +

𝑡𝑡
2

4𝑡𝑐
𝐼1
𝑐  +

𝑡𝑡
2
𝐼2
𝑐

4𝑡𝑐2 +  𝐴𝑡𝐵𝑡 𝐼2
𝑡 𝜃 𝛽

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐

2

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼1
𝑐   −

𝑡𝑡

4
𝐼2
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼3
𝑐 𝑣 2

𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑡𝑡𝑐2

16
𝐼1
𝑐 +

𝑡𝑡𝑡𝑐

8
𝐼2
𝑐   −

𝑡𝑡

4
𝐼3
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼4
𝑐 𝑣 3

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 +

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐 𝑣 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑏

4𝑡𝑐2 𝐼2
𝑐 𝜃 𝛽

𝑏  

(35e) 

 

− 
ℎ𝛼𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑁𝛼

𝑐 −  
ℎ𝛼𝑡

𝑐2𝐵𝑐

4
  𝑁𝛼,𝛼

𝑐   

+ ℎ𝛼𝐵,𝛼
𝑐   𝑁𝛼

∗𝑐 +  ℎ𝛼𝐵
𝑐  𝑁𝛼,𝛼

∗𝑐   

+ 
ℎ𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑁𝛽

𝑐 −  ℎ𝛽𝐵,𝛼
𝑐   𝑁𝛽

∗𝑐  

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑁𝛼𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑁𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐴𝑐

4
  𝑁𝛽𝛼 ,𝛽

𝑐  +  ℎ𝛼𝛽𝐴,𝛽
𝑐   𝑁𝛼𝛽

∗𝑐   

+ ℎ𝛼𝛽𝐴,𝛽
𝑐   𝑁𝛽𝛼

∗𝑐  +  ℎ𝛼𝛽𝐴
𝑐  𝑁𝛽𝛼 ,𝛽

∗𝑐   

− 
𝑡𝑐2

4𝑅𝛼𝛽
𝑐 𝐴𝑐𝐵𝑐  𝑄𝛽𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑄𝛽𝑧

∗𝑐   

− 
𝑡𝑐2

4𝑅𝛼
𝑐
𝐴𝑐𝐵𝑐  𝑄𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛼
𝑐
  𝑄𝛼𝑧

∗𝑐   

−2𝐴𝑐𝐵𝑐 𝑆𝑧𝛼
𝑐   

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 +

1

𝑡𝑐
𝐼3
𝑐 𝑢 0

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐2𝑡𝑡

16
𝐼0
𝑐 +

𝑡𝑐𝑡𝑡

8
𝐼1
𝑐 −

𝑡𝑡

4
𝐼2
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼3
𝑐 𝜃 𝛼

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼0
𝑐 −

𝑡𝑐2

2
𝐼2
𝑐 + 𝐼4

𝑐 𝑢 2
𝑐  

(35f) 

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑢 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑢 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑐𝑡𝑏

8
𝐼1
𝑐 +

𝑡𝑏

4
𝐼2
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼3
𝑐 𝜃 𝛼

𝑏  

(35f) 

 

 
ℎ𝛼𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑁𝛼

𝑐 −  ℎ𝛼𝐴,𝛽
𝑐   𝑁𝛼

∗𝑐  

− 
ℎ𝛽𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑁𝛽

𝑐 −  
ℎ𝛽 𝑡

𝑐2𝐴𝑐

4
  𝑁𝛽,𝛽

𝑐   

+ ℎ𝛽𝐴,𝛽
𝑐   𝑁𝛽

∗𝑐 +  ℎ𝛽𝐴
𝑐  𝑁𝛽,𝛽

∗𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑁𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐵𝑐

4
  𝑁𝛼𝛽 ,𝛼

𝑐  +  ℎ𝛼𝛽𝐵,𝛼
𝑐   𝑁𝛽𝛼

∗𝑐   

+ ℎ𝛼𝛽𝐵,𝛼
𝑐   𝑁𝛼𝛽

∗𝑐  +  ℎ𝛼𝛽𝐵
𝑐  𝑁𝛼𝛽 ,𝛼

∗𝑐   

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑄𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑄𝛼𝑧

∗𝑐   

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛽
𝑐   𝑄𝛽𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛽
𝑐   𝑄𝛽𝑧

∗𝑐   

−2𝐴𝑐𝐵𝑐 𝑆𝑧𝛽
𝑐    

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 +

1

𝑡𝑐
𝐼3
𝑐 𝑣 0

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐2𝑡𝑡

16
𝐼0
𝑐 +

𝑡𝑐𝑡𝑡

8
𝐼1
𝑐 −

𝑡𝑡

4
𝐼2
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼3
𝑐 𝜃 𝛽

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼0
𝑐 −

𝑡𝑐2

2
𝐼2
𝑐 + 𝐼4

𝑐 𝑣 2
𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑣 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑣 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑐𝑡𝑏

8
𝐼1
𝑐 +

𝑡𝑏

4
𝐼2
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼3
𝑐 𝜃 𝛽

𝑏  

(35g) 

 

 
ℎ𝛼𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼
𝑐

  𝑁𝛼
𝑐 −  

ℎ𝛼𝐴
𝑐𝐵𝑐

𝑅𝛼
𝑐

  𝑁𝛼
∗𝑐  

+ 
ℎ𝛽 𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛽
𝑐   𝑁𝛽

𝑐 −  
ℎ𝛽𝐴

𝑐𝐵𝑐

𝑅𝛽
𝑐   𝑁𝛽

∗𝑐  

−2𝐴𝑐𝐵𝑐 𝑀𝑧
𝑐 +  

ℎ𝛼𝛽 𝑡
𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑁𝛼𝛽

𝑐   

+ 
ℎ𝛼𝛽 𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑁𝛼𝛽

∗𝑐   

(35h) 
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− 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑁𝛽𝛼

∗𝑐  −  
𝐵,𝛼
𝑐 𝑡𝑐2

4
  𝑄𝛼𝑧

𝑐   

− 
𝑡𝑐2𝐵𝑐

4
  𝑄𝛼𝑧 ,𝛼

𝑐  +  𝐵,𝛼
𝑐   𝑄𝛼𝑧

∗𝑐  +  𝐵𝑐  𝑄𝛼𝑧 ,𝛼
∗𝑐   

− 
𝐴,𝛽
𝑐 𝑡𝑐2

4
  𝑄𝛽𝑧

𝑐  −  
𝑡𝑐2𝐴𝑐

4
  𝑄𝛽𝑍,𝛽

𝑐   

+ 𝐴,𝛽
𝑐   𝑄𝛽𝑧

∗𝑐  +  𝐴𝑐  𝑄𝛽𝑧 ,𝛽
∗𝑐    

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 −

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 +

1

𝑡𝑐
𝐼3
𝑐 𝑤 𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼0
𝑐 −

𝑡𝑐2

2
𝐼2
𝑐 + 𝐼4

𝑐 𝑤 2
𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑤 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑤 𝑏  

(35h) 

 

− 
ℎ𝛼𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑀𝛼

𝑐  −  
ℎ𝛼𝑡

𝑐2𝐵𝑐

4
  𝑀𝛼,𝛼

𝑐   

+ ℎ𝛼𝐵,𝛼
𝑐   𝑀𝛼

∗𝑐 +  ℎ𝛼𝐵
𝑐  𝑀𝛼,𝛼

∗𝑐   

+ 
ℎ𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑀𝛽

𝑐 −  ℎ𝛽𝐵,𝛼  𝑀𝛽
∗𝑐  

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑀𝛼𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑀𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐴𝑐

4
  𝑀𝛽𝛼 ,𝛽

𝑐  +  ℎ𝛼𝛽𝐴,𝛽
𝑐   𝑀𝛼𝛽

∗𝑐   

+ ℎ𝛼𝛽𝐴,𝛽
𝑐   𝑀𝛽𝛼

∗𝑐  +  ℎ𝛼𝛽𝐴
𝑐  𝑀𝛽𝛼 ,𝛽

∗𝑐   

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

∗𝑐  

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼
𝑐

  𝑆𝛼𝑧
𝑐  +  

𝑡𝑐2𝐴𝑐𝐵𝑐

4
  𝑄𝑧𝛼

𝑐   

+ 
𝐴𝑐𝐵𝑐

𝑅𝛼
𝑐
  𝑆𝛼𝑧

∗𝑐  − 3𝐴𝑐𝐵𝑐 𝑄𝑧𝛼
∗𝑐   

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑢 0

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐2𝑡𝑡

16
𝐼1
𝑐 +

𝑡𝑐𝑡𝑡

8
𝐼2
𝑐 −

𝑡𝑡

4
𝐼3
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼4
𝑐 𝜃 𝛼

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑢 2
𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼2
𝑐 −

𝑡𝑐2

2
𝐼4
𝑐 + 𝐼6

𝑐 𝑢 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑢 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2𝑡𝑏

16
𝐼1
𝑐 +

𝑡𝑐𝑡𝑏

8
𝐼2
𝑐 +

𝑡𝑏

4
𝐼3
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼4
𝑐 𝜃 𝛼

𝑏  

(35i) 

 

 
ℎ𝛼𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑀𝛼

𝑐  −  ℎ𝛼𝐴,𝛽
𝑐   𝑀𝛼

∗𝑐  

− 
ℎ𝛽𝑡

𝑐2𝐴,𝛽
𝑐

4
  𝑀𝛽

𝑐 −  
ℎ𝛽 𝑡

𝑐2𝐴𝑐

4
  𝑀𝛽,𝛽

𝑐   

+ ℎ𝛽𝐴,𝛽
𝑐   𝑀𝛽

∗𝑐 +  ℎ𝛽𝐴
𝑐  𝑀𝛽,𝛽

∗𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑀𝛽𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑐2𝐵,𝛼
𝑐

4
  𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑐2𝐵𝑐

4
  𝑀𝛼𝛽 ,𝛼

𝑐  +  ℎ𝛼𝛽𝐵,𝛼
𝑐   𝑀𝛽𝛼

∗𝑐   

+ ℎ𝛼𝛽𝐵,𝛼
𝑐   𝑀𝛼𝛽

∗𝑐  +  ℎ𝛼𝛽𝐵
𝑐  𝑀𝛼𝛽 ,𝛼

∗𝑐   

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑆𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑆𝛼𝑧

