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1. Introduction 

 
There are many practical applications of fluid conveying 

beams/pipes/tubes in engineering and industrial fields. 
Dynamics of these systems should be analyzed by 
considering the structure-fluid interaction. There are many 
pioneering studies which are investigated dynamics, 
mechanics and applications of fluid conveying beams/pipes/ 
tubes. Paidoussis and Li (1993) wrote a remarkable review 
for the dynamics of fluid conveying systems. Dynamics of 
cantilevered pipes conveying fluid are also given by 
Paidoussis et al. (2007). Ibrahim (2010, 2011) presented an 
overview of mechanics of fluid conveying pipes. Pipes 
having a single or more spring support along its length are 
considered and governing equations of linear and non-linear 
problems are given in mentioned overview. Vibrations of 
pipes conveying fluid are studied by Ni et al. (2011). A 
semi-analytical method, differential transformation method 
is used to obtain natural frequencies and critical fluid flow 
velocities. Another application is presented by Wang et al. 
(2013a). Numerical analysis based on finite element method 
is applied to pipes conveying fluid to obtain vibration 
characteristics. 

It is known that axially moving beams show similar 
dynamic behaviors with fluid-conveying beams. In previous 
studies, axially moving beams with multiple supports are 
investigated by Bağdatlı et al. (2013). Also, Ding and Chen 
(2011) studied natural frequencies of non-linear vibrations 
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of axially moving beams. Bağdatlı and Uslu (2015) studied 
the axially moving string under non-ideal boundary 
conditions. Non-linear vibrations of spring-supported 
axially moving string (Kesimli et al. 2015) and multiple 
supported axially accelerating flexible beam (Kural and 
Ozkaya 2012) are studied. 

One of the most contemporary applications of fluid 
conveying systems are micro-scale systems which are 
characterized as micro-electromechanical systems (MEMS). 
Micro systems are sized from 1 µm to 1 mm. They are used 
in heat and mass transfer operations through their high 
performance, matter and energy saving properties. Besides, 
fluid conveying micro-channels are used to cool micro-
scale electronic systems through their high flux properties. 
In last decades, MEMS found application fields as micro 
surgery, micro injectors, micro heat exchangers and Lab-on-
Chip applications. 

Due to the recent technological developments in science 
and engineering, the problems of micro-scale systems 
become more remarkable. Previous studies showed that 
micro size effects should be considered to have accurate 
solutions. Many experimental studies presented the size 
dependent vibration characteristics of micro-scale systems; 
Fleck et al. (1994), Ma and Clarke (1995), Stolken and 
Evans (1998), Chong and Lam (1999), Lam et al. (2003) 
and McFarland and Colton (2005). These studies 
demonstrated that dynamic behaviors of micro-scale 
systems become different from results of classical 
continuum theory of large length scale systems. In 
mechanical problems of small length scale systems, it is 
needed to use a proper approach rather than classical 
continuum mechanical theories. Therefore, in order to 
consider the size effects, new elasticity theories are 
developed. Firstly, the classical couple stress theory is 
presented by Mindlin (1964), Toupin (1962), Mindlin and 
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Tiersten (1962) for linear elastic materials. In the mentioned 
theory, in addition to equilibriums of forces and moments, 
the concept equilibrium of the couple is suggested. Couple 
is the loading which forces the material particle to rotate. It 
is needed to use higher order equilibrium relations to 
consider couple stress. Afterwards, modified couple stress 
theory is developed by Yang et al. (2002). It is shown that 
the couple stress tensor in classical couple stress theory is 
symmetric and an internal material length scale parameter 
(l) is needed to capture micro size effects. Park and Gao 
(2006) applied modified couple stress theory to Euler-
Bernoulli beam model. It is shown that the difference 
between the numerical results of the new model and 
classical beam model become remarkable when the 
thickness of the beam is decreased. The results of two 
models approach each other when the thickness of the beam 
is increased. In modified couple stress theory, deflections of 
a cantilever beam are calculated smaller than classical 
theory. Besides, it is found that modified couple stress 
theory verifies the results of experimental studies of 
bending tests of micro-scale systems. Kong et al. (2008) 
investigated the natural frequencies of Euler-Bernoulli 
microbeam. It is indicated that the natural frequencies of 
modified couple stress theory is larger than the classical 
theory. Timoshenko beam model is studied by Ma et al. 
(2008). The static bending and free vibration problems are 
solved. 

