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1. Introduction 

 
Optimum design of steel skeletal structures has always 

most desired aim of structural engineers. However, until the 
emergence of numerical optimization techniques this aim 
has not been fulfilled. The structural design was carried out 
using trial and error techniques which were mainly based on 
designers’ intuition and experience. The early mathematical 
optimization techniques were not very capable of finding 
the solution of discrete optimum design problems. It is after 
the emergence of stochastic search techniques (metaheuris-
tics) that it became possible to develop discrete optimum 
design algorithms where the steel design code requirements 
can be considered in the design and the steel profiles can be 
selected from available steel sections list. The stochastic 
search optimization methods are inspired by natural 
phenomena such as swarm intelligence, survival of fittest, 
music improvisation, and so forth. Thereby, these 
techniques owe their success and popularity to being 
simple, flexible, efficient, and adaptable as well as being 
easy to apply to complex problems such as real-sized steel 
structures containing high nonlinearity within itself (Yang et 
al. 2016). Various popular stochastic search algorithms have 
been introduced recently. For instance, ant colony obtimiza- 
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tion (ACO) is based on the metaphor of ants seeking food 
(Dorigo 1992). Particle swarm optimization (PSO) 
simulates the foraging behavior of a biological social 
system like a flock of birds (Eberhart and Kennedy 1995). 
Trying to find a pleasing harmony in a musical performance 
is analogous to finding the optimum solution in an 
optimization problem with the harmony search optimization 
(HSO) (Saka et al. 2010). These algorithms have been 
applied to many engineering optimization problems and 
proved effective in solving some specific kind of problems 
such as steel structures (Fourie and Groenwold 2002, Lee 
and Geem 2004, Perez and Behdinan 2007, Aydogdu and 
Saka 2009, Carbas et al. 2009, Hasançebi and Çarbaş 2011). 

Three recent stochastic search algorithms are Biogeo-
graphy-Based Optimization (BBO) algorithm, Brain Storm 
Optimization (BSO) algorithm, and Artificial Bee Colony 
(ABC) algorithm. The BBO algorithm was firstly 
introduced by Simon in 2008 (Simon 2008), who adopted 
the theory of island biogeography. The migration and 
extinction of species between islands is reflected in the 
mathematical formulation of the BBO. As BBO evolved, it 
has been implemented to many design optimizations of 
engineering problems (Roy et al. 2011, Jalili et al. 2014, 
Saka et al. 2015, Wang et al. 2015, Çarbaş 2016). More-
over, different variations of the BBO have been developed 
to enhance the efficiency of the basic algorithm 
(Bhattacharya and Chattopadhyay 2010, Gong et al. 2010, 
Yang et al. 2013, Aydogdu 2017). Another contemporary 
trend in swarm based optimization techniques, brain storm 
optimization (BSO), inspired by brainstorming process in 
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human kind, is currently progressing rapidly (Jordehi 
2015a). This technique was debut by Shi in 2011 (Shi 2011) 
and imitates the brainstorming process bringing together a 
group of people with different backgrounds in order to 
interactively collaborate for generating eminent thoughts to 
solve a problem. Despite being one of the latter stochastic 
optimization techniques, it has a considerable amount of 
application in different disciplines of optimization problems 
(Zhan et al. 2013, Lenin et al. 2014, Li and Duan 2015, 
Cheng et al. 2016). However, its application to the optimum 
engineering design field as well as in the optimum design of 
steel structures has not been encountered in the current 
literature yet. From this aspect, this study will be available 
in the literature as the first. The last but the most known 
technique of the triplet is the Artificial Bee Colony (ABC) 
algorithm, which simulates the intelligent foraging behavior 
of honeybees (Karaboga 2005). The ABC as an optimiza-
tion tool provides a population-based search procedure in 
which individuals called foods positions are modified by the 
artificial bees with time and the bees’ purpose is to discover 
the places of food sources with high nectar amount and 
finally the one with the highest nectar. This technique has 
been proved to be very robust and effective in finding the 
solutions of different types of discrete programming 
problems such as steel skeleton structures (Hadidi et al. 
2010, Sonmez 2011, Degertekin 2012). 

A Levy Flight (LF) is a class of random walk 
generalized Brownian motion to include non-Gaussian 
randomly distributed step sizes for the distance moved (Al-
Temeemy et al. 2010). There are many natural and artificial 
facts that may be depicted by LF, such as fluid dynamics, 
earthquake analysis, the diffusion of fluorescent molecules, 
cooling behavior, noise, etc. LF is also used in the field of 
ultrasound in skin tissue (Pereyra and Batatia 2010) and in 
radar scanning (Chen 2010). LF also plays a significant role 
in many fields such as computer sciences (Terdik and 
Gyires 2009). In the current paper the LF is combined with 
the BBO, BSO, and ABC algorithms so that their 
performance on searching through global optima is 
intensified. By preventing divergence, each technique is 
also capable of solving highly nonlinear problems such as 
steel frames and trusses. The algorithms integrated with LF 
select the sequence number of W-shape and pipe shape steel 
sections listed in steel profile table which are managed as 
design variables. The displacement limitations, inter-story 
and top-story drift restrictions, ultimate strength ratios, and 
the geometric necessities are treated as design constraints 
which are enforced according to the specifications of 
LRFD-AISC (Load and Resistance factor Design – 
American Institute of Steel Construction) (LRFD 2000). 
The effectiveness of LF integrated algorithms are compared 
to those of standard versions in order to reveal the 
outstanding performance of the proposed strategy in design 
optimization of two real-sized steel frames and a steel barrel 
vault. 