∗𝑐   

− 
𝑡𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛽
𝑐   𝑆𝛽𝑧

𝑐  +  
𝑡𝑐2𝐴𝑐𝐵𝑐

4
  𝑄𝑧𝛽

𝑐   

+ 
𝐴𝑐𝐵𝑐

𝑅𝛽
𝑐   𝑆𝛽𝑧

∗𝑐 − 3𝐴𝑐𝐵𝑐 𝑄𝑧𝛽
∗𝑐   

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑣 0

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐2𝑡𝑡

16
𝐼1
𝑐 +

𝑡𝑐𝑡𝑡

8
𝐼2
𝑐 −

𝑡𝑡

4
𝐼3
𝑐 −

𝑡𝑡

2𝑡𝑐
𝐼4
𝑐 𝜃 𝛽

𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑣 2
𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼2
𝑐 −

𝑡𝑐2

2
𝐼4
𝑐 + 𝐼6

𝑐 𝑣 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑣 0

𝑏  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2𝑡𝑏

16
𝐼1
𝑐 +

𝑡𝑐𝑡𝑏

8
𝐼2
𝑐 +

𝑡𝑏

4
𝐼3
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼4
𝑐 𝜃 𝛽

𝑏  

(35j) 

 

 
ℎ𝛼𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼
𝑐

  𝑀𝛼
𝑐  −  

ℎ𝛼𝐴
𝑐𝐵𝑐

𝑅𝛼
𝑐

  𝑀𝛼
∗𝑐  

+ 
ℎ𝛽 𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛽
𝑐   𝑀𝛽

𝑐 −  
ℎ𝛽𝐴

𝑐𝐵𝑐

𝑅𝛽
𝑐   𝑀𝛽

∗𝑐  

+ 
𝑡𝑐2𝐴𝑐𝐵𝑐

4
  𝑁𝑧

𝑐 − 3𝐴𝑐𝐵𝑐 𝑁𝑧
∗𝑐  

+ 
ℎ𝛼𝛽 𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑀𝛼𝛽

𝑐  +  
ℎ𝛼𝛽 𝑡

𝑐2𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑀𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑀𝛼𝛽

∗𝑐  −  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑅𝛼𝛽
𝑐   𝑀𝛽𝛼

∗𝑐   

− 
𝐴,𝛽
𝑐 𝑡𝑐2

4
  𝑆𝛽𝑧

𝑐  −  
𝑡𝑐2𝐴𝑐

4
  𝑆𝛽𝑧 ,𝛽

𝑐   

+ 𝐴,𝛽
𝑐   𝑆𝛽𝑧

∗𝑐 +  𝐴𝑐  𝑆𝛽𝑧 ,𝛽
∗𝑐  −  

𝑡𝑐2𝐵,𝛼
𝑐

4
  𝑆𝛼𝑧

𝑐   

(35k) 
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− 
𝑡𝑐2𝐵𝑐

4
  𝑆𝛼𝑧 ,𝛼

𝑐  +  𝐵,𝛼
𝑐   𝑆𝛼𝑧

∗𝑐  +  𝐵𝑐  𝑆𝛼𝑧 ,𝛼
∗𝑐   

=  𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 −

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 +

1

𝑡𝑐
𝐼4
𝑐 𝑤 𝑡  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼1
𝑐 −

𝑡𝑐2

2
𝐼3
𝑐 + 𝐼5

𝑐 𝑤 2
𝑐  

+ 𝐴𝑐𝐵𝑐  
𝑡𝑐4

16
𝐼2
𝑐 −

𝑡𝑐2

2
𝐼4
𝑐 + 𝐼6

𝑐 𝑤 3
𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑤 𝑏  

(35k) 

 

 
ℎ𝛼𝐵,𝛼

𝑐

2
  𝑁𝛼

𝑐 +  
ℎ𝛼𝐵

𝑐

2
  𝑁𝛼,𝛼

𝑐  −  
ℎ𝛼𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛼

𝑐   

− 
ℎ𝛼𝐵

𝑐

𝑡𝑐
  𝑀𝛼,𝛼

𝑐  −  
ℎ𝛽𝐵,𝛼

𝑐

2
  𝑁𝛽

𝑐 +  
ℎ𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛽

𝑐  

+ 
ℎ𝛼𝛽𝐴,𝛽

𝑐

2
  𝑁𝛼𝛽

𝑐  +  
ℎ𝛼𝛽𝐴,𝛽

𝑐

2
  𝑁𝛽𝛼

𝑐   

+ 
ℎ𝛼𝛽𝐴

𝑐

2
  𝑁𝛽𝛼 ,𝛽

𝑐  −  
ℎ𝛼𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐴

𝑐

𝑡𝑐
  𝑀𝛽𝛼 ,𝛽

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛼
𝑐
  𝑄𝛼𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼
𝑐
  𝑆𝛼𝑧

𝑐  +  
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑄𝑧𝛼

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑄𝛽𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

𝑐   

+ 𝐵,𝛼
𝑏   𝑁𝛼

𝑏 +  𝐵𝑏  𝑁𝛼,𝛼
𝑏  −  𝐵,𝛼

𝑏   𝑁𝛽
𝑏  

+ 𝐴,𝛽
𝑏   𝑁𝛼𝛽

𝑏  +  𝐴,𝛽
𝑏   𝑁𝛽𝛼

𝑏  +  𝐴𝑏  𝑁𝛽𝛼 ,𝛽
𝑏   

+ 
𝑘𝑠𝐴

𝑏𝐵𝑏

𝑅𝛼
𝑏

  𝑄𝛼𝑧
𝑏  +  

𝑘𝑠𝐴
𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑄𝛽𝑧

𝑏   

=  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑢 0

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 +

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐 𝜃 𝛼

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑢 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑢 3

𝑐  

+  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐
𝐼1
𝑐 +

1

𝑡𝑐2 𝐼2
𝑐 +  𝐴𝑏𝐵𝑏 𝐼0

𝑏 𝑢 0
𝑏  

+  𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼1
𝑐 +

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐   

 +  𝐴𝑏𝐵𝑏 𝐼1
𝑏 𝜃 𝛼

𝑏  

(35l) 

 

− 
ℎ𝛼𝐴,𝛽

𝑐

2
  𝑁𝛼

𝑐 +  
ℎ𝛼𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛼

𝑐   

+ 
ℎ𝛽𝐴,𝛽

𝑐

2
  𝑁𝛽

𝑐 +  
ℎ𝛽𝐴

𝑐

2
  𝑁𝛽,𝛽

𝑐   

− 
ℎ𝛽𝐴,𝛽

𝑐

𝑡𝑐
  𝑀𝛽

𝑐 −  
ℎ𝛽𝐴

𝑐

𝑡𝑐
  𝑀𝛽,𝛽

𝑐   

+ 
ℎ𝛼𝛽𝐵,𝛼

𝑐

2
  𝑁𝛼𝛽

𝑐  +  
ℎ𝛼𝛽𝐵

𝑐

2
  𝑁𝛼𝛽 ,𝛼

𝑐   

+ 
ℎ𝛼𝛽𝐵,𝛼

𝑐

2
  𝑁𝛽𝛼

𝑐  −  
ℎ𝛼𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽𝐵

𝑐

𝑡𝑐
  𝑀𝛼𝛽 ,𝛼

𝑐  −  
ℎ𝛼𝛽𝐵,𝛼

𝑐

𝑡𝑐
  𝑀𝛽𝛼

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑄𝛼𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛼𝑧

𝑐   

+ 
𝐴𝑐𝐵𝑐

2𝑅𝛽
𝑐   𝑄𝛽𝑧

𝑐  −  
𝐴𝑐𝐵𝑐

𝑡𝑐𝑅𝛽
𝑐   𝑆𝛽𝑧

𝑐   

+ 
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑄𝑧𝛽

𝑐  −  𝐴,𝛽
𝑏   𝑁𝛼

𝑏 +  𝐴,𝛽
𝑏   𝑁𝛽

𝑏  

+ 𝐴𝑏  𝑁𝛽,𝛽
𝑏  +  𝐵,𝛼

𝑏   𝑁𝛼𝛽
𝑏  +  𝐵𝑏  𝑁𝛼𝛽 ,𝛼

𝑏   

+ 𝐵,𝛼
𝑏   𝑁𝛽𝛼

𝑏  +  
𝑘𝑠𝐴

𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑄𝛼𝑧

𝑏   

+ 
𝑘𝑠𝐴

𝑏𝐵𝑏

𝑅𝛽
𝑏   𝑄𝛽𝑧

𝑏   

=  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑣 0

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡

8
𝐼0
𝑐 +

𝑡𝑡

2𝑡𝑐2 𝐼2
𝑐 𝜃 𝛽

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑣 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑣 3

𝑐  

+  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐
𝐼1
𝑐 +

1

𝑡𝑐2 𝐼2
𝑐   

 +  𝐴𝑏𝐵𝑏 𝐼0
𝑏 𝑣 0

𝑏  

+  𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼1
𝑐    +

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐  

 +  𝐴𝑏𝐵𝑏 𝐼1
𝑏 𝜃 𝛽

𝑏  

(35m) 

 

− 
ℎ𝛼𝐴

𝑐𝐵𝑐

2𝑅𝛼
𝑐

  𝑁𝛼
𝑐 +  

ℎ𝛼𝐴
𝑐𝐵𝑐

𝑡𝑐𝑅𝛼
𝑐
  𝑀𝛼

𝑐   

− 
ℎ𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛽
𝑐   𝑁𝛽

𝑐 +  
ℎ𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛽
𝑐   𝑀𝛽

𝑐  

+ 
𝐴𝑐𝐵𝑐

𝑡𝑐
  𝑁𝑧

𝑐 −  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑁𝛼𝛽

𝑐   

(35n) 
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− 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

