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Abstract. This paper deals with general equations of motion for free vibration analysis response of thick three-layer doubly
curved sandwich panels (DCSP) under simply supported boundary conditions (BCs) using higher order shear deformation
theory. In this model, the face sheets are orthotropic laminated composite that follow the first order shear deformation theory
(FSDT) based on Rissners-Mindlin (RM) kinematics field. The core is made of orthotropic material and its in-plane transverse
displacements are modeled using the third order of the Taylor’s series extension. It provides the potentiality for considering both
compressible and incompressible cores. To find these equations and boundary conditions, Hamilton’s principle is used. Also, the
effect of trapezoidal shape factor for cross-section of curved panel element (1 £ z/R)is considered. The natural frequency
parameters of DCSP are obtained using Galerkin Method. Convergence studies are performed with the appropriate formulas in
general form for three-layer sandwich plate, cylindrical and spherical shells (both deep and shallow). The influences of core
stiffness, ratio of core to face sheets thickness and radii of curvatures are investigated. Finally, for the first time, an optimum
range for the core to face sheet stiffness ratio by considering the existence of in-plane stress which significantly affects the
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natural frequencies of DCSP are presented.
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1. Introduction

Lightweight and stiff, sandwich panels are a vital
element of many modern aircraft interior designs. Rein-
forcing and edge finishing of such panels can be costly and
time consuming, but it is essential. Thin and thick panels
and shells have been studied during the past decades for
different: (a) geometric configurations such as flat, single
curved (cylindrical, conical, etc), doubly curved (spherical,
etc.) (Reddy 2003, Qatu 2004, Qatu and Asadi 2012); (b)
materials such as conventional and modern composites
(Vinson and Sierakowski 2006); (c) loading conditions
(statically, dynamically and thermally) by various theories
and models (Amabili 2008, Leissa and Qatu 2011)
indicating extensive applications of this structural element
in a wide variety of engineering fields. These structures are
subjected to vibrations in different loading conditions and
consequently susceptible to lose their strength and safety.
The main purpose of this paper is therefore to analyze the
free vibration of doubly curved sandwich panels (DCSP) for
their optimum design. Such an optimization requires accurate
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models and theories in such a way that all of the governing
conditions on DCSP such as continuity conditions of
displacements at the face sheets - core interfaces and
boundary conditions are satisfied. Selecting a suitable
model is a fundamental step in DCSP analysis and
extremely depends on mechanical (face-to-core stiffness
ratio) and geometrical parameters. A typical DCSP consists
of two thin high-density face sheets that are very stiff with a
high strength and usually are made of metallic or laminated
composite material. A considerable amount of discussions
about the main aspects considered in the design, analysis
and construction of sandwich structures are existed in the
literature (Noor et al. 1996).

To select a suitable model for analysis of sandwich
shells, two main parameters of the complex mechanical
behavior of sandwich shells as well as the presence of

(1 + %) term in the basic equations should be considered.

(1 i%) term appears in both the strain displacement and

the stress resultant equations, since the curvature of each
parallel surface through the thickness of the shell is
different. The analysis by Bhimaraddi (1984) accounted for

the (1 + %) terms in the stress-resultant, but truncated the

terms beyond the order of (Z—z) Later, Chang (1992) and

Leissa and Chang (1996) considered this term, but truncated
it using a geometric series expansion and neglected the
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terms beyond the order of (%) They showed that by

considering the (1 + %) terms with only FSDT gives more

accurate results than higher-order theories in which the term
is neglected as reported in Refs (Librescu et al. 1989). Liew
and Lim (1996) developed a zigzag deformation higher-
order theory for vibration of isotropic thick doubly curved

shallow shells. Taking into account the (1 + %) terms and

neglecting the terms beyond the order of (%) they

accounted for the cubic distribution of transverse shear
strains through the shell thickness in contrast with existing
parabolic shear distribution theories (PSDTs). Khalili et al.
(2012) used the term in free vibration analysis of
homogenous isotropic circular cylindrical shells based on a
new 3D refined higher order theory. Qatu (2004)

incorporated the (1 + %) terms in the framework of FSDT

for the free vibration analysis of laminated deep thick
shells. He did not truncate the series expansion of the

(1 i%) terms (in the denominator of the stress-resultant

integrands) and calculated the integrals of the stress-
resultant accurately by exact integration through the
thickness of the shell. He showed that the accurate stress-
resultants are needed for laminated composite deep thick
shells, especially if the shell is not spherical. He concluded
that using the plate approximation equations for stiffness
parameters of isotropic thick shells leads to an error of 2%.
Nevertheless, to the best of the authors’ knowledge, this
term has not yet been used for three-layer thick laminated
DCSP. The current article therefore employs this term to
increase the accuracy of the analysis.

In general, there are three main approaches to analyze
sandwich structures: (a) 3D elasticity approaches in which
the equations of motion expressed without considering any
assumption for the displacement field are solved and the
stresses, strains and displacement components are obtained.
Therefore, this theory is the most exact theory for analyzing
mechanical behavior of constructions. (b) Equivalent single
layer (ESL) theories in which all the unknown displacement
field functions do not depend on the considered layer. It
means that all layers have the same degrees of freedom
(DOF); and (c) Layer wise (LW) theories in which the
unknown displacement field functions depend on the
considered layer.

There are few exact 3D elasticity solutions for static and
dynamic analysis of the composite sandwich plates (Pagano
1970, Kardomateas 2005). The 3D elasticity approaches are
perfect, but 2D models are preferred in sandwich structures
because of their required computational efforts. ESL models
are Classical Laminated Plate Theory (CLPT), FSDT and
HSDT. The classical laminated plate theory (CLPT) based
on Love-Kirchhoff yields sufficiently accurate results
when: (1) length to thickness ratio is large; (2) the material
anisotropy is not severe; (3) the dynamic excitation are
within the low- frequency range (Toorani and Lakis 2000).
FSDT based on Rissner—Mindlin (RM) kinematics field
does not satisfy the transverse shear stresses boundary
conditions on the top and the bottom surfaces of the shells
or plates (Librescu and Khdeir 1989, Thai et al. 2012,

Valizadeh et al. 2013, Kapoor and Kapania 2012). For this
reason, in application of such theories based on these
kinematic relations, shear correction factors for equilibrium
considerations are needed (Reissner and Wan 1982). Hence,
some researchers (Frostig et al. 2004, Jedari Salami 2016,
Kant and Swaminathan 2001, Wu et al. 2008) applied third
model of ESL, i.e., HSDT to avoid using shear correction
factors. ESL models also can predict global behavior of thin
and thick laminates, but they are not able to distinguish
some of dynamic and static behaviors such as local modes
of buckling (wrinkling), high mode of vibration and local
bending. So, these models cannot account for the
discontinuities in the displacement field and transverse
strains at the interfaces between the layers with different
stiffness  properties. LW theories improved ESL
disadvantages and were used in many research works
(Hause and Librescu 2006, Ferreira 2005), but the main
problem in using LW theories is that the amount of
unknown quantities increases by increasing layer number
and so finding an analytical solution for them becomes
impossible. In this case, it seems that using theories such as
Frostig theory (Frostig 1992) which divides the whole
structure into three layers and has constant unknown
quantities is helpful. Fares and Youssif (2001) studied a
refined ESL model of doubly curved shells using an
extension of Reissner’s mixed variation of formula based on
Maupertuis® principle. In their study, the stresses were
continuous through the shell thickness and were consistent
with the surface conditions and none of shear correction
factors were used. Singh used Rayleigh—-Ritz method to
obtain the natural frequencies of doubly curved open deep
sandwich shells with ESL model in which the displacement
fields are defined by Bezier surface patches (Singh 1999).
The dynamic analysis of anisotropic and multi-layered
shells and panels with different curvatures by using HSDT
in which the displacement field having a fixed nine degrees
of freedom was investigated by Viola et al. (2013). The
equations have been solved numerically using the
Generalized Differential Quadrature (GDQ) technique. Free
and forced vibrations of cross-ply laminated composite
arches under various boundary conditions were investigated
by Khedeir and Reddy (Khdeir and Reddy 1997). Their
formulation included ESL third, second, first and classical
theories. Hohe et al. (2006) investigated the dynamic
buckling and the post buckling analysis of the flat and
curved sandwich panels with transversely compressible core
in which the standard Kirchhoff-Love hypothesis for the
face sheets and a first/second order power series expansion
for the core were used. They neglected the transverse shear
strains of the core layer. Biglari and Jafari (2010) presented
a complex three-layer theory for the free vibration and
bending analysis of doubly-curved sandwich structures with
flexible core. In their model, Donell’s shallow shell theory
was used for the face sheets. Malekzadeh Fard et al. (2014)
studied bending analysis of doubly curved sandwich panels
subjected to multiple loading conditions using improved
high order sandwich panel theory and second computational
Frostig’s model (2004). In their formulation, the in-plane
hoop stresses of the core and the trapezoidal shape factor

(1 + %) were considered.