 The remainder of this manuscript is organized as 
follows; In Section 2, the mathematical formulations of 
discrete design optimization is depicted for steel frames and 
trusses according to LRFD-AISC under pre-described 
constraints. In Section 3, the basic steps of the BBO, BSO, 

and ABC techniques are outlined. In Section 4, the LF 
strategy is identified in detail. In Section 5, computational 
procedure of the optimization algorithms are given. 
Performance of the Levy Flight-based metaheuristics on 
mathematical benchmark functions is tested in Section 6. In 
Section 7, the efficiency and accuracy of the proposed LF 
integrated algorithms are investigated in solving selected 
real-sized design examples, namely two steel frames and a 
barrel vault, by comparing the results of those derived from 
basic algorithms. Also a set of results obtained from 
optimum designs for numerical solutions of design 
examples are presented and discussed in this section. 
Sensitivity analysis of the control parameters are illustrated 
in Section 8. Finally, concluding remarks are provided in 
Section 9. 

 
 

2. Discrete optimization of steel skeletal structures 
 
2.1 Mathematical modelling of 

the optimization problem 
 
The discrete optimization procedure of the steel skeletal 

structures can be defined as searching optimum steel 
sections for grouped structural members in order to 
minimize the weight of the structure. For steel structures, 
the objective function can be taken as the minimum weight 
of the structure to observe the overall economy or the 
material cost of the structure while behavioral and 
geometrical constraints are satisfied according to the design 
specification. 

Hence, the discrete optimum design problem of steel 
skeletal structures can be formulated as: 

Find the steel sections of the optimum design 
 

𝒙𝒙 = [𝑥𝑥1, 𝑥𝑥2, … 𝑥𝑥𝑁𝑁𝑁𝑁 ]𝑇𝑇 (1) 
 
In order to minimize the weight of the structure 
 

𝑊𝑊(𝒙𝒙) = �𝑤𝑤𝑖𝑖 ∙ 𝑙𝑙𝑖𝑖

𝑁𝑁𝑁𝑁

𝑖𝑖=1

 (2) 

 
where, x is the vector of integer values representing the 
sequence numbers of steel sections assigned to member 
groups, NG and NM respectively the total member groups 
and number of members defined in the structure, W(x) is the 
total weight of the structure, wi is the unit weight of the 
selected steel section to be adopted for the structural 
member i, and li is the length of member i. 

 
Subjected to the following constraints: 
 
• Strength constraints for the beam-column members 

of the structures (LRFD 2000) 
 

𝑔𝑔1(𝒙𝒙) = �
𝑃𝑃𝑢𝑢
∅𝑐𝑐𝑃𝑃𝑛𝑛

+
8
9
�
𝑁𝑁𝑢𝑢𝑥𝑥

∅𝑏𝑏𝑁𝑁𝑛𝑛𝑥𝑥
+

𝑁𝑁𝑢𝑢𝑢𝑢

∅𝑏𝑏𝑁𝑁𝑛𝑛𝑢𝑢
��

𝑖𝑖,𝑗𝑗

− 1.0 ≤ 0 

for     �
𝑃𝑃𝑢𝑢
∅𝑐𝑐𝑃𝑃𝑛𝑛

�
𝑖𝑖,𝑗𝑗
≥ 0.2 

(3) 
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𝑔𝑔1(𝒙𝒙) = �
𝑃𝑃𝑢𝑢

2∅𝑐𝑐𝑃𝑃𝑛𝑛
+ �

𝑁𝑁𝑢𝑢𝑥𝑥

∅𝑏𝑏𝑁𝑁𝑛𝑛𝑥𝑥
+

𝑁𝑁𝑢𝑢𝑢𝑢

∅𝑏𝑏𝑁𝑁𝑛𝑛𝑢𝑢
��

𝑖𝑖,𝑗𝑗

− 1.0 ≤ 0 

for     �
𝑃𝑃𝑢𝑢
∅𝑐𝑐𝑃𝑃𝑛𝑛

�
𝑖𝑖,𝑗𝑗

< 0.2 

𝑖𝑖 = 1, 2, …𝑁𝑁𝑁𝑁;      𝑗𝑗 = 1, 2, …𝑁𝑁𝑙𝑙𝑐𝑐  
 
In Eq. (3), Pu represents the ultimate axial load occurred 

in the member i under the load case j, Pn represents the 
axial load capacity of the member i, Mux and Muy are the 
ultimate moments member i is subjected to under the load 
case j for the local x and y axis respectively, Nlc is the total 
number of load cases, and φc and φb are the safety factors of 
the axial load and bending capacities, respectively. Pn and 
Pu can be the tension or compression. For determinations of 
the Mux and Muy values, second order (P-∆) effects which 
are alternatively calculated according to section C1 of the 
LRFD-AISC (LRFD 2000). In the alternative calculation, 
two ultimate moments are obtained from the superposition 
of the results of non-sway and sway analyses of the 
structure. The first moment (Mnt) is calculated from the non-
sway analysis of the structure under the gravity loads. The 
second moment (Mlt) is calculated from the sway analysis of 
the structure under the lateral loads. These moments are 
combined using magnifier coefficients and the ultimate 
moment is calculated as follows 

 
𝑁𝑁𝑢𝑢 = 𝐵𝐵1𝑁𝑁𝑛𝑛𝑛𝑛 + 𝐵𝐵2𝑁𝑁𝑙𝑙𝑛𝑛  (4) 

 
where, B1 and B2 respectively are the magnifier coefficients 
of Mnt and Mlt. The details of how these coefficients are 
calculated are given in Chapter C of LRFD-AISC. For the 
truss structure (3rd example), P-∆ effect is not taken into 
account. 