2𝑅𝛼𝛽
𝑐   𝑁𝛽𝛼

𝑐  +  
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑀𝛼𝛽

𝑐   

+ 
ℎ𝛼𝛽𝐴

𝑐𝐵𝑐

𝑡𝑐𝑅𝛼𝛽
𝑐   𝑀𝛽𝛼

𝑐  +  
𝐵,𝛼
𝑐

2
  𝑄𝛼𝑧

𝑐   

+ 
𝐵𝑐

2
  𝑄𝛼𝑧 ,𝛼

𝑐  −  
𝐵,𝛼
𝑐

𝑡𝑐
  𝑆𝛼𝑧

𝑐  −  
𝐵𝑐

𝑡𝑐
  𝑆𝛼𝑧 ,𝛼

𝑐   

+ 
𝐴,𝛽
𝑐

2
  𝑄𝛽𝑧

𝑐  +  
𝐴𝑐

2
  𝑄𝛽𝑧 ,𝛽

𝑐  −  
𝐴,𝛽
𝑐

𝑡𝑐
  𝑆𝛽𝑧

𝑐   

− 
𝐴𝑐

𝑡𝑐
  𝑆𝛽𝑧 ,𝛽

𝑐  −  
𝐴𝑏𝐵𝑏

𝑅𝛼
𝑏
  𝑁𝛼

𝑏 −  
𝐴𝑏𝐵𝑏

𝑅𝛽
𝑏   𝑁𝛽

𝑏  

− 
𝐴𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑁𝛼𝛽

𝑏  −  
𝐴𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑁𝛽𝛼

𝑏  +  𝑘𝑠𝐵,𝛼
𝑏   𝑄𝛼𝑧

𝑏   

+ 𝑘𝑠𝐵
𝑏  𝑄𝛼𝑧 ,𝛼

𝑏  +  𝑘𝑠𝐴,𝛽
𝑏   𝑄𝛽𝑧

𝑏  +  𝑘𝑠𝐴
𝑏  𝑄𝛽𝑧 ,𝛽

𝑏   

=  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐2 𝐼2
𝑐 𝑤 𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼0
𝑐 +

𝑡𝑐

4
𝐼1
𝑐 +

1

2
𝐼2
𝑐 −

1

𝑡𝑐
𝐼3
𝑐 𝑤 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑐2

8
𝐼1
𝑐 +

𝑡𝑐

4
𝐼2
𝑐 +

1

2
𝐼3
𝑐 −

1

𝑡𝑐
𝐼4
𝑐 𝑤 3

𝑐  

+  𝐴𝑐𝐵𝑐  
1

4
𝐼0
𝑐 −

1

𝑡𝑐
𝐼1
𝑐 +

1

𝑡𝑐2 𝐼2
𝑐 +  𝐴𝑏𝐵𝑏 𝐼0

𝑏 𝑤 𝑏  

(35n) 

 

 
ℎ𝛼𝑡

𝑏𝐵,𝛼
𝑐

4
  𝑁𝛼

𝑐 +  
ℎ𝛼𝑡

𝑏𝐵𝑐

4
  𝑁𝛼,𝛼

𝑐   

− 
ℎ𝛼𝑡

𝑏𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛼

𝑐  −  
ℎ𝛼𝑡

𝑏𝐵𝑐

2𝑡𝑐
  𝑀𝛼,𝛼

𝑐   

− 
ℎ𝛽 𝑡

𝑏𝐵,𝛼
𝑐

4
  𝑁𝛽

𝑐 +  
ℎ𝛽 𝑡

𝑏𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛽

𝑐  

+ 
ℎ𝛼𝛽 𝑡

𝑏𝐴,𝛽
𝑐

4
  𝑁𝛼𝛽

𝑐  +  
ℎ𝛼𝛽𝐴,𝛽

𝑐 𝑡𝑏

4
  𝑁𝛽𝛼

𝑐   

+ 
ℎ𝛼𝛽 𝑡

𝑏𝐴𝑐

4
  𝑁𝛽𝛼 ,𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑏𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛼𝛽

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑏𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛽𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑏𝐴𝑐

2𝑡𝑐
  𝑀𝛽𝛼 ,𝛽

𝑐   

+ 
𝑡𝑏𝐴𝑐𝐵𝑐

4𝑅𝛼
𝑐
  𝑄𝛼𝑧

𝑐  −  
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛼
𝑐
  𝑆𝛼𝑧

𝑐   

+ 
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐
  𝑄𝑧𝛼

𝑐  +  
𝑡𝑏𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑄𝛽𝑧

𝑐   

− 
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛽𝑧

𝑐  +  𝐵,𝛼
𝑏   𝑀𝛼

𝑏 +  𝐵𝑏  𝑀𝛼,𝛼
𝑏   

− 𝐵,𝛼
𝑏   𝑀𝛽

𝑏 +  𝐴,𝛽
𝑏   𝑀𝛼𝛽

𝑏  +  𝐴,𝛽
𝑏   𝑀𝛽𝛼

𝑏   

+ 𝐴𝑏  𝑀𝛽𝛼 ,𝛽
𝑏  +  

𝑘𝑠𝐴
𝑏𝐵𝑏

𝑅𝛼
𝑏

  𝑆𝛼𝑧
𝑏   

−𝑘𝑠𝐴
𝑏𝐵𝑏 𝑄𝑧𝛼

𝑏  +  
𝑘𝑠𝑒𝛼𝐴

𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑆𝛽𝑧

𝑏   

(35o) 

=  𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐 𝑢 0

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑏

4𝑡𝑐2 𝐼2
𝑐 𝜃 𝛼

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑏𝑡𝑐

2

16
𝐼0
𝑐 +

𝑡𝑏𝑡𝑐

8
𝐼1
𝑐 +

𝑡𝑏

4
𝐼2
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼3
𝑐 𝑢 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑏𝑡𝑐2

16
𝐼1
𝑐 +

𝑡𝑏𝑡𝑐

8
𝐼2
𝑐 +

𝑡𝑏

4
𝐼3
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼4
𝑐 𝑢 3

𝑐  

+  𝐴𝑐𝐵𝑐   
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼1
𝑐   +

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐  

 +  𝐴𝑏𝐵𝑏 𝐼1
𝑏 𝑢 0

𝑏  

+  𝐴𝑐𝐵𝑐   
𝑡𝑏

2

16
𝐼0
𝑐 −

𝑡𝑏
2

4𝑡𝑐
𝐼1
𝑐   +

𝑡𝑏
2
𝐼2
𝑐

4𝑡𝑐2   

 +  𝐴𝑏𝐵𝑏 𝐼2
𝑏 𝜃 𝛼

𝑏  

(35o) 

 

 
ℎ𝛽𝑡

𝑏𝐴,𝛽
𝑐

4
  𝑁𝛽

𝑐 +  
ℎ𝛽 𝑡

𝑏𝐴𝑐

4
  𝑁𝛽,𝛽

𝑐   

− 
ℎ𝛽 𝑡

𝑏𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛽

𝑐 −  
ℎ𝛽 𝑡

𝑏𝐴𝑐

2𝑡𝑐
  𝑀𝛽,𝛽

𝑐   

− 
ℎ𝛼𝑡

𝑏𝐴,𝛽
𝑐

4
  𝑁𝛼

𝑐 +  
ℎ𝛼𝑡

𝑏𝐴,𝛽
𝑐

2𝑡𝑐
  𝑀𝛼

𝑐   

+ 
ℎ𝛼𝛽 𝑡

𝑏𝐵,𝛼
𝑐

4
  𝑁𝛽𝛼

𝑐  +  
ℎ𝛼𝛽𝐵,𝛼

𝑐 𝑡𝑏

4
  𝑁𝛼𝛽

𝑐   

+ 
ℎ𝛼𝛽 𝑡

𝑏𝐵𝑐

4
  𝑁𝛼𝛽 ,𝛼

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑏𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛽𝛼

𝑐   

− 
ℎ𝛼𝛽 𝑡

𝑏𝐵,𝛼
𝑐

2𝑡𝑐
  𝑀𝛼𝛽

𝑐  −  
ℎ𝛼𝛽 𝑡

𝑏𝐵𝑐

2𝑡𝑐
  𝑀𝛼𝛽 ,𝛼

𝑐   

+ 
𝑡𝑏𝐴𝑐𝐵𝑐

4𝑅𝛽
𝑐   𝑄𝛽𝑧

𝑐  −  
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛽
𝑐   𝑆𝛽𝑧

𝑐   

+ 
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐
  𝑄𝑧𝛽

𝑐  +  
𝑡𝑏𝐴𝑐𝐵𝑐

4𝑅𝛼𝛽
𝑐   𝑄𝛼𝑧

𝑐   

− 
𝑡𝑏𝐴𝑐𝐵𝑐

2𝑡𝑐𝑅𝛼𝛽
𝑐   𝑆𝛼𝑧

𝑐  +  𝐴,𝛽
𝑏   𝑀𝛽

𝑏 +  𝐴𝑐  𝑀𝛽,𝛽
𝑏   

− 𝐴,𝛽
𝑏   𝑀𝛼

𝑏 +  𝐵,𝛼
𝑏   𝑀𝛽𝛼

𝑏  +  𝐵,𝛼
𝑏   𝑀𝛼𝛽

𝑏   

+ 𝐵𝑏  𝑀𝛼𝛽 ,𝛼
𝑏  +  

𝑘𝑠𝐴
𝑏𝐵𝑏

𝑅𝛽
𝑏   𝑆𝛽𝑧

𝑏   

−𝑘𝑠𝐴
𝑏𝐵𝑏 𝑄𝑧𝛽

𝑏  +  
𝑘𝑠𝑒𝛽𝐴

𝑏𝐵𝑏

𝑅𝛼𝛽
𝑏   𝑆𝛼𝑧

𝑏   

=  𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐 𝑣 0

𝑡  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑡𝑡𝑏

16
𝐼0
𝑐 +

𝑡𝑡𝑡𝑏

4𝑡𝑐2 𝐼2
𝑐 𝜃 𝛽

𝑡  

(35p) 
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+ 𝐴𝑐𝐵𝑐  −
𝑡𝑏𝑡𝑐

2

16
𝐼0
𝑐 +

𝑡𝑏𝑡𝑐

8
𝐼1
𝑐 +

𝑡𝑏

4
𝐼2
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼3
𝑐 𝑣 2

𝑐  

+ 𝐴𝑐𝐵𝑐  −
𝑡𝑏𝑡𝑐2

16
𝐼1
𝑐 +

𝑡𝑏𝑡𝑐

8
𝐼2
𝑐 +

𝑡𝑏

4
𝐼3
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼4
𝑐 𝑣 3

𝑐  

+  𝐴𝑐𝐵𝑐  
𝑡𝑏

8
𝐼0
𝑐 −

𝑡𝑏

2𝑡𝑐
𝐼1
𝑐 +

𝑡𝑏

2𝑡𝑐2 𝐼2
𝑐   

 +  𝐴𝑏𝐵𝑏 𝐼1
𝑏 𝑣 0

𝑏  

+  𝐴𝑐𝐵𝑐  
𝑡𝑏

2

16
𝐼0
𝑐 −

𝑡𝑏
2

4𝑡𝑐
𝐼1
𝑐 +

𝑡𝑏
2
𝐼2
𝑐

4𝑡𝑐2  
  

 +  𝐴𝑏𝐵𝑏 𝐼2
𝑏 𝜃 𝛽

𝑏  

(35p) 