General equations for free vibrations of thick doubly curved sandwich panels with compressible and incompressible core... 153

To the best of the authors’ knowledge, no research work
on free vibrations of thick doubly curved sandwich panels
and shells with compressible/incompressible core using
higher order shear deformation theory is reported
adequately in the existed literature. The current research
work presents the free vibration of simply-supported three-
layer thick doubly-curved orthotropic sandwich panel using
a new type of high-order sandwich panel theory. In this
model, face sheets are orthotropic laminated composite and
the FSDT is applied to them. Additionally all stress
components, except normal stress for face sheets are
considered. The core is made of compressible and
incompressible orthotropic material and a third order
pattern for both the in-plane and the vertical displacement
was used. Also, all six stress components of the core were
considered. Different radii of curvatures for the face sheets
and the core (R,, Rgz) were taken into account using the

terms (1+Ri) and (1+Ri) due to their effects on
p 8

accuracy of stress resultants. These coefficients have
significant role in free vibration analysis of thick DCSP. In
order to validate the present model and formulations, the
obtained numerical results of the analysis are compared
with those available in the literature. Also, parametric study
including the effect of radius of curvature, core to face sheet
thickness ratio and flexibility of the core are carried out.

2. Analytical model for thick DCSP
2.1 Structural model

A three-layer DCSP is considered as shown in Fig. 1.
The DCSP is composed of two orthotropic laminated
composite face sheets separated by an orthotropic thick
compressible or incompressible core. The global coordinate
system (a, B, z) is orthogonal curvilinear shown in Fig. 1.
The origin of the coordinate system (a, S, z) is located on
one corner of the mid plane of the sandwich panel. The «
and g curves are lines of curvature on the sandwich panel
mid surface, z = 0. The z-axis is a straight line normal to
shell mid surface. The thickness of the top face, core and
bottom face layers are t!,t¢,t? respectively and H is the
total thickness of DCSP and Rf;,,R[’;, (i =t,c,b) denote the
radii of curvature to mid surface of the top, core and bottom
layers in the a and g directions. Rflﬁ (i=t,cb) is the
radii of twist of the surface. When the direction of a and g
coordinate axes coincide with principle directions, then

= top facesheet
L
¢ ¥ core

bottom faceshee

Ra

Fig. 1 Geometry of doubly curved sandwich panel and
curvilinear coordinate

R, Ré are called as the radii of principle curvature and

R;‘,,; is infinity. The DCSP may be circular cylindrical shell
with RL =R’ and R = Rl = o or %= RIZ,

=0, a

spherical panel with R, = R; = R’ or g—f’ =1. Noted that
B
the curvature effect of layers is considered in this paper.
2.2. Basic assumptions

(a) As the face sheets and the core deflections are small
and the strains are infinitesimal, they are assumed to
be linearly elastic.

(b) The face sheets are made of orthotropic laminated
composite and the core is made of incompressible
material such as metallic honeycomb or balsa wood
and a compressible core such as foam.

(c) The interfaces between the layers and the face-core
interfaces are perfectly bonded, so there is no
delamination or interlayer slip between the layers.

(d) Face sheets are sufficiently thin (compared to the
core) to be treated as thin plate or shells and follow
the FSDT assumption.

(e) The face sheets and the core are of constant
thicknesses and uniform throughout the entire DCSP.

Considering a differential element of DCSP (see Fig. 1),
the square of linear element “dS” between the points
(a,B,z) and (a,B,z + dz) is given by

(d$)? = At (da)?® + A3(dB)? + A5(dz)? M

where A;, A, and A; are referred to geometrical scale factor
quantities
A VA
A1=A<1+—>, A, =B(1+—), 4;3=1 (2
R, Ry

In Eq. (2), A and B are Lame’ parameters. An infinite-
simal rectangular area of the surface at +z is given by

dA, = AAdadB ©)

The volume of an infinitesimal element at 42z is given

by
dV = A,A,dadBdz ()

It is to be noted that A =B =1, when the shell
curvature is constant for example cylindrical, spherical and
hyperbolic paraboloid.

2.3 Definition of the 3D displacement field in the
face sheets and the core

Displacement field for an arbitrary point within top and
bottom face sheets based on Mindlin—-Reissner shell theory
can be written as (Reddy 2003)

ul(a, B,z,t) = u(a,B,t) + 0L (a, B, t)
vi(a,B,z,t) = vj(a,B,t) + z'6; (a, B, ) 5)
wi(a,B,z,t) = wi(a,f,t)
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Where uf,v' and w! (i = t,b) denote the displacement
components of the face sheets of DCSP. In Eq. (5), u), v}
and w' are the displacements at the mid surface in the «a,
B and z directions. 6% and Hgare rotations of a transverse
normal around o and g curvilinear coordinates, respectively.

The displacement components u¢, v¢ and w¢ of a generic
point in the core are related to midsurface displacement
(ug , v5 ,wg) by
u(a,B,z,t) = u§(a, B, t) + zuj(a, B, t)
+z2u5(a, B, t) + z3u§(a, B, t)
vi(a, B,z t) = vi(a,B,t) + zvi(a,B,t)
+z%2v5(a, B, t) + z3v5(a, B, t)
wé(a,B,z,t) =wi(a,B,t) +zwi(a,pB,t)
+z2w5(a, B, t) + z3w5(a, B, t)

(6)

In Eq. (6), u§, v and wi functions are rotational, the
parameters u$ ,u§,vs,vs,ws and w$ are the higher-
order terms in the Taylor’s series expansion.

2.4 Strain-displacement equations

Considering DCSP (see Fig. 1) as an element, the mid

surface vector U at any point within the DCSP is
introduced by the following relation

U=ui, + vig + wi,, )

Where 7, and 7, are the tangent unit vectors and 7,
is the normal unit vector to mid surface as shown in Fig. 1.
The strain-displacement equations of a 3D DCSP in
curvilinear coordinate with small displacements assumption
and using Mainardi-Codazzi equations are (Qatu 2004)

0<A)_16A+16 B?
0B\R,/  Rz0B  Boa\Ry)

8
6B_1aB+1a A? ®)
da\R;) R,0a A0B\Ry

Gauss characteristic equation is
a (16B)+ a (16A)_ AB N AB
da\Ada) ~dB\BOB/  R.R; R,z* ©)
The strains are found to be (Qatu 2004)
_ 1 (1 du N v 0A N W)
fa “(1+c2)\10a” AB9p " R,
Rq
_ 1 10v N u 0B N w
% _<1+C i) Bop ' ABoa ' Ry
"Ry (10)
_ 0w
27 9z
_ 1 10v uodA w
Yap = (1+COL) Ada ABOB ' Ry
Rq

(1+cl RZ,; BoB ABda Ry
_ 1 ow
e A1+ coia)a
+A (1 +6 i) 9 i
R,/ 0z\ 4 (1 +C ia)
v
Ry (1 +C, R—) (10)
1 ow

Vor = —F——— =27
B (1 +C i) 0B
Rg

iB(14+¢,2)2 d
1Rﬁ 62
u

Rag (1 +C é)

B(1+ClRi)
B

The above equations can be easily applied for flat plate,
cylindrical, spherical shells, etc. The kinematic relations for
the top and bottom face sheets and the core in terms of mid
surface displacement are obtained by substituting displace-
ment field from Eqgs. (5) and (6) into Eq. (10) yields the
Egs. (11a) and (11b) and Eqgs. (12a) and (12b) for the face
sheets and the core, respectively, as follows