There are recent studies which are subjected to 
applications of modified couple stress theory. Size-
dependent vibration characteristics of fluid conveying 
micro-tubes are studied by Wang (2010). It is shown that 
natural frequencies decrease when the internal fluid velocity 
is increased. Natural frequencies are calculated as larger 
than classical beam theory. Free vibration analysis of micro-
pipe conveying fluid by wave method is performed by 
Baohui et al. (2012). Flexural vibrations of micro-scale 
pipes conveying fluid by considering the size effects of 
micro-flow and micro-structure are examined by Wang et 
al. (2013b). Free vibrations of axially functionally graded 
tapered microbeams based on modified couple stress theory 
are given by Akgoz and Civalek (2013b). Also, buckling 
analysis of linearly tapered micro columns are given by 
Akgoz and Civalek (2013a). Another application of the new 
theory is performed by Zeighampour and Beni (2014). 
Double-walled carbon nanotube conveying fluid is 
subjected. It is shown that the effects of system parameters 
are stronger than classical beam theory. Size-dependent 
vibrations of a micro-beam conveying fluid and resting on 
an elastic foundation are presented by Kural and Ozkaya 
(2015). The comparisons of modified couple stress theory 
and classical beam theory are included. Fluid conveying 
functionally graded microshells are subjected to a study 
performed by Ansari et al. (2015). Vibration and instability 
analysis are given by using modified couple stress theory. 
Yin et al. (2011) used the strain gradient theory for micro 
pipes conveying fluid. Recently, size dependent stability 
analysis of cantilever micro-pipes is performed by Hosseini 
and Bahaadini (2016). Modified strain gradient theory 
which is a combination of modified couple stress and 
classical theories is used. The results of the combined 

theory give greater natural frequencies than that performed 
by other two theories. Akgoz and Civalek (2015b) applied 
the modified strain gradient elasticity theory to a non-
homogenous microbeam under Winkler foundation. A new 
microstructure dependent shear deformable beam model is 
presented by Akgoz and Civalek (2015a). Additionally, size 
dependent models of nano structures are studied by many 
researchers. Wang (2012) presented the vibration analysis 
of nanotubes conveying fluid based on gradient elasticity 
theory. Besides, nonlocal strain gradient theory is applied to 
microtubes and size dependent effects on critical flow 
velocity is investigated by Li et al. (2016). Akgoz and 
Civalek (2016) used strain gradient theory for bending 
analysis of embedded carbon nanotubes resting on an elastic 
foundation. Also, Yin et al. (2011) applied the strain 
gradient beam model to microscale pipes conveying fluid. 
Vibration and stability analysis are given in the mentioned 
study. It is shown that greater natural frequencies and higher 
critical flow velocities are obtained by strain gradient theory 
when it is compared to results of classical theory. 