 

Boundary conditions are 
 

𝐚𝐭   𝜶𝟏 = 𝟎    𝐚𝐧𝐝    𝜶𝟐 = 𝜶 𝐚𝐭   𝜷𝟏 = 𝟎    𝐚𝐧𝐝    𝜷𝟐 = 𝜷 

𝛿𝑢0
𝑡 = 0 or 𝐵𝑡𝑁𝛼

𝑡  = 0 𝛿𝑢0
𝑡 = 0 or 𝐴𝑡𝑁𝛽𝛼

𝑡 = 0 

𝛿𝑣0
𝑡 = 0 or 𝐵𝑡𝑁𝛼𝛽

𝑡 = 0 𝛿𝑣0
𝑡 = 0 or 𝐴𝑡𝑁𝛽

𝑡 = 0 

𝛿𝑤𝑡 = 0 or 𝐵𝑡𝑄𝛼𝑧
𝑡 = 0 𝛿𝑤𝑡 = 0 or 𝐴𝑡𝑄𝛽𝑧

𝑡 = 0 

𝛿𝜃𝛼
𝑡 = 0 or 𝐵𝑡𝑀𝛼

𝑡 = 0 𝛿𝜃𝛼
𝑡 = 0 or 𝐴𝑡𝑀𝛽𝛼

𝑡 = 0 

𝛿𝜃𝛽
𝑡 = 0 or 𝐵𝑡𝑀𝛼𝛽

𝑡 = 0 𝛿𝜃𝛽
𝑡 = 0 or 𝐴𝑡𝑀𝛽

𝑡 = 0 

𝛿𝑢2
𝑐 = 0 or ℎ𝛼𝐵

𝑐𝑁𝛼
∗𝑐 = 0 𝛿𝑢2

𝑐 = 0 or ℎ𝛼𝐴
𝑐𝑁𝛽𝛼

∗𝑐 = 0 

𝛿𝑣2
𝑐 = 0 or ℎ𝛼𝛽𝐵

𝑐𝑁𝛼𝛽
∗𝑐 = 0 𝛿𝑣2

𝑐 = 0 or ℎ𝛼𝛽𝐴
𝑐𝑁𝛽

∗𝑐 = 0 

𝛿𝑤2
𝑐 = 0 or 𝐵𝑐𝑄𝛼𝑧

∗𝑐 = 0 𝛿𝑤2
𝑐 = 0 or 𝐴𝑐𝑄𝛽𝑧

∗𝑐 = 0 

𝛿𝑢3
𝑐 = 0 or ℎ𝛼𝐵

𝑐𝑀𝛼
∗𝑐 = 0 𝛿𝑢3

𝑐 = 0 or ℎ𝛼𝐴
𝑐𝑀𝛽𝛼

∗𝑐 = 0 

𝛿𝑣3
𝑐 = 0 or ℎ𝛼𝛽𝐵

𝑐𝑀𝛼𝛽
∗𝑐 = 0 𝛿𝑣3

𝑐 = 0 or ℎ𝛼𝛽𝐴
𝑐𝑀𝛽

∗𝑐 = 0 

𝛿𝑤3
𝑐 = 0 or 𝐵𝑐𝑆𝛼𝑧

∗𝑐 = 0 𝛿𝑤3
𝑐 = 0 or 𝐴𝑐𝑆𝛽𝑧

∗𝑐 = 0 

𝛿𝑢0
𝑏 = 0 or 𝐵𝑏𝑁𝛼

𝑏  = 0 𝛿𝑢0
𝑏 = 0 or 𝐴𝑏𝑁𝛽𝛼

𝑏  = 0 

𝛿𝑣0
𝑏 = 0 or 𝐵𝑏𝑁𝛼𝛽

𝑏 = 0 𝛿𝑣0
𝑏 = 0 or 𝐴𝑏𝑁𝛽

𝑏 = 0 

𝛿𝑤𝑏 = 0 or 𝐵𝑏𝑄𝛼𝑧
𝑏 = 0 𝛿𝑤𝑏 = 0 or 𝐴𝑏𝑄𝛽𝑧

𝑏 = 0 

𝛿𝜃𝛼
𝑏 = 0 or 𝐵𝑏𝑀𝛼

𝑏 = 0 𝛿𝜃𝛼
𝑏 = 0 or 𝐴𝑏𝑀𝛽𝛼

𝑏 = 0 

𝛿𝜃𝛽
𝑏 = 0 or 𝐵𝑏𝑀𝛼𝛽

𝑏 = 0 𝛿𝜃𝛽
𝑏 = 0 or 𝐴𝑏𝑀𝛽

𝑏 = 0 
 

(36) 

 

By substituting components of the face sheets and the 

core resultant in Eq. (35) and considering the strain 

components (Eqs. (21), (11) and (12)), the equations of 

motion are expressed as follows 
 

 𝐿 (16,16) 𝑑 (16∗1) = 0 (37) 
 

In Eq. (37), Lij are differential operators and the matrix 

is (Liew and Lim 1996) 
 

 𝑑 =  
𝑢0
𝑡  , 𝑣0

𝑡  , 𝑤𝑡  , 𝜃𝛼
𝑡  , 𝜃𝛽

𝑡  , 𝑢2
𝑐  , 𝑣2

𝑐  , 𝑤2
𝑐  , 𝑢3

𝑐  , 𝑣3
𝑐

, 𝑤3
𝑐 , 𝑢0

𝑏  , 𝑣0
𝑏  , 𝑤𝑏  , 𝜃𝛼

𝑏  , 𝜃𝛽
𝑏  

𝑇

 (38) 

 

2.9 Free vibration analysis 
 

In this section, the Galerkin method based on the double 

Fourier series is used for free vibration analysis of simply-

supported thick orthotropic DCSP. Simply-supported B.C., 

implies the following conditions (Qato 2004) 
 

𝑣𝑖 = 𝑤𝑖 = 𝑁𝛼
𝑖 = 𝑀𝛼

𝑖 = 𝑁𝛼
∗𝑐 = 𝑀𝛼

∗𝑐 = 0, 

on an edge 𝛼 = 0, 𝑎 

𝑢𝑖 = 𝑤𝑖 = 𝑁𝛽
𝑖 = 𝑀𝛽

𝑖 = 𝑁𝛽
∗𝑐 = 𝑀𝛽

∗𝑐 = 0, 

on an edge 𝛽 = 0, 𝑏  that  i = t, b, c 

(39) 

 

The component of generalized displacement field is 

considered as follow 
 

 𝑑𝑖,1 = Δ.  𝑇𝑚𝑛  𝑡 ,     𝑖 = 1,… , 16 (40) 

 

where 𝑇𝑚𝑛  𝑡 = 𝑒𝑖𝜔𝑚𝑛 𝑡 , 𝑖 =  −1 and 𝜔𝑚𝑛  is the natural 

frequency;  ∆  is the weighting functions vector which is 

 

 Δ =   (𝑑𝑚𝑛  1, 𝑖 . 𝜓[i, 1]

𝑛

)

𝑚

   that   𝑖 = 1,… , 16, (41) 

 

where  𝑑𝑚𝑛   and  𝜓  are the natural mode shape constants 

and natural mode shape vector, respectively, which are 
 

 𝑑𝑚𝑛  =  

𝑢0𝑚𝑛
𝑡  , 𝑣0𝑚𝑛

𝑡  , 𝑤𝑚𝑛
𝑡  , 𝜃𝛼𝑚𝑛

𝑡  , 𝜃𝛽𝑚𝑛
𝑡 ,

𝑢2𝑚𝑛
𝑐  , 𝑣2𝑚𝑛

𝑐  , 𝑤2𝑚𝑛
𝑐  , 𝑢3𝑚𝑛

𝑐  , 𝑣3𝑚𝑛
𝑐  , 𝑤3𝑚𝑛

𝑐 ,

𝑢0𝑚𝑛
𝑏 , 𝑣0𝑚𝑛

𝑏 , 𝑤𝑚𝑛
𝑏  , 𝜃𝛼𝑚𝑛

𝑏  , 𝜃𝛽𝑚𝑛
𝑏

 

𝑇

 (42a) 

 

 𝜓 =

 
 
 

 
 

𝐶 . 𝑆 𝑆 . 𝐶 𝐶 . 𝑆
𝐶 . 𝑆 𝑆 . 𝐶 𝑆 . 𝑆
𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆
𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆

𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆 𝑆 . 𝐶 
 
 

 
 
𝑇

 

  that    𝑆 = sin 𝑝𝛼 ,    𝐶 = cos 𝑝𝛼  

(42b) 

 

where 𝑝 =
𝑚𝜋𝛼

𝑎
, 𝑞 =  

𝑛𝜋𝛽

𝑏
;  𝑚 and 𝑛  are the numbers of 

longitudinal half wave and circumferential wave, 

respectively. Then, by substituting Eq. (41) into equations 

of motions and applying Galerkin method yields 
 

 𝜓 =

 
 
 

 
 

𝐶 . 𝑆 𝑆 . 𝐶 𝐶 . 𝑆
𝐶 . 𝑆 𝑆 . 𝐶 𝑆 . 𝑆
𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆
𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆

𝑆 . 𝐶 𝑆 . 𝑆 𝐶 . 𝑆 𝑆 . 𝐶 
 
 

 
 
𝑇

 

that   𝑆 = sin 𝑝𝛼 ,   𝐶 = cos 𝑝𝛼  

(43) 

 

By integrating Eq. (43) and collecting coefficients, the 

eigenvalue equations are obtained as follow 
 

  𝐾 − 𝜆𝑚𝑛  𝑀   𝑑 = 0 (44) 
 

Where  𝐾  and  𝑀  are the stiffness and the mass 

matrices, respectively. Also, 𝜆𝑚𝑛 = 𝜔𝑚𝑛
2  is the mode 

shape vector coefficients for any value of 𝑚 and n. The 

eigenvalue of Eq. (44) can be solved for various 

eigenvalues and is associated to eigenvectors. Fundamental 

frequency of vibration is the lowest eigen value 𝜆𝑚𝑛 . 
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3. Results and discussion 
 

3.1 Validation 
 

This section deals with the analysis of free vibration of 

thick DCSP based on an efficient computer program 

developed for numerical analysis of DCSP equations of 

motion obtained by Galerkin method. The purpose is to 

compute the natural frequency based on High-order 

sandwich panel theory (HSAPT) by considering all of the 

stress components in the core and the face sheets. First, the 

results of the present model in this paper are compared with 

the results in the literature by considering various 

geometries such as sandwich plate, cylindrical sandwich 

panel and spherical sandwich panel (compressible and 

incompressible) well as various radii curvature and 

thicknesses. It is important to note that the core is 

compressible when in-plane stress is not considered and is 

incompressible when in-plane stress is considered. 