. 1 . o
&, = —i(eéa + zlrcg)
(1 +C, R—)
) 1 . o
o = < (&6ap +2'Xip)

ot (1+¢ R—)

Vziﬁ = slﬁtﬁ + sﬁi?a

P ygaz (11a)
YQZ - —Zl
(1+c E)
gi — 1 (Si + Zi i )
Ba 4 0Ba Xpa
(1+a7)
B
i
)’ﬁlz _ YD[?z ~
1+C —)
( ! Rp

In the above equations i stands for face sheets, i =t
means the top face sheets and i = b means the bottom face
sheet where

. louy v oA w
Ehg ===t ——+—

Ada  ABOf 'R,
g - 10w U 0B | wy
%" Bap " ABda Ry

(11b)
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10vs u 94
Ada ABOJp
10uy v 0B

wo

Rep

W

e =B BB " ABoa ' Ry

Y(l)aﬁ = géaﬁ + S(l)ﬁ’oc

lexﬁ =

X[i?a -

For the core

1

1+¢c,

Rq

1

1+C1R_
B

=&§, +2°KS
1
1+c

+ R,

1

1+C1R_
B

1

+COE

—c [850, +z°k5 + z

—0 [sgﬁ + ZCKE +z

100,  6; 04
" A da

ABap

_106; 6. 0B

106; 6L dA

A da
100, 6; dB

B df ABoda

c2

€2 xc
+2z E0a

ST [sgﬁa + ZC)(fm +z

c c,C
- 7€ [£Oaz +z Xaz +z

c cqC c2 *c
+[£02a +z Xza +z gOza]

1

1+C1R_

— [sﬁlgz + ZC)(;Z +z

+[E(§zﬁ + 2% + Zczfggﬁ]

c2 xc

*C
€0a

c2  xc
€0Ba

c2 xc
€0az

c2 xc
50/3z

+

(11b)

+ Zc3K;C]

+ ZC3KZ§”]

2 3.
— [Egaﬁ + 2%ap + 2 Egqp + 2° Xaf;]

(123a)

+z”3)(l§;]

+ 2]

2y

&5, = wi
(12b)

KS = 2w§

¢ — .C
€0za = U1
— c
Xga - 2u2

*C c
E0za = 3uS
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+oLlp, 4ok
AB TR,
*C 1
SOﬁ = E v, B
up w;
—~B +-=
TR Rg g5 = 3w§
*C _ — ..C
Kﬁ - Bcv?”ﬂ .
us w3
—= B +=
T TR,
& luﬁ £ w§
Ba g B . az AC ,a .
v, w u v
- B, +-2 _Z0_ 0
AB"" R, R, Rep
1 1
X/Cj’a B ug,/} Xaz n Wig
Vi oW MM
AB % 'R R R
B a ap
exc luc £xc we
0Ba B 2,8 Oaz A 2,a
v; w3 u; v
——=B,+— -——=— (12b)
AB ™ R R R
B a ap
L1 L1
X/gfz = Eug,ﬁ Xaz = ZW3Ca
B L . R |
AB "R, Ry R
‘Sgﬁz EWS,ﬁ
Vo Up
R Rep
1
XZ?Z E ch,ﬁ
vi oy €0pz = Vi
R R
L X5, = 208
€0pz = ZWag )
UB% s Eof?z = 3v§
R Rep
. 1
Xpz = 5 Wip
vy us
Rg  Rap

2.5 The continuity conditions of the interface
displacements

Reminding that there is no slipping between the face
sheets and the core, the following relations can be written
(Kheirikhah et al. 2012)

u| e =ut| e V| e =00 e
== 7=— == 7=
utl e=ub| vl e=vP|
z=—= z=—= 7=—% ==
(13)
wé| e = th t¢
7= 7=>
Iwel e =wh| e
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By substituting Egs. (5) and (6) into Eq. (13), ug, uf,
v§, vi, wg, wiare obtained as follows

2
ub +uf 1 t¢
uf =——>—+ Z(tbef; —t'6%) — (7> us
b c\2
Cug—ug 1, t
u{ = te - F(t 90( + ttgé) - (3) u§
vi+vd 1 te\?
v§ = ——2 +—(tb9§—tf6§)—(—) v§
2 4 2
b ,
_ Vo — Vo 1 bpb tpt te
Ulc— e —ﬁ t Hﬁ +t HB)_<?> U§
wt+wb 62
Wo=T <?> Wi
o WLL _ Wb tC 2 .
Wl —_ tC - ? W3

2.6 Constitutive equations

Since the face sheets and the core are assumed to have
linear elastic behavior, the stress-strain relation according to
the Hook’s law is

{0} = [Q]{e} (15)

If the principle axes (1, 2, 3) (local axes) coincides the
geometric axes (a, B, z) (global axes) (i.e., Fig. 1), the
constitutive equation for a fiber—reinforced composite
lamina can be written as follows

07 i [Cll C21 C13 0 0 0 '|l (fl t

() C12 CZZ C23 0 0 0 &

o3| _|Ciz G Gz 0 0 0 | &1 (16)
T12 0 0 0 Cu O 0 Y12

T13J 0 0 0 0 Cis O ‘ V13J

T23 0 0 0 0 0  Cggl V23

where the [Q] matrix refers to the elastic stiffness in the
principle material axes (1, 2, 3) and Cj’s elements are
defined as follows (Garg et al. 2006)

E11 (1 —vp3v3y) _ Eyy (vy1 — v31V3)

(h=—""7" (= e )
_ Ey1(v3y +vyqv32)
Ciz3 = "
v
Ep (1 —vi3v31) Ezy(v3p +vi2v31)
CZZ = s C23 = e i (17)
Con = E33(1—vipvp1)
33 = oo
Caq = Gy, Cs5 = Gi3, Cos = Go3

* —
V' =1 =13y — Vp3V3p — Vi3V31 — 2V3Vi3V2

In general, the principle axes of materials may not
necessarily coincide the geometric axes. Since the loading
is defined in geometric directions, it is required to consider
the relationship between the two axes. The stress-strain
relation in coordinate axes (a,f8,z) can be written as

z.3 2 Typical e

/ lamina

Fig. 2 Lamina reference axes, (a,B,z) (Garg et al. 2006)

{0y} =[Qle;} (18)
Where (Reddy 2003)
[Q] = [T]'[e][T]™" (19)

[Q] refers to reduced elastic stiffness matrix of the
orthotropic material. It corresponds with Kth lamina and
is expressed in terms of the orientation 8 and material
properties. Superscript T denotes transformation matrix
[T] and is defined as

c? 52 2¢s
[T]=]s* ¢* —2cs (20)
—cs ¢s c?—s?

Where ¢ = cos@, s =sinf and are measured counter-
clockwise from the 1-axis (Fig. 2).

2.7 Stress (Force and Moment) Resultant

By substituting Egs. (11a), (11b), (12a) and (12b) in
constitutive Eq. (18) and integrating through the thickness,
Eq. (18) can be expressed by vectors of mid-surface strains
& and stress resultant & as follows

{0} = [D){&} (21a)

in which

[D] — [[Dfl]aXa 0 ]’
0

| k, [D;]bxb (21b)
i1 — [A]chc [B]lcxd]
127] [[E]QXC (D] xa

Dimensions of the matrix D for the core are: a = 19,
b =14, c=10,d =9, and for the face sheets are: a =
14, b =6, ¢ = 4,d = 4. Also, the elements of [D] for the
core and the face sheets are given in Appendix A.