•  

• Deflection constraints for all members of the frame 
structures 

 

𝑔𝑔2(𝒙𝒙) =
(𝛿𝛿)𝑖𝑖 ,𝑗𝑗
(𝛿𝛿𝑎𝑎𝑙𝑙 )𝑖𝑖

− 1.0 ≤ 0 

 𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁;       𝑗𝑗 = 1,2, … ,𝑛𝑛𝑙𝑙𝑐𝑐  
(5) 

 
where, (δ)i,j is the deflection of the ith frame member under 
the load case j and (δal)i is the allowable deflection limit for 
member i. 

•  

• Top-story and inter story drift constraints for the 
frame structures 

 

𝑔𝑔3(𝒙𝒙) =
(∆𝑛𝑛𝑡𝑡𝑡𝑡 )𝑗𝑗
∆𝑎𝑎𝑙𝑙
𝑛𝑛𝑡𝑡𝑡𝑡 − 1.0 ≤ 0;       𝑗𝑗 = 1,2, … ,𝑛𝑛𝑙𝑙𝑐𝑐  (6) 

 

𝑔𝑔4(𝒙𝒙) =
(∆𝑖𝑖𝑖𝑖)𝑖𝑖,𝑗𝑗
�∆𝑎𝑎𝑙𝑙𝑖𝑖𝑖𝑖 �𝑖𝑖

− 1.0 ≤ 0 

𝑖𝑖 = 1,2, … ,𝑛𝑛𝑖𝑖𝑛𝑛 ,     𝑗𝑗 = 1,2, … ,𝑛𝑛𝑙𝑙𝑐𝑐  

(7) 

 
where, (∆𝑛𝑛𝑡𝑡𝑡𝑡 )𝑗𝑗  is the maximum top story drift under the jth 
load case, ∆𝑎𝑎𝑙𝑙

𝑛𝑛𝑡𝑡𝑡𝑡
 is the allowable deflection top story drift 

limit of the structure, (∆𝑖𝑖𝑖𝑖)𝑖𝑖 ,𝑗𝑗  is the maximum inter story 
drift between upper and lower joints of the ith story under 

the jth load case, �∆𝑎𝑎𝑙𝑙𝑖𝑖𝑖𝑖 �𝑖𝑖 is the allowable inter story drift 
limit of the ith story, and nst is the total number of stories in 
the structure. 

 Displacement constraints for all joints of the truss 
structure 

 

𝑔𝑔5(𝒙𝒙) =
(𝛿𝛿𝑖𝑖)𝑗𝑗 ,𝑙𝑙

𝛿𝛿𝑖𝑖𝑎𝑎𝑙𝑙
− 1.0 ≤ 0 

𝑗𝑗 = 1,2, … ,𝑛𝑛𝑗𝑗 ,     𝑙𝑙 = 1,2, … ,𝑛𝑛𝑙𝑙𝑐𝑐  
(8) 

 
where, (δi)j,l is the displacement of the jth joint under the 
load case l and δial is the allowable displacement limit. In 
Eqs. (5)-(8), the allowable deflection, displacement and 
drift values are computed in accordance with the ASCE Ad 
Hoc Committee report (Ellingwood 1986). 
 

• Geometric constraints for the column to column 
(CtoC) and beam to column (BtoC) connections of 
the frame structures 

 

𝑔𝑔6(𝒙𝒙) = ��
𝐷𝐷𝑖𝑖𝑎𝑎

𝐷𝐷𝑖𝑖𝑏𝑏
− 1.0�

𝑛𝑛𝑐𝑐𝑐𝑐

𝑖𝑖=1

≤ 0 (9) 

 

𝑔𝑔7(𝒙𝒙) = ��
𝑤𝑤𝑖𝑖𝑎𝑎

𝑤𝑤𝑖𝑖𝑏𝑏
− 1.0�

𝑛𝑛𝑐𝑐𝑐𝑐

𝑖𝑖=1

≤ 0 (10) 

 

𝑔𝑔8(𝒙𝒙) = ��
𝐵𝐵𝐵𝐵𝑖𝑖𝑏𝑏

𝐷𝐷𝑖𝑖𝑐𝑐 − 2 ∙ 𝑛𝑛𝐵𝐵𝑖𝑖𝑐𝑐
− 1.0�

𝑛𝑛𝑏𝑏𝑐𝑐 1

𝑖𝑖=1

≤ 0 (11) 