A three-layer laminated sandwich panel with fiber 

reinforced polymer (FRP) face sheet made of glass fiber 

reinforced polyester and HerexC70.130 PVC foam core are 

considered. The mechanical properties for the core and the 

face sheets are given in Table 1 and are used for the 

validation process and the free vibration analysis. 
 

 

 

 

 

 

3.1.1 Example 1.Consider an antisymmetric 
cross-ply (0/90/core/0/90) laminated 
square flat composite sandwich panel 

Table 2 shows the six non-dimensional natural frequen-

cies (NDNF) Ω = 𝜔𝑎2  𝜌𝑐 𝐸2
𝑐 𝐻  of antisymmetric cross-

ply laminated sandwich panel composite with plane form 

laminates (𝑎 𝑏 = 1, square plate), the side-to-thickness 

ratio (𝑎 𝐻 = 10) and the core thickness to face thickness 

ratio 𝑡𝑐 𝑡𝑡 = 10. 

The results are compared with those available in the 

existed literature as follows: 
 

(1) The results by Biglari and Jafari (2010) who used an 

analytical displacement method as the High-order 

Sandwich Panel Theory (HSAPT) (see Frostig and 

Thomson 2004) and Mixed Layer-Wise Theory 

(MLWT) (see Rao and Desai 2004). In their method, 

the order of core displacement for 𝑢 and 𝑣 is 3 and 

𝑤 is 2 and the face sheets are based on FSDT with 

neglected in-plane stress in the core. 

(2) The results by Rao and Desai (2004) based on mixed 

layerwise theory (MLWT). 

(3) The results by Ćetković and Vuksanović (2009) 

using finite element method (FEM). 

(4) The results reported by Rahmani et al. (2010) 
 

 

 

 

 

 

Table 1 Materials properties used for the analysis (Garg et al. 2006) 

Material properties Face sheets Core 

(0/90/core/0/90) 

E1 = 131 GPa, E2 = E3 = 10.34 GPa E1 = E2 = E3 = 0.00689 GPa 

G12 = G13 = 6.895 GPa, G13 = 6.205 GPa G12 = G13 = G23 = 3.45 GPa 

v12 = v13 = 0.22, v23 = 0.49, ρ = 1627 kg/m3 v = 0, ρ = 94.195 kg/m3
 

 

Table 2 Comparison of the first of six NDNF Ω of simply supported antisymmetric (0/90/core/0/90) sandwich plate 

with 𝑎 𝑏 = 1 and 𝑡𝑐 𝑡𝑡 = 10 

m, n Present results HSART MLWT FEM ANSYS ESL 

1,1 1.8577 (12.21%) 1.8627 (12.51%) 1.848 (11.62%) 1.8627 (12.69%) 1.6556 4.8 (193%) 

1,2 3.2667 (15.64%) 3.2799 (16.12%) 3.2196 (13.98%) 3.2882 (16.41%) 2.8247 8.0 (183%) 

2,2 4.3493 (9.72%) 4.3843 (10.60%) 4.2894 (8.21%) 4.3981 (15.02%) 3.9641 10.3 (159%) 

1,3 5.3594 (14.08%) 5.3902 (14.73%) 5.2234 (11.18%) 5.4040 (15.02%) 4.6981 11.7 (149%) 

2,3 6.1786 (9.83%) 6.2840 (11.71%) 6.0942 (8.33%) 6.3024 (12.03%) 5.6254 13.5 (139%) 

3,3 7.7663 (6.70%) 7.9414 (9.11%) 7.6762 (5.47%) 7.9629 (9.41%) 7.2783 16.1 (121%) 
 

*Numbers in parentheses are the discrepancies with repect to ANSYS results (Rahani et al. 2010) 

Table 3 Comparison of the first mode of NDNF Ω of simply supported antisymmetric (0/90/core/0/90) 

sandwich plate with 𝑎 𝑏 = 1 and 𝑎 𝐻 = 10 

tc / tt Present results HOST11 ESL Reddy ESL/FSDT 

4 1.9458 9.1427 8.9948 10.7409 13.919 

10 1.8574 4.9586 4.8594 7.0473 13.8694 

20 2.134 3.1824 3.1435 4.3734 12.8946 

30 2.3345 2.8646 2.8481 3.4815 11.976 

40 2.4712 2.8348 2.8266 3.1664 11.2036 

50 2.568 2.8669 2.8625 3.0561 10.5557 

100 2.7898 3.0293 3.029 3.05 8.4349 
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obtained by parametric design language (APDL) of 

ANSYS commercial FE code using a shell/solid/ 

shell layered model. 

(5) The results by Kant and Swaminathan’s model 

(2001) based on ESL model with 12 degrees of 

freedom. 
 

For further validation of the analytical method presented 

in the present article, the variation of fundamental 

frequency ( 𝑚, 𝑛 = 1 ) of the present model based on 

different 𝑡𝑐 𝑡𝑡  and 𝑎 𝐻 = 10  is compared with those 

results reported in the literature by Khare (higher-order 

shear deformation theory with 11 displacement components 

(HOST11) (Garg et al. 2006), Kant and Swaminathan (ESL) 

(2001), Reddy (2003) and Pagano (ESL/FSDT) (1970). The 

comparisons are tabulated in Table 3. Considering the 

results obtained by ANSYS (Rahmani et al. 2010) in Table 

2, the results achieved by the model presented in the current 

study show more accuracy as compared with those obtained 

by HSAPT (2010), FEM (2009) and ESL (2001). The 

reason behind is consideration of the in-plane stresses for 

the current model. Moreover, taking into account the results 

in Table 3 indicates that considering the in-plane stresses by 

the present model culminates in much more accuracy as 

compared with other LW models. 

 

3.1.2 Example 2. Antisymmetric cross-ply 
(0/90/core/0/90) cylindrical sandwich panel 

Table 4 shows the variations of NDNF with respect to 

 

 

 

 

radius-to-side ratio (𝑅/𝑎) and the thickness-to-side ratio 

𝑎 𝐻  for a five-layer simply supported cylindrical sandwich 

shell which has square plane form ( 𝑎 𝑏 = 1 ) with 

antisymmetric cross-ply face sheets. The core-to-face sheet 

thickness ratio ( 𝑡𝑐 𝑡𝑡 ) is considered to be 10. The 

mechanical properties for the core and the face sheet are 

similar to those considered for cross-ply sandwich plate in 

the Example 1. The results are presented with two 

assumptions (a: in-plane stress in the core and b: 𝑍/𝑅) and 

compared with the analytical ESL theory results reported by 

Garg et al. (2006). It is to be noted that both FSDT (2006) 

and HSDT (2006) methods mentioned in Table 4 employed 

ESL method. Analytical HSAPT1 and ANSYS results 

reported by Rahmani et al. (2010) and analytical HSAPT2 

results reported by Biglari and Jafari (2010) are considered. 

The results of the present analysis by considering two 

assumptions ( 𝑍/𝑅  and in-plane stress) are in good 

agreement with the numerical ANSYS results reported by 

Rahmani et al. (2010). The results obtained by ESL models 

(both FSDT and HSDT) have less accuracy for thick shells 

(𝑎 𝐻 = 10) in comparison with those obtained by other 

models in table 4, however higher accuracy is observed for 

thin shells (𝑎 𝐻 = 100). Also, by considering the parameter 

𝑍/𝑅 in the present study, higher accuracy is obtained. 
 

3.1.3 Example 3. Antisymmetric cross-ply 
(0/90/core/0/90) spherical sandwich panel 

Table 5 shows a comparison for the first mode of 

dimensionless fundamental frequency with respect to 

 

 

 

 

Table 4 Comparison of first mode NDNF Ω of simply supported antisymmetric (0/90/core/0/90) cylindrical sandwich shells with 𝑎 𝑏 = 

1 and 𝑡𝑐 𝑡𝑡 = 10 

a/H R/a Present results a Present results b HASPT1 HASPT2 ANSYS ESL/HSDT ESL/FSDT 

100 

1 68.284 (0.59%) 64.17 (0.695%) 63.27 (2.09%) 64.23 (0.6%) 64.62 64.64 (0.03%) 64.801 (0.3%) 

2 34.746 (0.70%) 34.71 (0.606%) 33.87 (1.83%) 34.71 (0.6%) 34.5 35.9 (4.06%) 36.214 (5.0%) 

3 24.977 (7.46%) 26.64 (7.389%) 24.17 (2.58%) 24.95 (0.56%) 24.81 26.7 (7.62%) 27.119 (9.3%) 

10 

1 6.536 (1.16%) 6.528 (1.054%) 5.65 (12.54%) 6.57 (1.7%) 6.46 7.71 (19.35%) 14.164 (119%) 

2 3.733 (0.83%) 3.737 (0.742%) 2.96 (20.22%) 3.74 (0.81%) 3.71 5.82 (56.87%) 14.026 (278%) 

3 2.86 (1.01%) 2.8 (1.076%) 2.19 (22.61%) 2.86 (1.06%) 2.83 5.36 (89.4%) 14.004 (4.0%) 
 

*Numbers in parentheses are the discrepancies with respect to ANSYS results (Rahmani et al. 2010) 

Table 5 Comparison of first mode NDNF Ω of simply supported antisymmetric (0/90/core/0/90) 

spherical sandwich shells with 𝑎 𝑏 = 1  and 𝑡𝑐 𝑡𝑡 = 10 

a/H R/a Present results (a) Present results (b) HASPT2 ESL/FSDT 

100 

1 125.26 125.27 123.56 123.57 

2 62.53 562.53 65.86 66.33 

3 41.66 41.66 45.24 46.11 

5 24.99 24.99 28.95 30.45 

10 12.49 12.49 17.9 20.34 

10 

1 12.46 12.44 12.29 12.94 

2 6.27 6.27 6.71 8 

3 4.18 4.18 4.73 6.52 

5 2.51 2.51 3.22 5.58 

10 1.25 1.25 2.28 5.12 
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radius-to-side ratio (R/a) and the side-to-thickness ratio 

(H/a) of the five-layer simply supported spherical sandwich 

panels which have square plane form (a/b = 1) with 

antisymmetric cross-ply face sheets. The core-to-face sheets 

thickness (𝑡𝑐 𝑡𝑡 ) is equal to 10. The mechanical properties 

for the core and the face sheet are similar to those 

considered for antisymmetric cross-ply cylindrical 

sandwich shell in Example 1. The results presented on 

NDNF by considering 
𝑍

𝑅
 effect and the correct Lame’s 

parameters for spherical shells (𝐴 = 𝑅 , 𝐵 = 𝑅sin𝛽) are 

compared with ESL model based on higher-order shear 

deformation theories (HOST11) by Garg et al. (2006) and 

analytical HSAPT2 results reported by Biglari and Jafari 

(2010). It is worth noting that the mentioned research works 

(2010), (Garg et al. 2006) assume the structure as a shallow 

shell and Lame’s parameters to be 𝐴 = 𝐵 = 1. This is whilst, 

these Lame’s parameters aren’t suitable for thick shells. 
 