Where k, parameter is called as shear correction factor

of FSDT which is equal to % (Reissner 1953). Components

of & and & for the face sheets and the core are defined as
(Garg et al. 2006)

o p— (o Cc c c *C *C *C *C (o
{&.} = (&6 €0pr€0par €0apr €0ar €0pr €0par €0ap s €02/
55§ 'KSUKE'Xga'ngﬁ'KZC'KEC'X;}Z'X;%' (22&)

c oC c c c *C
K21 €0zar€0az» 502[3’ ’ SOEZ! €0za>
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€035 €0z E0fzr Xsar Xbzr Xoprr X Xasn Xpz Y (223)
{Ec} = {N[g ,NﬁC,nga, (ZﬁIN;C,N*C,N*C NaﬁszC!NZ*C'
M(gl Mg; M;}:al aﬁ;M(;Cl M*C; MﬁalMaﬁ;Mgl

. (22b)
cha 'ng:Q[;’ Qﬁz' Za'Qzﬁ' az'Qﬁz'
Szca'Soclz' zﬁ'Sﬁz'S;;SE;}T
{E_L} = {E(i)a:géﬁ'g(i)ﬁarg(gaﬁ"{é; Kﬁi?')(éa')((ilﬁ! (22 )
g(L)zaig(lJaZ'g(L)z/?'g(l)ﬁz')(clrz:)(éﬁ }T that i =¢b
{0.} = {Noi( :Né;Néa; aﬁ,M&,Mﬁ,Mﬁa; aﬁ'
(22d)

Q;a' QézZ! Q;ﬁ' Q[LS’Z' SlLIZ' Szlﬁ} that i = t, b

Superscript T denotes here as transpose. The components
of stress resultant vectors {G} are forces and moments per
unit of length which act along the lines of constant a or B
in the face sheets and the core of DCSP (Garg et al. 2006)

[Né Ne® Mg M;;C]
N§ N3¢ M§ M
NS NE*ME 0
c N;E c ;z,

lNﬁaN S Mﬁa Mg ] (23a)
kS O 0 00 0,1\ ¢
:J 0 Okfkg 00 o, b (1,2%,2,2%)dz
00 0 k§0[]|Tap
00 0 O0kil\Ta
c *C CoC .
QzﬁQzﬁSZﬁ 0
lQéz Qu5 S&, Sas J
Qm Q;éSZCa 0 (23b)
0 0 0 Tﬁz ¢
kik50 0 T,
j 8 1O 2]?2 0 Tai (1,2%,2,2z%)dz
0 0 0 k1 kz Tya
4 Z
ks = <1 +R_g)’ ks = (1 N R_§> 30
i l ‘
p Z k0007 (%Y
g ﬁ kKioo|)o o
5 Mo ;; f 8 olk2 rai; (1,z)dz"  (24a)
Q «Q
' T
lNéa Mﬁa 000 kl Ba
Qlﬁzsgz ki 0 0 0 ](T)
i kiki 00 T ‘ ‘
gjﬁs‘? B f i 8 0 2k§ 0 rf (1,z")dz" (24b)
o 0] Lo o okk{n
za

ki=<1+—-)r k§=(1+;.>, that i = t,b (24c)

<2

It is worth mentioning that Egs. (23a) and (24a) clearly
show that the symmetric property of stress tensor
Tap = Tpe doesn’t imply the symmetry of stress resultants
Neg # Npo, Mg #+ Mg,, because in general R, # Rg,
except for structures such as plate and sphere in which
R, = Rz and a thin panel or shell of any shape.

2.8 Equations of motion

Governing equations of motion for the free vibration
analysis of DCSP and the boundary conditions are obtained
using Hamilton’s principle (Reddy 2003)

5f(L)dt=5f[E-(u+W)]dt=o (25)

Where ¢ is the first variation operator, E is the kinetic
energy, U and W denote the total strain energy due to the
deformation and the potential of the external loads,
respectively, and t is the time coordinate. For free vibration
analysis, there is no damping and external forces on the
system. Therefore, Hamilton’s principle in Eqg. (25) can be
written as follows

5 ftz[E— Uldt = 0 (26)

The kinetic energy for DCSP is given by (Reddy 2003)

t,b,c

1 A Y B R
ZEZ pt@” + v +wHdVt (27)
Loyl

Where pi(i =t,b,c) is the mass per unit volume of
the top and the bottom face sheets and the core respectively.
ut, v, wi(i =t,b,c) are the velocities in the o, # and z
direction respectively, “.” denotes the first time derivative,
Vi(i = t,b,c) is the volume of the top and the bottom face
sheets and the core, respectively and dV' is the volume of
an infinitesimal element (i.e., Eq. (4)). The first variation of
the kinetic energy and integration by parts with respect to
the time coordinate for DCSP are given by Egs. (29) and
(30), respectively as follows

t,b,c
SE = Z fpi(uisui + OISV + Wisw)dVE  (28)

L

t,b,c t
t
f OEdt = _Z ff [p! (il 6ul + H'6vE + wisw?)
0 il G
(29)
dvilde +fpi(ui5ui + vVt + wiéwi)dviﬁzo

Where ii!, ¥, w'(i =t,b,c) are the accelerations in
the a, £ and z direction, respectively. Also, in Eqg. (29), the
second integral according to the initial assuming in Hamil-
ton’s principle is equal to zero, then Eq. (30) can be
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rewritten as follows
f sEa
t b,c

(30)
= JJ [p'(i'6u’ + v 6vt + wiswh)dV'] dt
Vl

By substituting the displacement field in Eqgs. (5) and (6)
into Eqg. (30) and integration by parts with respect to the
time coordinate, the variation of the kinetic energy is
obtained as

fSEdt—Zf&E dt+f6ECdt

= Z ff[(louo + 161 sub + (Lt + 156L)566%

+(10v0 + 1165 )6vh + (Iiith + 1565)56;

+ (Iiw))Swi|(A!BidadB)dt

—jtj [(I§iif + IS + I5iis + I§iiS) Sug

U g + 5 + 505 + I§U$)0u
+Usitg + I5i§ + I35 + [§05)0us (31

+USEG + 1§15 + I35 + IS15)8ug

+(I§v§ + If U5 + ISV + ISD5)5v§
+(Ifv§ + 505 + ISV + 1§D5)8vf
+I50§ + I§V5 + IV + IEVS)Sv5

F(ISTE + ISVE + IS + ISHS)SvS
FISWE + ISWE + ISWS + IEWS)SwE
FUSWE + ISWE + IEWS + IEWS)Swe
FISWE + ISWE + IEWS + IEWS)SwS
FISWE + ISWE + IEWS + IEWSE)Sws]
(A°B¢dadp)dt

1;;=fzp (1+Rl>( R}

i=tbc and n=1 to 6

that

) (z™)dz, 32)

The first variation of the strain energy for DCSP during
the elastic deformation is

f 5U€dt+zfaudt
t

it

f ff(h 040¢e; + hgagdep + 07 0¢e;
FhepTagOVap + Tag Vap + T5,0Y5,)dA" dz dt

1

(33)

+Z f f f(o’,;&a + aﬁ&ﬁ + ‘L'aﬁ 6)/04; (33)

zl A
+1l, 8y, + TBZ SyBZ)dA‘ dz! dt

Noted that in the above relation, h, = hy = hes =0
indicates the compressible core and h, = hg = h,z =1
presents the incompressible core. Egs. (11), (12) and (4) are
substituted into Eqg. (33) and integration by parts is carried
out with respect to a and . For example variation of strain
energy related to y,ﬁ,ﬁ for the face sheet is

fff tig8ylp dA'dz'dt

AL zl

IJ-J- aﬁ[ (530aﬁ +z' 5Xaﬁ)

A‘ z1

+ i (653ﬁa +2' 86X, )] dz (AiBik;‘kg)dadﬁdt
o )
()G
(o))
dz'(A'B'kik})dadpdt
- j S IN(EACIAICY
(M () 00 - (50 o)
+ [ (8L ) (965) + (M (4)) 00|
[ i) 0u) + (W4 (82) (5v1)
(ALB‘ NB“) (awo)] [aﬁ (A'M}, ) (56%)
+ (M5, (BL)) (59;)])} dadpdt

t

+ [ [ 10N (508 + (8w (o031
0B

(34)