 

g9(𝒙𝒙) ��
𝐵𝐵𝐵𝐵𝑖𝑖𝑏𝑏

𝐵𝐵𝐵𝐵𝑖𝑖𝑐𝑐
− 1.0�

𝑛𝑛𝑏𝑏𝑐𝑐 2

𝑖𝑖=1

≤ 0 (12) 

 
where, 𝐷𝐷𝑖𝑖𝑎𝑎  and 𝑤𝑤𝑖𝑖𝑎𝑎  are respectively the depth and the unit 
weight of the top column in the ith CtoC connection, 𝐷𝐷𝑖𝑖𝑏𝑏  
and 𝑤𝑤𝑖𝑖𝑏𝑏  respectively are the depth and unit weight of the 

 
 

 

 
(a) BtoC connections (b) CtoC connection 

Fig. 1 Connection types of the space frames 
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bottom column in the ith CtoC connection, ncc is the total 
number of CtoC connections in the structure, 𝐵𝐵𝐵𝐵𝑖𝑖𝑏𝑏  is the 
flange width of the beam, 𝐷𝐷𝑖𝑖𝑐𝑐  and 𝑛𝑛𝐵𝐵𝑖𝑖𝑐𝑐  respectively are the 
depth and flange thickness of the column in the BtoC 
connection type 1, 𝐵𝐵𝐵𝐵𝑖𝑖𝑐𝑐  is the flange width of the column 
in the BtoC connection type 2, 𝑛𝑛𝑏𝑏𝑐𝑐1 and 𝑛𝑛𝑏𝑏𝑐𝑐1  are respec-
tively the total numbers of the type1 BtoC connection and 
the type 2 BtoC connection. In order to illustrate geometric 
constraints clearly, CtoC and BtoC connection types are 
illustrated in detail in Fig. 1. 
 

2.2 Constraint handling and evaluation of 
the objective function 

 
Many alternative constraint handling techniques for 

metaheuristic algorithms are available in the literature: 
static penalty function (Homaifar et al. 1994), dynamic 
penalty function (Joines and Houck 1994), adaptive penalty 
function (Ben Hadj-Alouane and Bean 1997), repair 
approaches (Michalewicz and Nazhiyath 1995), separatist 
approaches (Surry et al. 1995). Review studies about 
constraint handling techniques are also available in the 
literature (Coello and Carlos 1999, Coello 2002, Salcedo-
Sanz 2009, Jordehi 2015e). Among these approaches, static 
penalty function, whose efficiency was previously proved in 
the discrete optimization of skeleton structures (Aydogdu 
and Saka 2009, Carbas et al. 2009, Aydoğdu 2010, Aydoğdu 
et al. 2012a, b, Aydoğdu and Akın 2014, Artar and Daloglu 
2015b, Artar and Daloglu 2015a, c, Yetkin 2015, Carbas and 
Aydogdu 2017), is used in this study. Application of the 
static penalty function method for the discrete optimization 
of steel skeleton structures can be described as follows: 

Each solution where the set of steel sections are 
assigned as design variables, the structural analysis is 
performed and responses of each candidate solution are 
obtained under the applied loads. 

The total violation, V, is calculated using Eq. (13) for 
infeasible solutions that violate some of the problem 
constraints described in Eqs. (3)-(12). 

 

𝑉𝑉 = �𝐶𝐶𝑖𝑖

𝑁𝑁𝐶𝐶

𝑖𝑖=1

;𝐶𝐶𝑖𝑖 = � 0   for   𝑔𝑔𝑖𝑖(𝒙𝒙) ≤ 0
𝑔𝑔𝑖𝑖(𝒙𝒙)   for   𝑔𝑔𝑖𝑖(𝒙𝒙) > 0� 

(13) 

 
In Eq. (13), Ci is the violation of the ith problem 

constraint: gi(x) and NC represents the total number of 
constraints. 

If the total violation (V) is greater than zero, structure 
weight is penalized using penalty function described in Eq. 
(14). 

𝑊𝑊𝑡𝑡 = 𝑊𝑊 ∙ (1 + 𝑉𝑉)2 (14) 
 

where, Wp is penalized weight of the structure. If V is 
calculated as zero that means structure satisfies all problem 
constraints, penalized weight of the structure directly equals 
to its unpenalized (real) weight. 

 
 

3. ABC, BBO and BSO algorithms 
 
3.1 ABC algorithm 

The ABC optimization algorithm is developed by 
Karaboga and Basturk (Karaboga 2005, Karaboga and 
Basturk 2007, 2008) which is adopted from the behavior of 
bee swarms. Three types of worker bees are included in the 
bee swarms which perform different tasks. These are 
employed bees, onlooker bees and scout bees. The 
employed bees determine the location and nectar capacity 
of flowers. After return to the hive, these bees share this 
information with the onlooker bees by performing the 
waggle dance. The onlooker bees watch the dance and fly to 
the food source which has a rich amount of nectar. If the 
food source is exhausted, the scout bees randomly search 
for new food sources. Bees go to one food source during 
each trip. Therefore, the number of employed bees and 
onlooker bees are equal to the number of the food sources. 
If the food source is exhausted, scout bees replace the 
onlooker and the employed bees which go to the exhausted 
food source. 

For structural optimization, ABC algorithm is utilized to 
find the optimum steel sections assigned to member groups 
of the structure with the purpose of minimizing the weight 
of the structure. The location of the food sources (FS) 
represents the structural designs, each coordinate of the 
location represents the design variable of the structure and 
the nectar amount of the food source represents fitness 
values of the structures. Main steps of the ABC method for 
an optimization problem are described as follows: 

 
Step 1: In this step, initial structural designs 

(FS designs) are generated randomly using 
Eq. (15). Then, the designs are evaluated and 
their fitness values are computed using Eq. (16). 