3.2 Results 
 

All of the formulations for free vibration analysis of 

different sandwich panels such as sandwich plate, 

cylindrical and spherical were validated using the above 

examples. In this section, the examples in the previous 

Section 3.1 are considered and the obtained results are 

presented and discussed. Also in these examples, the 

 

 

 

 

 

mechanical properties of the sandwich panels are given in 

table 1. In this section, the effect of different parameter such 

as core-to-face sheet stiffness ratio, plane stress of core, 

side-to-thickness ratio, the numbers of longitudinal half 

wave and circumferential wave, curvature of face sheets 

and radius to length are shown on the dimensionless 

frequency of structure. 
 

3.2.1 Example 1 
In this example, the free vibration of antisymmetric 

cross-ply (0/90/core/0/90) laminated square flat composite 

sandwich panel is investigated. Fig. 3 shows the variation of 

NDNF (Ω) with respect to the core-to-face sheet stiffness 

ratio with and without in-plane stress. 

The following points can be elicited from the diagram: 
 

(1) The NDNF is considerably affected for the core-to-

face sheet stiffness ratio 𝐸𝑐 𝐸𝑡 < 0.0005, however 

it reaches a plateau for 𝐸𝑐 𝐸𝑡 > 0.0005, when the 

in-plane stress in the core is neglected. While the 

NDNF experiences a mild increase for 𝐸𝑐 𝐸𝑡 >
0.0005,  when the in-plane stress in the core is 

considered. 

(2) If the core-to-face sheet stiffness ratio becomes more 

than 0.02 (𝐸𝑐 𝐸𝑡 > 0.02), the difference created on 

NDNF for the two conditions (with and without in- 

 

 

 

 

  

Fig. 3 The effect of in-plane stress of the core on variations of NDNF of the sandwich panel with respect to core 

to face sheets stiffness with 𝑎 𝐻 = 100, 𝑡𝑐 𝑡𝑡 = 10 and wave number in the first mode 

  

Fig. 4 The comparison of the variations of NDNF of the sandwich panel to: (a) the core-to-face sheet thickness 

ratio in different models with a / H = 10 in the first mode; (b) the side-to- thickness ratio in different 

models with 𝑡𝑐 𝑡𝑡 = 10 in the first mode 
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Fig. 6 The discrepancy between the non-dimensional  

frequencies (DBNF) of the cylindrical sandwich 

shell to the variations of the core-to-face sheet 

thickness ratio with 𝐻 𝑎 = 0.1 and 𝑅 𝑎 = 1 

in the first mode 

 

 

plane stress) becomes considerable (about 5%). It is 

an important factor in analyzing sandwich panels 

and therefore, can be used as a criterion for choosing 

flexibility or inflexibility of sandwich panel based on 

the amount of the core-to-face sheet stiffness ratio. 
 

The variations of NDNF with respect to variation of 

core-to-face sheet thickness ratio and side-to-thickness ratio 

 

 

 

 

(𝑎/𝐻) based on various theories are presented in Fig. 4(a) 

and (b), respectively. It is observed that higher-order ESL 

model (HOST11) by Kant and Swaminathan (2010) has 

more accuracy in comparison with first-order ESL model 

(FSDT) by Pagano (1970), while the present LW model has 

more accuracy when it is compared with HOST11 (Garg et 

al. 2006). Fig. 4(a) depicts that the NDNF obtained by LW 

higher-order models and ESL models (Kant and 

Swaminathan 2001) becomes nearly equal when 𝑡𝑐 𝑡𝑡 >
30, i.e., for 𝑡𝑐 𝑡𝑡  higher than 30, simple models of ESL 

with less calculations can be used as compared with LW 

models with costly computation. Fig. 5 shows the NDNF 

with respect to core-to-face sheet stiffness ratio in different 

modes. As can be seen, increasing  𝑚, 𝑛  results in a 

general increase in NDNF. In addition, NDNF for all modes 

becomes nearly stable, when 𝑡𝑐 𝑡𝑡 > 30 for both 𝑎/𝐻 =  
10 and 𝑎/𝐻 = 100. 

 

3.2.2 Example 2 
In this example, the free vibration of cross-ply (0/90/ 

core/0/90) cylindrical sandwich panel is investigated. Fig. 6 

shows the effect of parameter 𝑍/𝑅 and in-plane stress on 

discrepancy between NDNF  
𝑓−𝑓0

𝑓0
× 100  in which 𝑓 is 

NDNF by considering 𝑍/𝑅 or in-plane stress in the core or 

both, and 𝑓0 is NDNF without 𝑍/𝑅 and in-plane stress in 

the core. As can be seen, considering the 𝑍/𝑅 only causes 

no considerable effect on NDNF, however the in-plane 

 

 

  

Fig. 5 The comparison of the variations of NDNF of the sandwich panel with respect to the core-to-face sheet 

thickness ratio in different wave number: (a) with 𝑎 𝐻 = 10; and (b) with 𝑎 𝐻 = 100 

  

Fig. 7 The DBNF for the cylindrical sandwich shell by considering 𝑍/𝑅 versus side-to-thickness ratio for 

different 𝑅/𝑎 with 𝑡𝑐 𝑡𝑡 = 10 in the first mode 
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Fig. 8 The NDNF for the cylindrical sandwich shell by 

considering 𝑍/𝑅 versus side-to-thickness ratios 

for different 𝑅/𝑎 when 𝑡𝑐 𝑡𝑡 = 10 in the first 

mode 

 

 

 

Fig. 9 The DBNF for the cylindrical sandwich shell by 

considering 𝑍/𝑅 versus the core-to-face sheet 

thickness ratio with different 𝑅/𝑎 with 𝐻 𝑎 = 

0.1 in the first mode 

 

 

stress in the core plays a key role in changing this 

parameter. 

The variations of DBNF with respect to thickness-to-

side ratio of sandwich panel (𝑎/𝐻) for various 𝑅/𝑎 by 

considering 𝑍/𝑅 are shown in Fig. 7. As can be seen, the 

DBNF is considerable when 𝑅/𝑎 = 1 , however DBNF 

palpably decreases when 𝑅/𝑎 reaches 3 and higher. This 

situation is intensified by increasing the 𝐻/𝑎. 

Fig. 8 shows the variations of NDNF with respect to 

thickness-to-side ratio of panel for various 𝑅/𝑎  by 

considering 𝑍/𝑅 . It is seen that the amount of NDNF 

decreases as 𝐻/𝑎 increases. Moreover, the natural frequency 

significantly decreases by increasing the thickness-to-side 

ratio of panel for 𝐻 𝑎 < 0.05, however no palpable effect 

on NDNF occurs when 𝐻 𝑎 > 0.05. 

The variations of DBNF with respect to core-to-face 

sheet thickness ratio (𝑡𝑐 𝑡𝑡 ) for various curvature-to-side 

ratios (𝑅/𝑎) of sandwich panel by considering 𝑍/𝑅  is 

presented in Fig. 9. As can be seen, a dramatic decrease 

occurs for DBNF when 𝑡𝑐 𝑡𝑡 < 20 for all 𝑅/𝑎, however a 

considerable increase occurs when 𝑡𝑐 𝑡𝑡 > 20. It is worth 

noting that this phenomenon is intensified when 𝑅/𝑎 = 1 

and is diminished when 𝑅/𝑎 = 10 or higher. 

 

Fig. 10 The comparison of the variations of NDNF of the 

cylindrical sandwich shell by considering 𝑍/𝑅 to 

the variations of the core-to-face sheet thickness 

ratio with 𝐻 𝑎 = 0.1 in the first mode 

 

 

 

Fig. 11 The DBNF for the cylindrical sandwich shell by 

considering in-plane stress with respect to the core-

to-face sheet stiffness ratio for different 𝑅/𝑎 with 

𝐻 𝑎 = 0.1, 𝑡𝑐 𝑡𝑡 = 10 in the first mode 

 

 

The NDNF with respect to core-to-face sheet thickness 

ratio (𝑡𝑐 𝑡𝑡 ) for various ratios of 𝑅/𝑎 by considering 𝑍/𝑅 

is depicted by Fig. 10. As can be seen, 𝑅/𝑎 =1 experiences 

a visible decrease in NDNF by increasing 𝑡𝑐 𝑡𝑡 , however 

the NDNF for 𝑅/𝑎 = 3 and higher marginally increase to 

reach a plateau and nearly converge in higher core-to-face 

sheet thickness ratios. 

Fig. 11, shows the DBNF with respect to core-to-face 

sheet stiffness ratio (𝐸𝑐 𝐸𝑡 ) by considering in-plane stress 

for various 𝑅/𝑎 when 𝑡𝑐 𝑡𝑡 = 10 , 𝑎/𝐻 = 10. It can be 

observed that considering the in-plane stress and increasing 

the core stiffness results in increasing the DBNF. The 

DBNF reaches 40% when the core-to-face sheet stiffness 

ratio is 𝑅/𝑎 = 1, 𝐸𝑐 𝐸𝑡 = 0.1,  and reaches 20% when 

𝑅/𝑎 > 1, 𝐸𝑐 𝐸𝑡 = 0.1. 