+

—

f [(ANL ) (61) + (Mg, )60 daat
1
0 «a
Finally, by substituting Egs. (31) and (33) into Eq. (26)
and considering the Eq. (14) and collecting the coefficients
of independent variations in &up, v, Sw', 565, 863,
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sus, v, sws, su§, Sv§, Sws, Sub, svg, swP, 667,
69[? sixteen equations of motion for thick DCSP and

sixteen boundary conditions (B.C.) are obtained. The equa-
tions of motion for thick DCSP are
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thee?  gbge  gh ¢
HAB) =16 + g I+ 5 = 15|
+(ACBC) [— 16 110 +T120 +ZI§ _ﬁli] Ug
b b b
+ [(ACBC) (%13 —%If +%1§)
(35p)

+ (AbBb)I{’] 7]

cpc tbz c tbz c tbz[f
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* 16 4t¢

+ (AbBb)Ig] 65

Boundary conditions are

at a; =0 and a;=a at ;=0 and B,=p

dufb =0 or BIN! =0 Suf =0 or A'Ng, =0
Sv§=0 or B'Ny = Sv§=0or A'Nj=0
Swt=0 or B'QL, =0 swt=0o0r AQp, =0
56. =0 or B'M. =0 86t =0 or A'Mg, =0
865 =0 or B'Mgy, = 865 =0 or A'My =0
Su§ =0 or h,B°N;*=0 Su§5=0or hyA°Ng; =0

6v5 =0 or hgB°Nyy =0 6v5=0 or hepANg® =0

Sws =0o0r A°Qp, =0 (36)

Su§ =0 or h,A°Mg, =0

dws =0 or B°Q;S =

Su§ =0 or h B°M: =0
8v§ =0 or hegB°Mys =0 §v§ =0 or hepA°Mg" =0
Sw§ =0 or B°S =0 sw§=0o0r ASg =0
Suf =0 or BPN? =0 sufp =0or ANg, =0
§vp =0 or BPN; =0 svp=0or ANy =0
swb=o0or APQp, =0

862 =0or A'Mp, =0

swh = or Banz =
8562 =0 or BP°M2 =0

865 =0 or B'Mb; =0 86 =0o0r A"Mp =0

By substituting components of the face sheets and the
core resultant in Eq. (35) and considering the strain
components (Egs. (21), (11) and (12)), the equations of
motion are expressed as follows

[L]16,16){d} 1641y = O (37)

In Eq. (37), L; are differential operators and the matrix
is (Liew and Lim 1996)

T

t

@ ub,vg,wt, 05,05 ,us,v5,ws ,u§, vs (38)

= b
ws,ug ,vg w60 ,6;

2.9 Free vibration analysis

In this section, the Galerkin method based on the double

Fourier series is used for free vibration analysis of simply-
supported thick orthotropic DCSP. Simply-supported B.C.
implies the following conditions (Qato 2004)
vi=w! = N) =M, =N;* =M; =0,
onanedge a =0,a
i — i_Ni_Mi_N*C_M*C_O (39)
w=w =N =Mg=10Ng =Mg- =0,

onanedge 8 =0,b that i=tb,c
The component of generalized displacement field is
considered as follow
{dir}=A T, (0, i=1,..,16 (40)
where T, (t) = e!®mnt, | =+/—1 and w,,, is the natural
frequency; {A} is the weighting functions vector which is

0= @ LAY[L1] that i=1,..,16, (41)

where {d,,,,, } and {1} are the natural mode shape constants
and natural mode shape vector, respectively, which are

T

t t t t t

Uomn » Vomn » Wmn » Gamn ’ gﬁmn ’
_ c c c c c c

{dmn} = YU2mn » V2mn »W2mn » W3mn » V3mn » Wamn» (42&)

b b b b b
Uomn» Vomn» Wmn » gamn , gﬁmn

(€S scc.s V
c.S §.C §.5
{y} = s.C §.5 C.S
S.C S.5 C.S (42b)
s.C §.S C.§5 S.C
that S =sin(pa), C = cos(pa)
where p = mZ“. q= %; mandn are the numbers of
longitudinal half wave and circumferential wave,

respectively. Then, by substituting Eq. (41) into equations
of motions and applying Galerkin method yields

( C.S s.c ¢.s T
C.S S.C S.S
W} = S.C S.S C.S
S.C S.5 C.S (43)
s.C S.5 c.s s.c)
that S =sin(pa), C = cos(pa)

By integrating Eq. (43) and collecting coefficients, the
eigenvalue equations are obtained as follow

{[K] = An [M]}{d} = 0 (44)

Where [K] and [M] are the stiffness and the mass
matrices, respectively. Also, A, = w2, is the mode
shape vector coefficients for any value of m and n. The
eigenvalue of Eqg. (44) can be solved for various
eigenvalues and is associated to eigenvectors. Fundamental
frequency of vibration is the lowest eigen value A,,,,.
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3. Results and discussion
3.1 Validation

This section deals with the analysis of free vibration of
thick DCSP based on an efficient computer program
developed for numerical analysis of DCSP equations of
motion obtained by Galerkin method. The purpose is to
compute the natural frequency based on High-order
sandwich panel theory (HSAPT) by considering all of the
stress components in the core and the face sheets. First, the
results of the present model in this paper are compared with
the results in the literature by considering various
geometries such as sandwich plate, cylindrical sandwich
panel and spherical sandwich panel (compressible and
incompressible) well as various radii curvature and
thicknesses. It is important to note that the core is
compressible when in-plane stress is not considered and is
incompressible when in-plane stress is considered.

A three-layer laminated sandwich panel with fiber
reinforced polymer (FRP) face sheet made of glass fiber
reinforced polyester and HerexC70.130 PVC foam core are
considered. The mechanical properties for the core and the
face sheets are given in Table 1 and are used for the
validation process and the free vibration analysis.

M. Nasihatgozar, S.M.R. Khalili and K. Malekzadeh Fard

3.1.1 Example 1.Consider an antisymmetric
cross-ply (0/90/core/0/90) laminated
square flat composite sandwich panel
Table 2 shows the six non-dimensional natural frequen-
cies (NDNF) Q = wa?/p./ES/H of antisymmetric cross-
ply laminated sandwich panel composite with plane form
laminates (a/b = 1, square plate), the side-to-thickness
ratio (a/H = 10) and the core thickness to face thickness
ratio t./t, = 10.
The results are compared with those available in the
existed literature as follows:

(1) The results by Biglari and Jafari (2010) who used an
analytical displacement method as the High-order
Sandwich Panel Theory (HSAPT) (see Frostig and
Thomson 2004) and Mixed Layer-Wise Theory
(MLWT) (see Rao and Desai 2004). In their method,
the order of core displacement for v and v is 3 and
w is 2 and the face sheets are based on FSDT with
neglected in-plane stress in the core.

(2) The results by Rao and Desai (2004) based on mixed
layerwise theory (MLWT).

(3) The results by Cetkovi¢ and Vuksanovi¢ (2009)
using finite element method (FEM).

(4) The results reported by Rahmani et al. (2010)

Table 1 Materials properties used for the analysis (Garg et al. 2006)

Material properties Face sheets

Core

E. =131 GPa, E, = E; = 10.34 GPa
Gy, = Gi3 = 6.895 GPa, G5 = 6.205 GPa
Viz = Vi3 = 0.22, Vo3 = 0.49, p = 1627 kg/m®

(0/90/core/0/90)

E, = E; = E3 = 0.00689 GPa
G, = Gy3=Gy3 =3.45 GPa
v=0, p = 94.195 kg/m®

Table 2 Comparison of the first of six NDNF Q of simply supported antisymmetric (0/90/core/0/90) sandwich plate

with a/b =1 and t./t, = 10

m, n Present results HSART MLWT FEM ANSYS ESL

1,1 1.8577(12.21%)  1.8627 (12.51%)  1.848 (11.62%)  1.8627 (12.69%) 1.6556 4.8 (193%)
1,2 3.2667 (15.64%)  3.2799 (16.12%)  3.2196 (13.98%)  3.2882 (16.41%) 2.8247 8.0 (183%)
2,2 4.3493 (9.72%) 4.3843 (10.60%) 4.2894 (8.21%) 4.3981 (15.02%) 3.9641 10.3 (159%)
1,3 53594 (14.08%)  5.3902 (14.73%)  5.2234 (11.18%)  5.4040 (15.02%) 4.6981 11.7 (149%)
2,3 6.1786 (9.83%) 6.2840 (11.71%) 6.0942 (8.33%) 6.3024 (12.03%) 5.6254 13.5 (139%)
33  7.7663 (6.70%) 7.9414 (9.11%) 7.6762 (5.47%) 7.9629 (9.41%) 7.2783 16.1 (121%)

*Numbers in parentheses are the discrepancies with repect to ANSYS results (Rahani et al. 2010)

Table 3 Comparison of the first mode of NDNF Q of simply supported antisymmetric (0/90/core/0/90)

sandwich plate with a/b =1 and a/H = 10

to/ 1 Present results HOST11 ESL Reddy ESL/FSDT
4 1.9458 9.1427 8.9948 10.7409 13.919
10 1.8574 4.9586 4.8594 7.0473 13.8694
20 2.134 3.1824 3.1435 43734 12.8946
30 2.3345 2.8646 2.8481 3.4815 11.976
40 2.4712 2.8348 2.8266 3.1664 11.2036
50 2.568 2.8669 2.8625 3.0561 10.5557

100 2.7898 3.0293 3.029 3.05 8.4349
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obtained by parametric design language (APDL) of
ANSYS commercial FE code using a shell/solid/
shell layered model.