In most general studies, boundary conditions are 
assumed as ideal supports. Physical conditions of the 
support are ignored and BCs are supposed to be flawless. 
However it is difficult to reach flawless boundary 
conditions due to disorders in the structure of the system. 
As an example, an ideal simply support enables sloping 
while preventing displacements at the support points. A 
non-ideal simply support can carry moment in low orders. 
Similarly, an ideal clamped supported disables slope and 
carries moment. However a non-ideal clamped support is 
able to enable slope and/or displacement at the support 
point. As a result, non-ideal boundary conditions require 
new mathematical models to give accurate solutions of the 
systems. Non-ideal BCs are subjected to various studies in 
recent years. Pakdemirli and Boyacı (2001), studied non-
ideal boundary conditions for stretched beam. Effect of 
non-ideal boundary conditions on the vibrations of 
continuous systems and non-linear vibrations of a simply 
supported beam with a non-ideal support in between are 
also studied by Pakdemirli and Boyacı (2002, 2003). Effects 
of non-ideal boundary conditions on vibrations of micro-
beams are examined by Ekici and Boyacı (2007). Besides, 
nonlinear vibrations and stability analysis of axially moving 
strings having non-ideal boundary conditions are given 
(Yurddas et al. 2012, 2013). A new mathematical model for 
non-ideal boundary conditions is proposed by Lee (2013). 
Free vibration analysis of Euler Bernoulli and Timoshenko 
beams with non-ideal clamped boundary conditions is 
carried out. In order to determine the effect of non-ideal 
BCs, a weighting factor (k) is presented. Bağdatlı and Uslu 
(2015) applied this mathematical model to free vibrations of 
axially moving string. Finally, vibrations of fluid conveying 
microbeams under the effects of non-ideal boundary 
conditions are studied by Atcı and Bağdatlı (2017). 

The objective of this paper is to show the effects of non-
ideal boundary conditions on free vibration characteristics 
of fluid-conveying microbeams. Non-ideal BCs are 
modelled as linear combination of ideal clamped and ideal 
simply supported boundary conditions through the 
weighting factor k. Modified couple stress theory is used to 
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capture the micro size effects of the fluid conveying micro 
beam. Equations of motion of the system are obtained by 
using Hamilton’s principle. Method of multiple scales, a 
perturbation technique is applied to governing non-
dimensional equations of motion. Numerical solutions of 
the linear problem are given for different boundary 
condition cases. Natural frequencies are plotted and the 
results are discussed to show the effects of non-ideal 
boundary conditions and other system parameters. 

 
 

2. Equations of motion 
 
It is needed to express kinetic and potential energies of 

the system to generate the mathematical model and to 
obtain equations of the motion of fluid conveying micro 
beam which is shown in Figs. 1(a)-(b). 

Equations of motion are in the non-linear form due to 
the elongations on the beam during the vibration. This 
effect appears in the potential energy expression. It is 
assumed that the velocity of the fluid in the beam is 
harmonically changing around a constant value. 

 
* * * *

0 1 1sinv v v t    (1)
 

where  is a small order parameter, v0 is the average fluid 
velocity and v1 is the amplitude. Here 1 is the changing 
frequency of the velocity and the superscript ( )* indicates 
that the parameters are dimensional. 

Kinetic and potential energies of the system that consist 
of microbeam and the inner fluid are expressed respectively 
as 
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Axial displacement which occurs during the motion of 
the microbeam is described by u*(x, t) and transverse 
displacement is denoted by w*(x, t). 

Ab and Af are cross-sectional areas of the microbeam and 
the moving fluid, respectively. ρb and ρf are densities of the 
micro beam and inner fluid. E is the elasticity modulus, G is 
the shear modulus, I is the area moment of inertia and L is 
the length of the micro-beam. The first term of the Eq. (3) is 
the effect of the longitudinal elongation of the beam during 
transverse vibration. The second term is bending and the 
third term is the axial tension force determined by N. The 
last term is the shear effect of the beam which is derived by 
modified couple stress theory (Yang et al. 2002, Park and 
Gao 2006). Material length scale parameter l is offered to 
capture the size effects of the microbeam. Numerical values 
of material length scale parameter are obtained experi-
mentally in previous studies and it is determined that 
material length scale parameter is unique for each material 
(Lam et al. 2003). 

Hamilton principle is indicates that 
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Non-linear equations of motion are obtained by 
substituting Eqs. (2)-(3) into the Eq. (4). Equations are 
written in non-dimensional form as follows 
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Eqs. (5)-(6) are independent from geometric and 
material properties of the structure. Dimensionless 
parameters of the system are described as 
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(a) Wind speed profile (b) Wind direction profile 

Fig. 1 ANN model output training data for upstream typhoon wind field coming from N direction with exponent 0.22 
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where mb and mf are the masses of the micro beam and inner 
fluid, respectively. t is time and T is dimensionless time 
parameter.  is called fullness of the beam and described as 
the ratio between the fluid mass and total mass of the 
microbeam. Here, vf is dimensionless beam parameter. is 
dimensionless microbeam parameter which is obtained 
corresponds to micro size effects of the beam. α2 is beam 
elasticity parameter. This parameter is described as 

22   in small order. Here  is a small order perturbation 
parameter. 