Fig. 12 shows the DBNF for the cylindrical sandwich 

shell by considering in-plane stress to the core-to-face sheet 

stiffness ratio for: (a) various 𝐻/𝑎  with 𝑅/𝑎 = 1, 
𝑡𝑐 𝑡𝑡 = 10 in the first mode; and (b) various 𝑡𝑐 𝑡𝑡  with 

𝑅/𝑎 = 1, 𝐻/𝑎 = 10 in the first mode. As can be seen, the 

assumption for core compressibility based on core-to-face 

sheet stiffness ratio is reasonable when 𝐸𝑐 𝐸𝑡 < 0.01, 

because in this range, the maximum value of DBNF with 
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Fig. 12 The DBNF of the cylindrical sandwich shell by 

considering in-plane stress to the core-to-face sheet 

stiffness ratio for: (a) various 𝐻/𝑎 with 𝑅 𝑎 = 1, 

𝑡𝑐 𝑡𝑡 = 10 in the first mode; (b) various 𝑡𝑐 𝑡𝑡   

with 𝑅 𝑎 = 1, 𝐻 𝑎 = 0.1 in the first mode 
 
 

 
 

 

Fig. 13 The DBNF for the spherical sandwich shell by 

considering 𝑍/𝑅 and in-plane stress in the core 

versus various 𝐻/𝑎 with different 𝑅/𝑎 with 

𝑡𝑐 𝑡𝑡 = 10 in the first mode 

considering in-plane stress reaches 5%. DBNF dramatically 

increases by increasing the 𝐻/𝑎 and 𝐸𝑐 𝐸𝑡 . Also, DBNF 

vividly escalates by increasing 𝐸𝑐 𝐸𝑡  and 𝑡𝑐 𝑡𝑡 , exceeding 

200% when 𝐸𝑐 𝐸𝑡 = 0.1  and 𝑡𝑐 𝑡𝑡 = 100. 

 

3.2.3 Example 3 
In this example, the free vibration of antisymmetric 

cross-ply (0/90/core/0/90) spherical sandwich panel is 

investigated. The effect of parameter 𝑍/𝑅 on NDNF is 

shown by Fig. 13. As can be seen, the highest discrepancy 

between NDNF by considering 𝑍/𝑅 and in-plane stress in 

the core occurs for 𝑅/𝑎 = 1, when the side-to-thickness 

ratio 𝐻/𝑎  increases. Nevertheless, when 𝑅/𝑎 > 1,  the 

discrepancy experience less increase even at higher 𝐻/𝑎 

values. 

 

 

4. Conclusions 
 
In this article, an analytical approach was developed for 

free vibration analysis of simply supported thick doubly 

curved sandwich panels with compressible/incompressible 

core using high-order shear deformation theory and 

Hamilton’s principle. The face sheets are considered as 

laminated composite which follow first-order shear 

deformation theory and the core is considered compressible 

(with transverse stress only) and incompressible (with in-

plane and transverse stresses) based on high-order shear 

deformation theory of sandwich structure. The present 

results are compared with those for the exact 3D elasticity 

and numerical results available in the literature. A good 

agreement is found between the results. The present 

validated model is used to carry out several parametric 

studies on the effects of radii of curvature, trapezoidal shape 

factor (the  1 ±
𝑧

𝑅
  terms), thickness and flexibility of the 

core on the free vibration of thick DCSP in detail. The 

output of the present model and its numerical results yield 

the following conclusions: 

 

(1) A general formulation is presented for a wide range 

of geometries such as sandwich plates by taking both 

the radii of curvature as infinity and cylindrical 

sandwich shells/panels by taking one radius of 

curvature as infinity and spherical sandwich shells/ 

panels by taking 𝑅𝛼 = 𝑅𝛽 = 𝑅. Despite the previous 

research works based on shallow shell which assume 

the Lame’ parameters to be 1, the current model 

considers the DCSP with a general view (deep and 

shallow) in such a way that the real values of Lame’ 

parameters for different geometries are taken into 

account. 

(2) One of the novelties in this work in comparison with 

the previous research works dealing with the free 

vibration analysis of doubly curved sandwich panels 

is considering different radii for three layers of top, 

bottom and core in the equations of motions. 

(3) Sixteen displacement parameters are unknown in the 

equation of motions for DCSP. These are not 

dependent on the number of composite sheet layers 

and so are always constant. Considering the 
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continuity of conditions between the top and the 

bottom layers as well as the core, 22 displacement 

components are existed out of which 6 components 

are dependent on the other 16 components. 

(4) The results suggest that the present high-order model 

is applicable to determine the natural frequencies of 

sandwich panels/shells with compressible and 

incompressible core for a wide range of the core to 

face sheet thickness ratios and various radii of 

curvatures. 

(5) The parameter 𝑍/𝑅  plays a pivotal role in free 

vibration analysis of curved structures such as 

cylinder, sphere, etc particularly where the radius of 

curvature is small. Therefore, an optimum range of 

DCSP thickness by considering 𝑍/𝑅 is presented in 

which the influence ability of 𝑍/𝑅 is highly 

considerable. 

(6) The effect of in-plane stress is also very important in 

analyzing free vibration of DCSP. This study 

presents an optimum range for the core to face sheet 

stiffness ratio in which considering the existence of 

the in-plane stress, significantly affects the natural 

frequencies of DCSP. 
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Appendix A 
 

 

 

 

 

Membrane, Flexure, Coupling, and Shear Rigidity Matrices of core (Garg et al. 2006) 

 

 

 𝐴𝑐 =

 
 
 
 
 
 
 
 
 
 
 
 
𝑄11𝐻0

5 𝑄12𝐻0
0 𝑄14𝐻0

0

 𝑄22𝐻0
4 𝑄24𝐻0

4

  𝑄44𝐻0
4

𝑄14𝐻0
5 𝑄11𝐻2

5 𝑄12𝐻2
0

𝑄24𝐻0
0 𝑄21𝐻2

0 𝑄22𝐻2
4

𝑄44𝐻0
0 𝑄41𝐻2

0 𝑄42𝐻2
4

𝑄14𝐻2
0 𝑄14𝐻2

5 𝑄13𝐻0
2 𝑄13𝐻2

2

𝑄24𝐻2
4 𝑄24𝐻2

0 𝑄23𝐻0
1 𝑄23𝐻2

1

𝑄44𝐻2
4 𝑄44𝐻2

0 𝑄43𝐻0
1 𝑄43𝐻2

1

   
   
   

𝑄44𝐻0
5 𝑄41𝐻2

5 𝑄42𝐻2
0

 𝑄11𝐻4
5 𝑄12𝐻4

0

  𝑄22𝐻4
4

𝑄44𝐻2
0 𝑄44𝐻2

5 𝑄43𝐻0
2 𝑄43𝐻2

2

𝑄14𝐻4
0 𝑄14𝐻4

5 𝑄13𝐻2
2 𝑄13𝐻4

2

𝑄24𝐻4
4 𝑄24𝐻4

0 𝑄23𝐻2
1 𝑄23𝐻4

1

  𝑆𝑦𝑚.
    
 

 
 

 
 

 

𝑄44𝐻4
4 𝑄44𝐻4

0 𝑄43𝐻2
1 𝑄43𝐻4

1

 𝑄44𝐻4
5 𝑄43𝐻2

2 𝑄43𝐻4
2

 
 

 
 

𝑄33𝐻0
3

 

𝑄33𝐻2
3

𝑄33𝐻4
3 
 
 
 
 
 
 
 
 
 
 
 
𝑐

 (A1) 

 

 

 
 𝐷𝑠

𝑐 

=

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑄55𝐻0

3 𝑄55𝐻0
2 𝑄56𝐻0

3

 𝑄55𝐻0
5 𝑄56𝐻0

2

  𝑄66𝐻0
3

𝑄56𝐻0
1 𝑄55𝐻2

3 𝑄55𝐻2
2 𝑄56𝐻2

3

𝑄56𝐻0
0 𝑄55𝐻2

2 𝑄55𝐻2
5 𝑄56𝐻2

2

𝑄66𝐻0
1 𝑄65𝐻2

3 𝑄65𝐻2
2 𝑄66𝐻2

3

   
    
 

 
 

 
 

𝑄66𝐻0
4 𝑄65𝐻2

1 𝑄65𝐻2
0 𝑄66𝐻2

1

 𝑄55𝐻4
3 𝑄55𝐻4

2 𝑄56𝐻4
3

 
 

 
 

𝑄55𝐻4
5 𝑄56𝐻4

2

 𝑄66𝐻4
3

𝑄56𝐻2
1 𝑄55𝐻1

3 𝑄55𝐻1
2

𝑄56𝐻2
0 𝑄55𝐻1

2 𝑄55𝐻1
5

𝑄66𝐻2
1 𝑄65𝐻1

3 𝑄65𝐻1
2

𝑄56𝐻1
3 𝑄56𝐻1

1 𝑄55𝐻3
2 𝑄56𝐻3

1

𝑄56𝐻1
2 𝑄56𝐻1

0 𝑄55𝐻3
5 𝑄56𝐻3

0

𝑄66𝐻1
3 𝑄66𝐻1

1 𝑄65𝐻3
2 𝑄66𝐻3

1

𝑄66𝐻2
4 𝑄65𝐻1

1 𝑄65𝐻1
0

𝑄56𝐻4
1 𝑄55𝐻3

3 𝑄55𝐻3
2

𝑄56𝐻4
0

𝑄66𝐻4
1

𝑄55𝐻3
2

𝑄65𝐻3
3

𝑄55𝐻3
5

𝑄65𝐻3
2

𝑄66𝐻1
1 𝑄66𝐻1

4 𝑄65𝐻3
0 𝑄66𝐻3

4

𝑄56𝐻3
3 𝑄56𝐻3

1 𝑄55𝐻5
2 𝑄56𝐻5

1

𝑄56𝐻3
2

𝑄66𝐻3
3

𝑄56𝐻3
0

𝑄66𝐻3
1

𝑄55𝐻5
5 𝑄56𝐻5

0

𝑄65𝐻5
2 𝑄66𝐻5

1

 𝑆𝑦𝑚.