(5) The results by Kant and Swaminathan’s model
(2001) based on ESL model with 12 degrees of
freedom.

For further validation of the analytical method presented
in the present article, the wvariation of fundamental
frequency (m,n=1) of the present model based on
different t./t, and a/H = 10 is compared with those
results reported in the literature by Khare (higher-order
shear deformation theory with 11 displacement components
(HOST11) (Garg et al. 2006), Kant and Swaminathan (ESL)
(2001), Reddy (2003) and Pagano (ESL/FSDT) (1970). The
comparisons are tabulated in Table 3. Considering the
results obtained by ANSYS (Rahmani et al. 2010) in Table
2, the results achieved by the model presented in the current
study show more accuracy as compared with those obtained
by HSAPT (2010), FEM (2009) and ESL (2001). The
reason behind is consideration of the in-plane stresses for
the current model. Moreover, taking into account the results
in Table 3 indicates that considering the in-plane stresses by
the present model culminates in much more accuracy as
compared with other LW models.

3.1.2 Example 2. Antisymmetric cross-ply
(0/90/core/0/90) cylindrical sandwich panel
Table 4 shows the variations of NDNF with respect to
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radius-to-side ratio (R/a) and the thickness-to-side ratio
a/H for a five-layer simply supported cylindrical sandwich
shell which has square plane form (a/b =1) with
antisymmetric cross-ply face sheets. The core-to-face sheet
thickness ratio (t./t,) is considered to be 10. The
mechanical properties for the core and the face sheet are
similar to those considered for cross-ply sandwich plate in
the Example 1. The results are presented with two
assumptions (a: in-plane stress in the core and b: Z/R) and
compared with the analytical ESL theory results reported by
Garg et al. (2006). It is to be noted that both FSDT (2006)
and HSDT (2006) methods mentioned in Table 4 employed
ESL method. Analytical HSAPT1 and ANSYS results
reported by Rahmani et al. (2010) and analytical HSAPT2
results reported by Biglari and Jafari (2010) are considered.
The results of the present analysis by considering two
assumptions ( Z/R and in-plane stress) are in good
agreement with the numerical ANSYS results reported by
Rahmani et al. (2010). The results obtained by ESL models
(both FSDT and HSDT) have less accuracy for thick shells
(a/H = 10) in comparison with those obtained by other
models in table 4, however higher accuracy is observed for
thin shells (a/H = 100). Also, by considering the parameter
Z /R in the present study, higher accuracy is obtained.

3.1.3 Example 3. Antisymmetric cross-ply
(0/90/core/0/90) spherical sandwich panel
Table 5 shows a comparison for the first mode of
dimensionless fundamental frequency with respect to

Table 4 Comparison of first mode NDNF Q of simply supported antisymmetric (0/90/core/0/90) cylindrical sandwich shells with a/b =

1and t./t, =10

a/H R/a Presentresultsa Present results b HASPT1 HASPT2 ANSYS ESL/HSDT ESL/FSDT
1 68.284 (0.59%) 64.17 (0.695%)  63.27 (2.09%) 64.23 (0.6%) 64.62 64.64 (0.03%) 64.801 (0.3%)

100 2 34.746(0.70%) 34.71(0.606%) 33.87 (1.83%)  34.71 (0.6%) 345 35.9 (4.06%)  36.214 (5.0%)
3 24977 (7.46%) 26.64 (7.389%) 24.17 (2.58%)  24.95 (0.56%) 24.81 26.7 (7.62%)  27.119 (9.3%)
1 6.536 (1.16%)  6.528 (1.054%)  5.65 (12.54%) 6.57 (1.7%) 6.46 7.71(19.35%)  14.164 (119%)

10 2 3.733(0.83%)  3.737 (0.742%)  2.96 (20.22%)  3.74 (0.81%) 3.71 5.82 (56.87%) 14.026 (278%)
3 2.86 (1.01%) 2.8(1.076%)  2.19 (22.61%)  2.86 (1.06%) 2.83 5.36 (89.4%)  14.004 (4.0%)

*Numbers in parentheses are the discrepancies with respect to ANSYS results (Rahmani et al. 2010)

Table 5 Comparison of first mode NDNF Q of simply supported antisymmetric (0/90/core/0/90)
spherical sandwich shells with a/b =1 and t./t, = 10

a/H R/a  Present results (a) Present results (b) HASPT2 ESL/FSDT
125.26 125.27 123.56 123.57
62.53 562.53 65.86 66.33
100 41.66 41.66 45.24 46.11
24.99 24.99 28.95 30.45
10 12.49 12.49 17.9 20.34
12.46 12.44 12.29 12.94
6.27 6.27 6.71 8
10 3 4,18 4.18 4,73 6.52
2,51 2.51 3.22 5.58
10 1.25 1.25 2.28 5.12
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radius-to-side ratio (R/a) and the side-to-thickness ratio
(H/a) of the five-layer simply supported spherical sandwich
panels which have square plane form (a/b = 1) with
antisymmetric cross-ply face sheets. The core-to-face sheets
thickness (t./t;) is equal to 10. The mechanical properties
for the core and the face sheet are similar to those
considered for antisymmetric cross-ply  cylindrical
sandwich shell in Example 1. The results presented on

NDNF by considering % effect and the correct Lame’s

parameters for spherical shells (A = R, B = Rsinf) are
compared with ESL model based on higher-order shear
deformation theories (HOST11) by Garg et al. (2006) and
analytical HSAPT2 results reported by Biglari and Jafari
(2010). It is worth noting that the mentioned research works
(2010), (Garg et al. 2006) assume the structure as a shallow
shell and Lame’s parameters to be A = B = 1. This is whilst,
these Lame’s parameters aren’t suitable for thick shells.

3.2 Results

All of the formulations for free vibration analysis of
different sandwich panels such as sandwich plate,
cylindrical and spherical were validated using the above
examples. In this section, the examples in the previous
Section 3.1 are considered and the obtained results are
presented and discussed. Also in these examples, the
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mechanical properties of the sandwich panels are given in
table 1. In this section, the effect of different parameter such
as core-to-face sheet stiffness ratio, plane stress of core,
side-to-thickness ratio, the numbers of longitudinal half
wave and circumferential wave, curvature of face sheets
and radius to length are shown on the dimensionless
frequency of structure.

3.2.1 Example 1

In this example, the free vibration of antisymmetric
cross-ply (0/90/core/0/90) laminated square flat composite
sandwich panel is investigated. Fig. 3 shows the variation of
NDNF (Q) with respect to the core-to-face sheet stiffness
ratio with and without in-plane stress.

The following points can be elicited from the diagram:

(1) The NDNF is considerably affected for the core-to-
face sheet stiffness ratio E./E, < 0.0005, however
it reaches a plateau for E,/E, > 0.0005, when the
in-plane stress in the core is neglected. While the
NDNF experiences a mild increase for E./E, >
0.0005, when the in-plane stress in the core is
considered.