It should be noted that longitudinal vibrations move 
significantly faster than transverse vibrations which means 
V1 >> 1 (Chakraborty et al. 1998, Thurman and Mote 
1969). Due to this reason, the terms excluding last term in 
Eq. (6) are neglected. When Eq. (6) is integrated and 
substituted into Eq. (5), equation of motion is obtained in 
the form 
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3. Non-ideal boundary conditions 
 

Generally in mechanical problems, BCs are considered 
as ideal supports. Physical conditions of the connecting 
point are neglected. Especially for small size systems, even 
the small order variations on BCs become important. In this 
study, fluid conveying microbeam is considered to operate 
under non-ideal BCs. Mathematical model of non-ideal BCs 
isconsidered as a linear combination of ideal simply support 
and ideal clamped support (Lee 2013). In general form, 
non-dimensional non-ideal BCs are presented as 
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where k is the weighting factor which describes the ratio 
between ideal clamped and ideal simply supported 
boundary conditions. Ideal clamped boundary condition is 
obtained when k = 0 in Eq. (9). When k = 1, ideal simply 
supported boundary condition is obtained. The weighting 
factor is taken very close to zero for non-ideal clamped 
support and close to 1 for non-ideal simply supported BCs. 

 
 

4. Perturbation analysis 
 
Method of multiple scales which is one of the 

perturbation techniques (Nayfeh 1981) is used to obtain 
approximate solutions of the equation of motion. Time scale 
is divided into the slow time scale T0 = t and fast time scale, 
T1 = t. Differentiations with respect to slow and fast time 

scales are ∂/∂t = D0 + εD1 and ∂2/∂t2 = D2
0 + 2εD0D1 where 

Dn = ∂/∂Tn. The expansion of the transverse displacement is 
assumed as 
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Expansion of two terms which is given above and 

derivatives with respect to new time scales are applied to 
the governing equation of motion which is given in Eq. (8). 
Equations of motion in Order (1) and Order (ε) are obtained 
as follows 

 

 
 

2 2
0 0 0 0 0 0 0

2 2

(1) : 2 1

0iv
f o

Order D w v D w v w

v w

 



   

  
 (11)

 

 
 

2 2
0 1 0 0 1 0

2 2
1 0 1 0 0 1 0

1 1 0 0 0 1 1 1 0 0

1
2

0 1 1 0 0 2 0 0

0

( ) : 2 1

2 2

2 sin cos

1
2 sin

2

iv
f

Order D w v D w v w

v w D D w v D w

v T D w v T w

v v T w w dx w

  

 

 

 

   

    

     

       
 


 
(12)

 
4.1 Linear problem 
 
The first order equation given in Eq. (11) forms the 

linear problem. The solution of the problem is written in the 
complex form 
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A is the complex amplitude. Substituting Eq. (13) into 
the Eq. (11) 
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Solution of Y(x) is offered as 
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Equation of dispersion is achieved when Eq. (15) is 
substituted into the Eq. (14) 
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where n = 1, 2, 3, 4. 
 
 

5. Numerical solutions 
 
Free vibrations of fluid conveying microbeams are 

subjected to this paper. The objective of this study is to 
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investigate the effects of non-ideal BCs on natural 
frequencies of fluid conveying microbeams. Four different 
boundary condition cases are considered for this purpose. 
Numerical results are obtained for these cases and the 
effects of different boundary conditions on the system are 
presented. In Case (1), the microbeam is non-ideal simply 
supported at the left hand side and ideal simply supported at 
the right hand side. In Case (2), the microbeam is under 
non-ideal simply supported boundary conditions at both 
sides. In Case (3), the beam is non-ideal clamped at the left 
hand side and ideal clamped at the right hand side. In Case 
(4), both ends of the beam are non-ideal clamped. 