 
𝑋𝑋𝑖𝑖𝑗𝑗 = int(1 + (NSec − 1) ∙ rnd) 

𝑖𝑖 = 1, … ,𝐹𝐹𝐹𝐹;      𝑗𝑗 = 1, … ,𝑁𝑁𝑁𝑁 
(15) 

 

𝐹𝐹𝑖𝑖 =
1

�𝑊𝑊𝑡𝑡�𝑖𝑖
;           𝑖𝑖 = 1, … ,𝐹𝐹𝐹𝐹 (16) 

 
In these equations, NSec represents the total 
number of steel sections which are adopted from 
LRFD-AISC, X matrix of integer values 
represents the sequence numbers of steel sections 
for all designs in the algorithm memory and rnd 
is a random number between 0-1. The evaluated 
structural designs, their penalized weights and 
their fitness are stored in the algorithm memory. 

 
Step 2: The employed bees generate new structural 

designs (𝑥𝑥𝐶𝐶𝑎𝑎𝑛𝑛𝐶𝐶 ) by modifying the previous 
designs in the memory which is described 
as follows 

 
𝑥𝑥𝐶𝐶𝑎𝑎𝑛𝑛𝐶𝐶 𝑗𝑗 = 𝑋𝑋𝑖𝑖𝑗𝑗 + 2 ∙ (𝑟𝑟𝑛𝑛𝐶𝐶 − 0.5) ∙ �𝑋𝑋𝑖𝑖𝑗𝑗 − 𝑋𝑋𝑘𝑘𝑗𝑗 � 

   𝑖𝑖, 𝑘𝑘 = 1,2, … ,𝐹𝐹𝐹𝐹,           𝑗𝑗 = 1,2, … ,𝑁𝑁𝑁𝑁 
(17) 

 
where i and k respectively represent indexes of 
the previous food source (structural design) and 
neighbor of ith food source. The new designs are 
evaluated and their fitness values are calculated 
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by using Eq. (16). If the fitness value of the new 
design is better than the fitness value of the 
former design, the former design is replaced by 
the new design. This process is named as 
“Greedy Selection”. If the replacement is not 
performed, the trial number of the food source is 
increased by one. After the greedy selection 
procedure, selection probabilities of the designs 
in the memory are calculated as follows 

 

𝑃𝑃𝑖𝑖 =
𝐹𝐹𝑖𝑖

∑ 𝐹𝐹𝑖𝑖𝐹𝐹𝐹𝐹
𝑖𝑖=1

;           𝑖𝑖 = 1,2, … ,𝐹𝐹𝐹𝐹 (18) 

 
Step 3: The onlooker bees decide which former design 

is used for the generation of the new design. 
The decision criterion of this process is 
described as follows 

 
if     Pi > rnd   The design is selected (19) 

 
Then, the onlooker bees generate the new 
structural design and apply the procedures in the 
same fashion as the employed bees. 

 
Step 4: The trial numbers of the food sources are 

checked in this step. If the trial number exceeds 
the limits of the food source (LFS), the structural 
designs of the food source is discarded and scout 
bees randomly generate the structural designs 
(finds new food sources) in place of former 
designs by using Eq. (15). 

 
Steps 2 to 4 are repeated until a pre-assigned maximum 

number of iterations are completed. 
 
3.2 BBO algorithm 
 
The BBO algorithm was initially developed by Simon 

(Simon 2008) and is based on the geographical behavior of 
individuals in the habitat such as migration, existence and 
extinctions. In the algorithm, two main parameters, HSI 
(high suitability index) and SIV (suitability index variable), 
control these behaviors. HSI is related to the life conditions 
of the islands which can be modeled as fitness value of the 
solution vector. SIV describes habitability of individuals in 
the islands, which is independent design variable of the 
solution vector. 

The mathematical modeling of the algorithm consists of 
two main phases; migration and mutation. In the migration 
phase, individuals move from one habitat to another, which 
means generation of new solution vectors by modifying 
former solutions. The movements are performed by using 
the roulette wheel selection method. The movement 
probabilities of individuals are determined using their 
immigration and emigration rates which are related to the 
fitness values of the solution vectors. In mutation phase, the 
mutation probabilities of all the individuals are determined 
first. If the mutation takes place, any design variable of the 
individual is randomly changed. 

For structural optimization, each habitat represents 
structural design and the individuals in the habitat represent 
design groups (variables) of the structure. The BBO 

algorithm is described in detail as follows: 
 
Step 1: Initial habitats (structural designs) are generated 

randomly using Eq. (15). The number of initial 
designs is equal to the number of habitats (NH). 
Then, some procedures are applied in same way 
described in the step 1 of the ABC algorithm. 