𝑄66𝐻4
4 𝑄65𝐻3

1 𝑄65𝐻3
0

 𝑄55𝐻2
3 𝑄55𝐻2

2

  𝑄55𝐻2
5

𝑄66𝐻3
1 𝑄66𝐻3

4 𝑄65𝐻5
0 𝑄66𝐻5

4

𝑄56𝐻2
3 𝑄56𝐻2

1 𝑄55𝐻4
2 𝑄56𝐻4

1

𝑄56𝐻2
2 𝑄56𝐻2

0 𝑄55𝐻4
5 𝑄56𝐻4

0

   
    
 

 
 

 
 

𝑄66𝐻2
3 𝑄66𝐻2

1 𝑄65𝐻4
2 𝑄66𝐻4

1

 𝑄66𝐻2
4 𝑄65𝐻4

0 𝑄66𝐻4
4

 
 

 
 

𝑄55𝐻6
5 𝑄56𝐻6

0

 𝑄66𝐻6
4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑐

 
(A2) 

 

 
It is worth noting that  𝐵𝑐 matrices is similar to  𝐸𝑐  matrices and the difference between  𝐴𝑐 ,  𝐵𝑐 ,  𝐸𝑐  and  𝐷𝑐  

matrices are subscript ―j‖ in ―𝐻𝑗
𝑖‖ parameter in  𝐴𝑐  matrices is ―j‖, in  𝐵𝑐  and  𝐸𝑐  matrices is equal to ―j+1‖ and in 

 𝐷𝑐  matrices is equal to ―j+2‖ . 

 

where 

𝐻𝑖
𝑜 =  𝑧𝑖𝑑𝑧

ℎ𝑘+1

ℎ𝑘
,      𝐻𝑖

1 =  𝑘1𝑧
𝑖𝑑𝑧

ℎ𝑘+1

ℎ𝑘
,     𝐻𝑖

2 =  𝑘2𝑧
𝑖𝑑𝑧

ℎ𝑘+1

ℎ𝑘
, 

 𝐻𝑖
3 =  𝑘1𝑘2𝑧

𝑖𝑑𝑧
ℎ𝑘+1

ℎ𝑘
,     𝐻𝑖

4 =  
𝑘1

𝑘2
𝑧𝑖𝑑𝑧

ℎ𝑘+1

ℎ𝑘
,     𝐻𝑖

5 =  
𝑘2

𝑘1
𝑧𝑖𝑑𝑧

ℎ𝑘+1

ℎ𝑘
 

That   𝑖 = 1, 2, 3, 4, 5, 6,      𝑘1
 =  1 +

𝑧

𝑅𝛼
  ,      𝑘2

 =  1 +
𝑧

𝑅𝛽
   

(A3) 

 

 

and  𝑄  matrix refers to elastic stiffness in principle material axes (Reddy 2003). 

And membrane, flexure, coupling, and shear rigidity matrices of face sheet are 

 

 𝐴𝑖 =  

 
 
 
 
 
𝑄11𝐻0

5 𝑄12𝐻0
0

 𝑄22𝐻0
4

𝑄14𝐻0
0 𝑄14𝐻0

5

𝑄24𝐻0
4 𝑄24𝐻0

0

𝑆𝑦𝑚.  
  

𝑄44𝐻0
4 𝑄44𝐻0

0

 𝑄442𝐻0
5 
 
 
 
 
𝑖

𝑁𝐿

𝐿

 (A4) 
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General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core... 

 

 

 

  

 𝐷𝑠
𝑖 =  

 
 
 
 
 
 
 
𝑄55𝐻0

3 𝑄55𝐻0
2 𝑄56𝐻0

3

 𝑄55𝐻0
5 𝑄56𝐻0

2

  𝑄66𝐻0
3

𝑄56𝐻0
1 𝑄55𝐻1

2 𝑄56𝐻1
1

𝑄56𝐻0
0 𝑄55𝐻1

5 𝑄56𝐻1
0

𝑄66𝐻0
1 𝑄65𝐻1

2 𝑄66𝐻1
1

   
  𝑆𝑦𝑚.
   

𝑄66𝐻0
4 𝑄65𝐻1

0 𝑄66𝐻1
4

 𝑄55𝐻2
5 𝑄56𝐻2

0

  𝑄66𝐻2
4 
 
 
 
 
 
 
𝑖

𝑁𝐿

𝐿

 (A5) 

 

 

that 𝑖 = 𝑡  top face sheet , 𝑏 (buttom face sheet) 

It is worth noting that  𝐵
𝑖  matrices is similar to  𝐸

𝑖  matrices and difference of  𝐴
𝑖  ,  𝐵𝑖 ,  𝐸𝑖  and  𝐷

𝑖  matrices are 

subscript ―j‖ in ―𝐻𝑗
𝑖‖ parameter in  𝐴

𝑖  matrices is ―j‖, in  𝐵
𝑖  and  𝐸𝑖  matrices is equal to ―j+1‖ and in  𝐷𝑖  matrices is 

equal to ―j+2‖. 
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Nomenclature 
 

Membrane, Flexure, Coupling, and Shear Rigidity 

Matrices of core (Garg et al. 2006) 

 

I (= c, t, b) 
indices for core, top and bottom 

facesheets 

𝑝, 𝑞 (= 𝛼, 𝛽, 𝑧) 
indices for curvilinear coordinate 

axes 

𝛼 , 𝛽, 𝑧 curvilinear coordinate axes 

a, b length and width of sandwich panel 

𝐻 Total thickness of the sandwich panel 

𝑡𝑖  Thickness of layers 

𝑅𝛼
𝑖 ,   𝑅𝛽

𝑖  
the radii of curvature to mid surface 

of the layers in the α and β directions 

𝑅𝛼𝛽
𝑖  the radii of twist of the surface 

𝐴1,   𝐴2,   𝐴3 geometrical scale factor quantities 

A, B Lame’ parameters 

𝑢𝑖 ,   𝑣𝑖 ,   𝑤𝑖  displacements in α, β and z directions 

𝑢0
𝑖 ,   𝑣0

𝑖 ,   𝑤𝑖  
displacements at the mid surface of 

the face sheets 

𝜃𝛼
𝑖 ,   𝜃𝛽

𝑖  
slopes in α–z and β-z planes in the 

face sheets 

𝑢𝑗
𝑐 ,   𝑣𝑗

𝑐 ,   𝑤𝑗
𝑐 , 

 𝑗 = 0, 1, 2, 3 
displacement components of core 

𝐶0,    𝐶1 Trapezoidal effect coefficient 

𝜀𝑝
𝑖 ,   𝜀𝑝𝑞

𝑖 ,   𝛾𝑝𝑞
𝑖  Engineering strain components 

𝜀0𝑝
𝑖 ,   𝜅𝑝

𝑖 ,    𝜀0𝑝𝑞
𝑖 ,  

𝜒𝑝𝑞
𝑖 ,   𝛾𝑜𝑝𝑞

𝑖  

mid-plane strains and curvatures of 

face sheets 

𝜀0𝑝
𝑐 ,   𝜅𝑝

𝑐 ,   𝜀0𝑝
∗𝑐 ,   𝜅𝑝

∗𝑐 , 

𝜀0𝑝𝑞
𝑐 ,   𝜒𝑝𝑞

𝑐 ,   𝜀0𝑝𝑞
∗𝑐 ,   𝜒𝑝𝑞

∗𝑐  

mid-plane strains and curvatures of 

core 

𝐸11 ,   𝐸22 ,   𝐸33 
Young’s modulus in principle 

directions 

𝐺12 ,   𝐺13 ,   𝐺23 shear modulus 

the principle axes 

1, 2 and 3 
parallel and perpendicular of fiber 

𝜍1,    𝜍2,   𝜍3 normal stresses in the principle axes 

𝜏12 ,   𝜏13 ,   𝜏23 shear stresses in the principle axes 

𝜍𝛼 ,    𝜍𝛽 ,   𝜍𝑧  
normal stress components referred to 

the laminate coordinate 

𝜏𝛼𝛽 ,   𝜏𝛼𝑧 ,   𝜏𝛽𝑧  
shear stress components referred to 

the laminate coordinate 

𝜀1,   𝜀2 ,   𝜀3 normal strains in the principle axes 

𝛾12 ,   𝛾13 ,   𝛾23 Shear strains in the principle axes 

𝑄𝑖𝑗  
transformed elastic constant with 

respect to the laminateaxes 

𝐶𝑖𝑗  
elastic constant of layers with 

reference to thefiber axes 

𝜈21 ,   𝜈23 ,   𝜈13  Poisson’s ratio 

 𝑇  transformation matrix 

 𝐷  rigidity matrix 

 𝐴 𝑖  membrane matrix 

 𝐵 𝑖 ,  𝐸 𝑖  shear matrix 

 𝐷 𝑖  bending matrix 

 𝐷𝑠
𝑖  membrane matrix 

𝑘𝑜  shear correction factor 

 𝜀 𝑖  
midsurface strain vector of top, 

bottom and core 

 𝜍 𝑖  
stress-resultant vector of top, bottom 

and core 

𝑁𝑝𝑞
𝑖 ,    𝑁𝑝𝑞

∗𝑖 ,   𝑀𝑝𝑞
𝑖 ,    𝑀𝑝𝑞

∗𝑖 , 

𝑄𝑝𝑞
𝑖 ,    𝑄𝑝𝑞

∗𝑖 ,    𝑆𝑝𝑞
𝑖 ,    𝑆𝑝𝑞

∗𝑖  
stress resultants 

𝑘1
𝑖  and 𝑘2

𝑖 = 0 or 1 
Factor trapezoidal curvature 

parameter 

E kinetic energy 

U potential energy 

W potential of the external loads 

𝜌𝑖  
density of the top, bottom face sheet 

and the core 

𝐼𝑛
𝑖 𝑛 = (1 to 6) moment of inertia 

𝑚, 𝑛 
longitudinal half and circumferential 

wave numbers 

 ∆  natural mode shape vector 

 𝑇𝑚𝑛  𝑡  generalized coordinates 

 𝜓  weighting functions vector 

 𝐾  stiffness matrix 

 𝑀  mass matrix 

𝜆𝑚𝑛  the lowest eigenvalue 

 𝑑  displacement vector 

𝜔𝑚𝑛  natural frequency 

Ω (NDNF) non-dimensional natural frequencies 

(DBNF) 
The discrepancy between the non-

dimensional frequencies 
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