In Table 1, the most general boundary condition 
expression which is given in Eq. (9) is specified for four 
different boundary cases of fluid-conveying micro-beam. 

It is needed to specify them material length scale 
parameter (l) of the microbeam according to modified 
couple stress theory. It is presented as follows (Lam et al. 
2003) 

3(1 )
hb
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where bh is material higher-order bending parameter and v 
is Poisson’s ratio. In this study steel microbeams are 

 
 

 
 

considered. Material length scale parameter is distinctive 
for each kind of material. For steel, bh is given as 10 µm 
(Ellis and Smith 1968) and v = 0.3. Microbeam is designed 
with 25 µm outer and 20 µm inner diameters. Beam 
parameter vf and microbeam parameter  are calculated for 
steel microbeam. 

In order to obtain natural frequencies of fluid conveying 
microbeam, r1, r2, r3 and r4 in Eq. (16) are calculated 
numerically. If the BCs which are given in Table (1) are 
substituted into the Eq. (15) one obtains 
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Table 1 Boundary conditions of described four different cases 

Case(1) 0.9 1k   

Non-ideal simply supported-ideal simply supported
(0) 0 (0) (1 ) (0) 0Y kY k Y      

(1) 0 (1) 0Y Y    

Case(2) 0.9 1k   

Non-ideal simply supported at both ends 
(0) 0 (0) (1 ) (0) 0Y kY k Y      

(1) 0 (1) (1 ) (1) 0Y kY k Y      

Case(3) 0 0.1k   

Non-ideal clamped-ideal clamped 
(0) 0 (0) (1 ) (0) 0Y kY k Y      

(1) 0 (1) 0Y Y     

Case(4) 0 0.1k   

Non-ideal clamped at both ends 
(0) 0 (0) (1 ) (0) 0Y kY k Y      

(1) 0 (1) (1 ) (1) 0Y kY k Y      
 

(a) v0 = 0.5, 1st mode (b) v0 = 0.5, 2nd mode 

Fig. 2 Natural frequencies varying with the weighting factor for a simply supported microbeam 
(1st mode, F = 1, v0 = 1.0, v1 = 1.0, vf = 0.1,  = 0.5, α2 = 1) 
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Numerically calculated rn are substituted into the 

coefficient matrix to obtain the natural frequencies omega’s 
that makes the determinant value of the matrix zero. This 
procedure is repeated to introduce the effects of weighting 
factor k and other system parameters on natural frequencies. 

In Figs. 2(a)-(b), natural frequencies varying with the 
weighting factor k are given for a simply supported 
microbeam. The first mode and the second modes of 
vibration are plotted in Figs. 2(a)-(b). Natural frequencies 
for k = 1 (ideal simply supported) are ω1 = 3.0829 and ω2 = 
7.3594 for the first and the second modes respectively. In 
Fig. 2(a), it is seen that the first mode natural frequency of 
Case (2) increases by 0.28% while k decreases from 1 to 
0.9. Similarly the second mode natural frequency increases 
by 0.2% as shown in Fig. 2(b). It should be noticed that this 
change remains at low values for Case (1) which has non-
ideal boundary condition at one side and ideal boundary 
condition at the other. 

In Figs. 3(a)-(b), natural frequencies varying with the 
weighting factor k are given for clamped microbeam. The 
first mode and the second mode of vibrations are plotted. 
Natural frequencies for k = 0 (ideal clamped) are ω1 = 
4.0361 and ω2 = 9.3907 in the first and the second modes 
respectively. The first mode natural frequency of Case (4) 
decreases about 15.6% while k increases from 0 to 0.1. It is 

 
 

 
 

seen from Fig. 3(b) that the second mode natural frequency 
decreases about 15.5%. This change remains at low values 
for Case (3). It should be noticed that non-ideal BCs 
significantly affect the natural frequencies of clamped 
microbeams rather than simply supported ones. 