Step 2: The migration phase is performed in this step. 
First, structural designs are sorted ascending 
order emigration (µ) and immigration (λ) rates of 
the designs are calculated as follows 

 

𝜇𝜇𝑖𝑖 =
𝑁𝑁𝑁𝑁 + 1 − 𝑖𝑖
𝑁𝑁𝑁𝑁 + 1

;   𝜆𝜆𝑖𝑖 = 1 − 𝜇𝜇𝑖𝑖 ;    𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 (20) 
 

Then, the new design is generated by changing 
the former designs according to µ and λ. The 
generation process can be described in simple 
pseudo code as follows 

 
If (rnd <λk) Then 
   Do j = 1, NG 
    RandN = rnd*∑ μi

NH
i=1  

    Select = µ1 
    Select Index = 1 
    Do While (RandN > Select.and.SelectIndex <NH) 
       SelectIndex = SelectIndex + 1 
       Select = Select + µSelectIndex 
    End Do 

xCand
j = X SelectIndex,j 

   End Do 
End if 

(21) 

 
Step 3: Selected designs are mutated in this phase. 

Selection criteria of the designs are dependent 
on their mutation rates. Mutation rates and 
selection criteria of the designs are calculated 
as follows 

 

𝑚𝑚𝑖𝑖 = 𝑚𝑚max �
1 − 𝑃𝑃𝑖𝑖
𝑃𝑃max

� ;      𝑖𝑖 = 1,2, … ,𝑁𝑁𝑁𝑁 (22) 

 
If   rnd < mi,   mutation is performed (23) 

 
where, Pi is a selection probability of the ith 
habitat (design) (Simon 2008). In the mutation 
process, randomly determined group of the 
structural design is modified randomly in the 
same way described in Eq. (15). 
 

At the end of the step 3, elite designs having best 
solutions are stored to use next generations. Steps 2 to 3 are 
repeated until a pre-assigned maximum number of iterations 
are completed. 

 
3.3 BSO algorithm 
 
BSO algorithm is a recent stochastic search algorithm 

developed via using the simulation brain storm activity of a 
group of people in order to generate great ideas for the 
solution of their problem. In the algorithm, people with 
different knowledge background gather and generate a 
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group. In the group, people generate different ideas 
resulting in an idea database. The ideas are evaluated 
according to their greatness and clustered in subgroups. 
Subsequently, new ideas are generated using the idea 
database and the knowledge background. These procedures 
continue until the satisfactory great ideas are found. 

In the algorithm, the idea represents structural design 
and the greatness of the idea represents the fitness value of 
the structure for the current optimization problem. General 
steps of the BSO algorithm are described as follows: 

 
Step 1: Generation and evaluation of initial designs 

(number of individuals (NI)) are performed the 
same way as step 1 of the ABC and BBO 
algorithms. 

Step 2: Initial designs are clustered into subgroups. 
K-means method is used for the clustering. 
Then, the designs in each cluster are sorted in 
descending order with respect to their fitness 
value and the best designs in each cluster are 
defined as the center of the cluster. 

Step 3: The centers of clusters is modified randomly 
according to the pre-determined probability 
(Ps3). Then, the selection probabilities of 
clusters, based on the number of individuals in 
the clusters, are calculated as follows 

 

𝑃𝑃𝐶𝐶𝑙𝑙 ,𝑖𝑖 =
𝑁𝑁𝑁𝑁𝑖𝑖
𝑁𝑁𝑁𝑁

;      𝑖𝑖 = 1,2, … ,𝑁𝑁𝐶𝐶𝑙𝑙 (24) 
 
Step 4: The candidate designs are generated in this step 

through either using one cluster or two clusters 
as described below 

 
If (rnd < Ps4,1) Then 
     The design is generated using one cluster. 
Else 
     The design is generated using two cluster 
End if 

(25) 

 

where Ps4,1 represents pre-determined probability 
used for selecting one cluster to generate new 
design. If one cluster is being used, the cluster in 
the group is randomly selected. If the selection 
probability of the cluster (PCl) is lower than 
random value (rnd), the cluster is discarded and 
another cluster is selected randomly. After 
selection of the cluster, the candidate design is 
generated as follows 

 
Randomly select one cluster j 
If (rnd < Ps4,2) Then 
     xcand

k = Centerj,k; k = 1, 2,…, NG 
Else 
     Select any individual (i1) from the cluster j 
     xcand

k= Xi1,k; k = 1, 2,…, NG 
End if 

(26) 

 

where Ps4,2 is usage probability for the center of 
the selected cluster. If two clusters are being 
used, the clusters in the group are randomly 
selected. Then, the candidate design is generated 
as follows 

Randomly select two clusters; j1 and j2 
If (rnd < Ps4,2) Then 

xcand
j = rnd*Centerj1,k+(1-rnd)*Centerj2,k 

k = 1, 2,…, NG 
Else 
     Select any individual (i1) from the cluster j1 
     Select any individual (i2) from the cluster j2 
     xcand

k = rnd*Xi1,k+(1-rnd)* Xi1,k; k = 1, 2,…, NG 
End if 

(27) 

 

Step 5: Generated candidate designs are modified in this 
step to increase diversity. In this process, step 
length (SL) values are added to the candidate 
designs. Calculation of the SL values and update 
procedure of the candidate designs are described 
as follows 

 
SL = logsig((0.5Itermax ‒ Iter)/20)*rnd (28) 

 
xcand

k = xcand
k + SL*6*(rnd ‒ 3) (29) 

 
where SL is the step length value used for 
generating the new individual, Iter is the current 
iteration number in the optimization process and 
Itermax is the maximum iteration number defined 
in the optimization method. After addition of the 
SL values, greedy selection procedure is applied 
as described in step 2 of the ABC algorithm. 