(2) If the core-to-face sheet stiffness ratio becomes more
than 0.02 (E./E, > 0.02), the difference created on
NDNF for the two conditions (with and without in-
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Fig. 3 The effect of in-plane stress of the core on variations of NDNF of the sandwich panel with respect to core
to face sheets stiffness with a/H = 100, t./t, = 10 and wave number in the first mode
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models with t./t, = 10 in the first mode
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Fig. 5 The comparison of the variations of NDNF of the sandwich panel with respect to the core-to-face sheet
thickness ratio in different wave number: (a) with a/H = 10; and (b) with a/H = 100
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Fig. 6 The discrepancy between the non-dimensional
frequencies (DBNF) of the cylindrical sandwich
shell to the variations of the core-to-face sheet
thickness ratio with H/a = 0.1 and R/a =1
in the first mode

plane stress) becomes considerable (about 5%). It is
an important factor in analyzing sandwich panels
and therefore, can be used as a criterion for choosing
flexibility or inflexibility of sandwich panel based on
the amount of the core-to-face sheet stiffness ratio.

The variations of NDNF with respect to variation of
core-to-face sheet thickness ratio and side-to-thickness ratio
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(a/H) based on various theories are presented in Fig. 4(a)
and (b), respectively. It is observed that higher-order ESL
model (HOST11) by Kant and Swaminathan (2010) has
more accuracy in comparison with first-order ESL model
(FSDT) by Pagano (1970), while the present LW model has
more accuracy when it is compared with HOST11 (Garg et
al. 2006). Fig. 4(a) depicts that the NDNF obtained by LW
higher-order models and ESL models (Kant and
Swaminathan 2001) becomes nearly equal when t./t, >
30, i.e., for t./t, higher than 30, simple models of ESL
with less calculations can be used as compared with LW
models with costly computation. Fig. 5 shows the NDNF
with respect to core-to-face sheet stiffness ratio in different
modes. As can be seen, increasing (m,n) results in a
general increase in NDNF. In addition, NDNF for all modes
becomes nearly stable, when t./t, > 30 for both a/H =
10and a/H = 100.

3.2.2 Example 2

In this example, the free vibration of cross-ply (0/90/
core/0/90) cylindrical sandwich panel is investigated. Fig. 6
shows the effect of parameter Z/R and in-plane stress on

discrepancy between NDNF (f;—f"x 100) in which f is
0

NDNF by considering Z/R or in-plane stress in the core or

both, and f, is NDNF without Z/R and in-plane stress in

the core. As can be seen, considering the Z/R only causes
no considerable effect on NDNF, however the in-plane
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Fig. 7 The DBNF for the cylindrical sandwich shell by considering Z/R versus side-to-thickness ratio for

different R/a with t./t, = 10 in the first mode
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Fig. 8 The NDNF for the cylindrical sandwich shell by
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Fig. 9 The DBNF for the cylindrical sandwich shell by
considering Z/R versus the core-to-face sheet
thickness ratio with different R/a with H/a =
0.1 in the first mode

stress in the core plays a key role in changing this
parameter.

The variations of DBNF with respect to thickness-to-
side ratio of sandwich panel (a/H) for various R/a by
considering Z/R are shown in Fig. 7. As can be seen, the
DBNF is considerable when R/a =1, however DBNF
palpably decreases when R/a reaches 3 and higher. This
situation is intensified by increasing the H/a.

Fig. 8 shows the variations of NDNF with respect to
thickness-to-side ratio of panel for various R/a by
considering Z/R. It is seen that the amount of NDNF
decreases as H/a increases. Moreover, the natural frequency
significantly decreases by increasing the thickness-to-side
ratio of panel for H/a < 0.05, however no palpable effect
on NDNF occurs when H/a > 0.05.

The variations of DBNF with respect to core-to-face
sheet thickness ratio (t./t,) for various curvature-to-side
ratios (R/a) of sandwich panel by considering Z/R is
presented in Fig. 9. As can be seen, a dramatic decrease
occurs for DBNF when t./t, < 20 forall R/a, however a
considerable increase occurs when t./t, > 20. It is worth
noting that this phenomenon is intensified when R/a =1
and is diminished when R/a = 10 or higher.
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Fig. 10 The comparison of the variations of NDNF of the
cylindrical sandwich shell by considering Z/R to
the variations of the core-to-face sheet thickness
ratio with H/a = 0.1 in the first mode
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Fig. 11 The DBNF for the cylindrical sandwich shell by
considering in-plane stress with respect to the core-
to-face sheet stiffness ratio for different R/a with
H/a =0.1, t./t, = 10 inthe first mode

The NDNF with respect to core-to-face sheet thickness
ratio (t./t,) for various ratios of R/a by considering Z/R
is depicted by Fig. 10. As can be seen, R/a =1 experiences
a visible decrease in NDNF by increasing t./t,, however
the NDNF for R/a = 3 and higher marginally increase to
reach a plateau and nearly converge in higher core-to-face
sheet thickness ratios.

Fig. 11, shows the DBNF with respect to core-to-face
sheet stiffness ratio (E,./E,) by considering in-plane stress
for various R/a when t./t, =10 , a/H = 10. It can be
observed that considering the in-plane stress and increasing
the core stiffness results in increasing the DBNF. The
DBNF reaches 40% when the core-to-face sheet stiffness
ratio is R/a=1, E./E, = 0.1, and reaches 20% when
R/a>1, E./E, = 0.1.

Fig. 12 shows the DBNF for the cylindrical sandwich
shell by considering in-plane stress to the core-to-face sheet
stiffness ratio for: (a) various H/a with R/a=1,
t./t, = 10 in the first mode; and (b) various t./t, with
R/a =1, H/a = 10 in the first mode. As can be seen, the
assumption for core compressibility based on core-to-face
sheet stiffness ratio is reasonable when E,./E, < 0.01,
because in this range, the maximum value of DBNF with
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considering in-plane stress to the core-to-face sheet
stiffness ratio for: (a) various H/a with R/a =1,
t./t, = 10 in the first mode; (b) various t./t,
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Fig. 13 The DBNF for the spherical sandwich shell by
considering Z/R and in-plane stress in the core
versus various H/a with different R/a with
t./t, = 10 inthe first mode

considering in-plane stress reaches 5%. DBNF dramatically
increases by increasing the H/a and E./E,. Also, DBNF
vividly escalates by increasing E,/E, and t./t,, exceeding
200% when E./E, = 0.1 and t./t, = 100.

3.2.3 Example 3

In this example, the free vibration of antisymmetric
cross-ply (0/90/core/0/90) spherical sandwich panel is
investigated. The effect of parameter Z/R on NDNF is
shown by Fig. 13. As can be seen, the highest discrepancy
between NDNF by considering Z/R and in-plane stress in
the core occurs for R/a = 1, when the side-to-thickness
ratio H/a increases. Nevertheless, when R/a > 1, the
discrepancy experience less increase even at higher H/a
values.

4. Conclusions

In this article, an analytical approach was developed for
free vibration analysis of simply supported thick doubly
curved sandwich panels with compressible/incompressible
core using high-order shear deformation theory and
Hamilton’s principle. The face sheets are considered as
laminated composite which follow first-order shear
deformation theory and the core is considered compressible
(with transverse stress only) and incompressible (with in-
plane and transverse stresses) based on high-order shear
deformation theory of sandwich structure. The present
results are compared with those for the exact 3D elasticity
and numerical results available in the literature. A good
agreement is found between the results. The present
validated model is used to carry out several parametric
studies on the effects of radii of curvature, trapezoidal shape

factor (the (1 + %) terms), thickness and flexibility of the

core on the free vibration of thick DCSP in detail. The
output of the present model and its numerical results yield
the following conclusions:

(1) A general formulation is presented for a wide range
of geometries such as sandwich plates by taking both
the radii of curvature as infinity and cylindrical
sandwich shells/panels by taking one radius of
curvature as infinity and spherical sandwich shells/
panels by taking R, = Rz = R. Despite the previous
research works based on shallow shell which assume
the Lame’ parameters to be 1, the current model
considers the DCSP with a general view (deep and
shallow) in such a way that the real values of Lame’
parameters for different geometries are taken into
account.