In Figs. 4(a)-(b), natural frequencies varying with 
weighting factor and fluid velocity are shown. Fluid 
velocitiesare v0 = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0. The first 
mode vibrations of Case (2) and Case (4) show the effects 
of non-ideal boundary conditions explicitly. Natural 
frequencies of Cases (2) and (4) decreased with the 
increasing velocity of the inner fluid. Also, the effect of 
non-ideal BCs is more noticeable on clamped microbeams 
than simply supported microbeams 

Comparison of Case (1) and (2) is given in Fig. 5(a). 
Also, Case (3) and (4) are shown in Fig. 5(b). Weighting 
factor k is chosen as k = 0.9 and k = 0.1 for non-ideal 
simply supported and clamped microbeams respectively. 
Natural frequencies are presented with respect to the fluid 
velocity. 

In Figs. 5(a)-(b), ideal simply supported microbeam, 
microbeams with non-ideal supported at one side and non-
ideal supported at both sides are compared. In particular, the 
effect of non-ideal BCs on clamped microbeams is seen 
obviously. This effect remains at low values for simply 
supported microbeams. It is seen clearly from Fig. 5(b) that 
the difference between natural frequencies decreases while 
the weighting factor increases. Namely, when the boundary 
conditions of the beam distinct from its ideal structure, 

 

 
 
 

(a) v0 = 0.5, 1st mode (b) v0 = 0.5, 2nd mode 

Fig. 3 Natural frequencies varying with the weighting factor for a clamped microbeam 
(1st mode, F = 1, v0 = 1.0, vf = 0.1,  = 0.5, α2 = 1) 

 

(a) Case (2) (b) Case (4) 

Fig. 4 Effects of varying fluid velocities on natural vibrations of simply supported and clamped microbeams 
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the effect of fluid velocity on the natural frequency 
becomes smaller. 

In Figs. 6(a)-(b), natural frequencies of simply 
supported and clamped microbeams are compared in terms 
of the fullness ratio, β. Case (2) and Case (4) are chosen to 
show the effects of non-ideal BCs. It is seen that natural 
frequencies of the beam decrease by the increasing β. 

 
 

6. Conclusions 
 
In this study, free vibration analysis of fluid conveying 

microbeams under non-ideal boundary conditions is 
presented. Non-ideal BCs are modeled as linear combina-
tion of ideal simply supported and clamped BCs. The 
weighting factor k is described for this purpose. A new 
boundary condition model is applied to the fluid conveying 
microbeam system and the results of natural frequencies 
affected by non-ideal boundaries are presented. 

Four different boundary condition cases are considered 
to see the effects of non-ideal BCs. As it is expected, when 
both sides of the beam are non-ideal supported, natural 
frequencies differ from the values of ideal supported 
microbeams which have the weighting factors k = 0 (ideal 
clamped) and k = 1 (ideal simply supported). The natural 
frequencies of clamped supported beam decreased and the 

 
 

 
 
natural frequencies of simply supported beam increased. In 
Case (2), non-ideal simply supported beam is modeled. The 
first mode natural frequency of the beam increased by 
0.28% when the second mode frequency increased by 0.2%. 
This change remains at low levels in Case (1), which is 
figured as non-ideal support at the left side and ideal 
support at the right side. In Case (4), non-ideal clamped 
microbeam is modeled. The first mode natural frequency 
decreased about 15.6% and the second mode frequency 
decreased by 15.5%. In Case (3), which is non-ideal 
clamped on the left side and ideal clamped on the right side, 
natural frequencies do not differ significantly. It is 
understood that non-ideal BCs highly affect clamped 
microbeams rather than simply supported ones. 

The change of natural frequencies caused by non-ideal 
BCs becomes smaller as the fluid velocity v0 increases. 
Additionally, effect of the fullness ratio of microbeam is 
investigated and the effect of the fluid amount in the beam 
is shown. It is seen that natural frequencies of microbeam 
increase while the fullness ratio β is increasing. 
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Fig. 5 Natural frequencies of simply supported and clamped microbeams varying with fluid velocity 
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Fig. 6 Natural frequencies of simply supported and clamped microbeams varying with the ratio of fullness of the beam 
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