 
Steps 2 to 5 are repeated until a pre-assigned maximum 

number of iterations are completed. 
 
 

4. Levy Flight strategy 
 
4.1 Mathematical background 
 
LF, also called Levy motion, demonstrated a type of 

non-Gaussian stochastic process whose step size is 
distributed based on a Levy stable distribution (Levy 1939). 
When generating new solution 𝑥𝑥𝑛𝑛+1 for solution 𝑖𝑖, a LF is 
performed. 

 

𝑥𝑥𝑛𝑛+1 = 𝑥𝑥𝑛𝑛 + 𝛼𝛼 ⊕ 𝐿𝐿𝐿𝐿𝐿𝐿𝑢𝑢(𝛽𝛽) (30) 
 

where 𝛼𝛼 > 0 is the step size which is relevant to the scales 
of the problem and 𝛽𝛽 is stability (Levy) index. In most 
conditions, we let 𝛼𝛼 = 1. The product ⊕ means entry wise 
multiplications (Yang and Deb 2009). LF essentially 
provides a random walk while its random step is drawn 
from a Levy distribution for large steps as depicted in the 
following 

 

𝛼𝛼 ⊕ 𝑙𝑙𝐿𝐿𝐿𝐿𝑢𝑢(𝛽𝛽)~0.01
𝑢𝑢

𝐿𝐿
1
𝛽𝛽

(𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑗𝑗𝑏𝑏𝐿𝐿𝑖𝑖𝑛𝑛 ) (31) 
 

where 𝑢𝑢 and 𝐿𝐿 values are obtained from normal distri-
butions 

𝑢𝑢~𝑁𝑁(0,𝜎𝜎𝑢𝑢2),        𝐿𝐿~𝑁𝑁(0,𝜎𝜎𝐿𝐿2) (32) 
 

with 
 

𝜎𝜎𝑢𝑢 = �
𝛤𝛤(1 + 𝛽𝛽) sin �𝜋𝜋𝛽𝛽

2
�

𝛤𝛤 �1+𝛽𝛽
2
�𝛽𝛽 2

𝛽𝛽−1
2

�

1/𝛽𝛽

𝜎𝜎𝑉𝑉 = 1 (33) 
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where Γ is the gamma function ∫
∞

−−=Γ
0

1)( dtetz zz
 that is 

the extension of the factorial function with its argument 
shifted down by 1 to real and complex numbers. That is, if k 
is a positive integer )!1()( −=Γ kk  

There are a few ways to implement LFs; the method 
chosen in this paper is one of the most efficient and simple 
ways based on the Mantegna algorithm; all the equations 
are detailed in Refs. (Yang 2010, Aydoğdu et al. 2016). 

 
4.2 Application of LF strategy on 

the optimization techniques 
 
The main property of the stochastic search techniques is 

the usage of randomness for generating the new solution. 
Most of these techniques generate initial solutions randomly 
and improve the solutions using characteristic formulas 
contain randomness. Some of the stochastic search 
techniques have additional randomness parts in order to 
prevent local convergence. Although this method performs 
well in many optimization problems, it can fail in the 
current optimization problem due to the optimization 
problem containing discrete design variables and irregular 
constraint functions (especially geometric constraints). 
Therefore, in progressive iterations, solutions which are 
generated in the randomness parts are not necessarily better 
solutions than previous solutions. This situation causes 
divergence in the algorithm. Although, adjustment of the 
search parameters is an alternative way to overcome this 
problem, this strategy can be inadequate in the current 
problem. LF strategy is based on modifying old solutions 
by using random walk strategy. Step size of the random 
walk can be adjusted according to the scale of the 
optimization problem. This makes it convenient to balance 
exploration and exploitation. Therefore, solutions obtained 
using LF can likely be better than the solutions generated 
randomly. 

In the study, the LF strategy is used instead of the 
randomness parts of the presented algorithms. For ABC 
optimization method, the LF strategy is used in step 4 
(randomly generation formula of scout bees). For BBO 
algorithm, the LF strategy is used in step 3 (randomly 
generation formula of mutation process). For BSO 
algorithm, the LF strategy is used in step 3 (randomly 
modification of center of clusters). In order to prevent the 
local convergence in the improved versions of the 
optimization algorithms using LF strategy, two solutions 
have been developed. The first one is adjusting step size 
which is related to LF index. Aydogdu et al. (2016) 
performed the sensitivity analysis for the optimum design of 
real size steel frames. According to the study, LF index is 
determined as 1.5. The second solution is intended to avoid 
redundant solutions in the algorithm memory. 

 
 

5. Computational procedure of 
the optimization algorithms 
 
The applications of the artificial bee colony optimiza-

tion, bio-geography based optimization and brain storm 

optimization algorithms to the problem of the steel skeletal 
structures are respectively summarized in the following 
subsections. 

 
5.1 Optimum design algorithm of the ABC 
 
The design algorithm of Artificial Bee Colony (ABC) 

technique consists of the following steps (Carbas et al. 
2013) 

 
(1) Select the values of the ABC algorithm parameters. 

These are number of employed bees, number of 
onlooker bees, number of cycles and control 
parameter adjusting the food source. In the 
algorithm, the number of employed bees and 
onlooker bees are equal to the number of the food 
sources. 