(2) One of the novelties in this work in comparison with
the previous research works dealing with the free
vibration analysis of doubly curved sandwich panels
is considering different radii for three layers of top,
bottom and core in the equations of motions.

(3) Sixteen displacement parameters are unknown in the
equation of motions for DCSP. These are not
dependent on the number of composite sheet layers
and so are always constant. Considering the
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continuity of conditions between the top and the
bottom layers as well as the core, 22 displacement
components are existed out of which 6 components
are dependent on the other 16 components.

(4) The results suggest that the present high-order model
is applicable to determine the natural frequencies of
sandwich panels/shells with compressible and
incompressible core for a wide range of the core to
face sheet thickness ratios and various radii of
curvatures.

(5) The parameter Z/R plays a pivotal role in free
vibration analysis of curved structures such as
cylinder, sphere, etc particularly where the radius of
curvature is small. Therefore, an optimum range of
DCSP thickness by considering Z/R is presented in
which the influence ability of Z/R is highly
considerable.

(6) The effect of in-plane stress is also very important in
analyzing free vibration of DCSP. This study
presents an optimum range for the core to face sheet
stiffness ratio in which considering the existence of
the in-plane stress, significantly affects the natural
frequencies of DCSP.
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Appendix A

Membrane, Flexure, Coupling, and Shear Rigidity Matrices of core (Garg et al. 2006)

(QuH  QuH) QM) QuaH3 QuiHS  QizHY QusHY  QuaH3 QusHE  QuzHj)
QuHy  QuuHy QuH) QuiHY QuHi  Q4Hi Qu4HY  Qu3Hi  Qa3Hj

QuHy  QuH) QuH) QuHi QusHi QusH] QuzHi Qu3Hj

QuHy QuH3 QuHY QuH) QuH; Qu3HE Qu3H3

[4] = Qu1Hi QuoH QuaH] QuHP QizH Qu3H (A1)
QuHi QuuHf QuuH) Qu3H} Qy3H}
QuHf QuH] Qu3H} Qu3Hi
QuHi QuzHi Qu3Hi

Qs3HE Qs3H3

Qs3H; 1

Sym.

[Ds]
[QssHy  QssHE  QseHi  QseHi  QssHi  QssH  QsgHi  QsHy  QssHP  QssHE  QseHP  QsgHi  QssHE  QseHi)
QssHy  QseHE  QsHY  QssHF  QssH  QseH?  QsgH  QssHY  QssHY  QseHP  QsgHY  QssH3  QseHY

Qs6Hi  QesHi  QesH3 QesHi  QesHi QeoHa QesHiP  QesHi QesHP QesHi  QesH3  QooH3

QesHy  QesHi  QesHY QesHi  QegHi  QesHi QesHY QesHi QeoHi QesHS  QeHi

QssHi QssH? QsgHi QseHi QssH3 QssHY QseH3 QseH3  QssHE  QseHi

QssHi QsgHi QsgHY QssHF  QssH3  QsgHi  QsgHY  QssHE  QsgHe

QesHi QosHi QosH3 QesHF QesH3 QesH3 QesHZ  QesHi| (A2)

QesHi QosHY QesHY QoeH3 QoeHF QesHS  QeeHe

QssHy  QssHF  QsgHF  QsgHi  QssHE  QseHi

QssH  QseHy  QsgH)  QssHi  QseHY

Sym. QesH: QecHz QesHi  QegHi

QssHy  QesHY  QeeHi

QssHe  QsgHE

Q6 H |

It is worth noting that [B]matrices is similar to [E¢] matrices and the difference between [A¢], [B¢],[E€] and [D¢]
matrices are subscript “j” in “Hji” parameter in [A°] matrices is “j”, in [B€] and [E€] matrices is equal to “j+1” and in
[D€] matrices is equal to “j+2” .

where
hk+1 hk+1 hk+1

H? =-I zldz, H} =f kiz'dz, H? =f kz'dz,
hk hk hk

pk+1 pl+1 pl+1

H} =f kik,z'dz, H} =J- —Lzidz, H? =f 2 zidz (A3)
hk hk kz hk k1

That i=1,23456 Kk =(1+2), k=(1+i)
1 ( Ra) z Ry

and [Q] matrix refers to elastic stiffness in principle material axes (Reddy 2003).
And membrane, flexure, coupling, and shear rigidity matrices of face sheet are

VL QuiH5  Qi2HY  Qu4HY  QuHj

[Ai] = Z Q2Hy  QauHg  Qp4HY (A4)
- Sym. QuHy  QuaHJ
L Qa2 Hg
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[QssHy  QssHE  QsgHi  QsgHi  QssHf  QseHi
AL QssH;  QsgHE  QsgHY  QssHP  QseHY
(D] = Z Qo6 Ho QeéHi Q65H1(2) Q66Hi (A5)
- QesHo QesHi QecHy
Sym. QssHS  QseHY
Q6 H3

that i = t (top face sheet), b (buttom face sheet)

It is worth noting that [B!] matrices is similar to [E'] matrices and difference of [A‘],[B!], [E‘] and [D‘] matrices are
subscript “§” in “H;" parameter in [A'] matrices is “j”, in [B'] and [E'] matrices is equal to “j+1” and in [D'] matrices is
equal to “j+2”.
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Nomenclature

&1, &, &

normal strains in the principle axes

Y12, Y13, V23 Shear strains in the principle axes
Membrane, Flexure, Coupling, and Shear Rigidity 0. transformed elastic constant with
Matrices of core (Garg et al. 2006) v respect to the laminateaxes
C. elastic constant of layers with
_ indices for core, top and bottom Y reference to thefiber axes
I(=c,t,Db)
facesheets . .
Va1, V23, Vi3 Poisson’s ratio
_ indices for curvilinear coordinate
p.q (= ap.2) axes [T] transformation matrix
a,B,z curvilinear coordinate axes [D] rigidity matrix
a, b length and width of sandwich panel [A]} membrane matrix
H Total thickness of the sandwich panel [B]' ,[E]: shear matrix
¢! Thickness of layers D]’ bending matrix
R R the radii of curvature to mid surface [D{] membrane matrix
a 7B of the layers in the « and g directions
) k, shear correction factor
p the radii of twist of the surface
(&) midsurface strain vector of top,
Ay, Ay, As geometrical scale factor quantities ¢ bottom and core
A B Lame’ parameters ) stress-resultant vector of top, bottom
¢ and core
ul, v, wi displacements in a, # and z directions NN M M
displacements at the mid surface of (;? ‘ (;jl" ;7 ' sif  siress resultants
i i i prq’ rq’ rq’ rq
Yo Yo, W the face sheets - "
; P actor trapezoidal curvature
ol g slopes in a—z and -z planes in the kiand k; = 0or1 parameter
a 7k face sheets o
E kinetic energy
ut, v, wf, ]
e displacement components of core U potential energy
j=0,1,23
Co, Ci Trapezoidal effect coefficient w potential of the external loads
P ; . . . ; density of the top, bottom face sheet
&, €qr Voq Engineering strain components p and the core
Eopr Kpr E0pg> mid-plane strains and curvatures of Iin=(1to6) moment of inertia
i i face sheets
Apa Yova e longitudinal half and circumferential
&6pr Kp» €0pr K% mid-plane strains and curvatures of ' wave numbers
Epqr Xpqr €opgr Xpg O {A} natural mode shape vector
Young’s modulus in principle T (E eneralized coordinates
Ev, Bz Eas directions mn (8) g
weighting functions vector
Gy, Gi3, Gy shear modulus 2 ghting
the principle axes K] stiffness matrix
'i 2 r?d 3 parallel and perpendicular of fiber
cd [M] mass matrix
01, 0y, O3 normal stresses in the principle axes A the lowest eigenvalue
mn
T12, T13, T23 shear stresses in the principle axes (d displacement vector
o o o normal stress components referred to tural f
w “pr Tz the laminate coordinate Wmn natural frequency
shear stress Components referred to Q (N DNF) non'dimensional natural frequencies
o T T the laminate coordinate The discrepancy between the non-
(DBNF) pancy

dimensional frequencies