(2) After defining search parameters, all foragers in 
the colony search food source randomly. This 
means, the randomly generated number of the steel 
skeletal structure is equal to the sum of the number 
of employed bees and the number of onlooker 
bees. Then, generated structural designs are 
evaluated and penalized in accordance with their 
weights and constraints violations. 

(3) After evaluation process, bees having the best 
structural designs become employed bees. Then, 
employed bees start to generate a new structural 
design by using the old one. 

(4) After finding new structural designs and 
replacements, all employed bees return their hive 
and start their waggle dance. Waggle dance of 
employed bees are related to penalized weight of 
structural designs. The remainders of the bees 
(onlooker bees) watch the waggle dance and make 
a decision. This decision process of each onlooker 
bee depends on its probability value associated 
with the structural design. 

(5) If steel structural design cannot be replaced with 
the old design, this structural design is abandoned 
and the employed bee associated with that design 
becomes a scout bee. Scout bees generate new 
structural designs by using random selection 
process the same as step 2. 

(6) Steps 3 and 5 are repeated until the termination 
criterion is satisfied; that is the pre-selected 
maximum number of iterations is reached. This 
number is selected large enough such that within 
this number of design iterations no further 
improvement is observed in the weight of the steel 
skeletal structure. 

 
5.2 Optimum design algorithm of BBO 
 
The design algorithm of bio-geography based optimiza-

tion consists of the following steps (Simon 2008); 
 
(1) Initialize the BBO parameters. This means deriving 

a method of determining problem solutions to SIVs 
and habitats. Also, initialize the maximum species 
count, the maximum migration rates, the maximum 
mutation rate, and an elitism parameter. 
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(2) Initialize a random set of habitats, each habitat 
corresponding to a steel skeleton structure design 
to the given problem. 

(3) For each habitat, determine the HSI to the number 
of species, the immigration rate, and the 
emigration rate. 

(4) Probabilistically use immigration and emigration 
to modify each non-elite habitat. 

(5) For each habitat, update the probability of its 
species count. Then, mutate each non-elite habitat 
based on its probability, and recalculate each HSI. 

(6) Go to step (3) for the next iteration. This loop can 
be terminated after a predefined number of genera-
tions. 

 
5.3 Optimum design algorithm of BSO 
 
The design algorithm of the BSO consists of the 

following steps (Shi 2011); 
 
(1) Initialize the BSO parameters. These are the 

number of individuals, the number of clusters, the 
probability of selecting one cluster for creating the 
new individual, the probability of randomly 
replacing a cluster center, and the probability of 
using the cluster center. 

(2) Initialize individuals randomly where each 
individual represents the steel skeleton structure 
designs in the problem. Evaluate the steel skeleton 
structure designs. Sort the steel skeleton structure 
designs in ascending order of their penalize weight. 

(3) Cluster individuals into m clusters; determine 
center and selection probabilities of m clusters. 

(4) If the randomly generated number between 0 and 1 
is smaller than a pre-determined probability of 
randomly replacing a cluster center then, 
(a) Randomly select a cluster; 
(b) Randomly generate an individual to change the 

selected cluster center; 
(5) If randomly generated number between 0 and 1 is 

less than the probability of selecting one cluster 
then 
(a) Pick one cluster according its selection 

probability 
(b) If randomly generated number between 0 and 1 

is less than the probability of using the cluster 
center then, 
(i) Generate the steel skeleton structure design 

according to the selected cluster center 
Else 

(ii) Generate the steel skeleton structure design 
according to any individual in the selected 
cluster 

Else 
(c) Pick two clusters randomly 
(d) If randomly generated number between 0 and 1 

is less than the probability of using the cluster 
center then, 
(i) Generate the steel skeleton structure design 

according to the centers of the selected 
clusters 

Else 
(ii) Generate the steel skeleton structure design 

according to any two individuals in the 
selected clusters 

(6) Modify the steel skeleton structure design using 
the step length 

(7) Evaluate the steel skeleton structure design and 
compare to the existing individual with the same 
individual index; the better one is kept and 
registered as the new individual; 

(8) If n new individuals have been generated, go to 
step 9; otherwise, go to step 5; 

(9) Terminate if the pre-determined maximum number 
of iterations has been reached; otherwise go to step 
3. 

 
 

6. Performance of the Levy Flight-based 
metaheuristics on mathematical benchmark 
functions 
 
Prior to applying the developed algorithms (LFABC, 

LFBBO and LFBSO) on the discrete optimization of the 
steel skeletal structures, these algorithms are tested on four 
mathematical benchmark functions. Specifications of the 
benchmark functions are given in the Table 1. 

In the table, n represents the dimension of the function 
which is equal to number of decision variables in the 
optimization problem. In this study, three different n values 
have been used (n = 5, n = 30, n = 100). Obtained results of 
the examples are compared to the standard versions of the 
presented algorithms (ABC, BBO and BSO) as well as the 
following well-known optimization algorithms; Conven-
tional Particle Swarm Optimization (CPSO) (Shi and 
Eberhart 1998), Harmony Search Optimization (HSO) 
(Geem et al. 2001), Firefly Algorithm (FFA), Genetic 
Algorithm (GA) (Digalakis and Margaritis 2002), 
Gravitational Search Algorithm (GSA) (Rashedi et al. 
2009), and Enhanced Leader Particle Swarm Optimization 
(ELPSO) (Jordehi 2015d). In the optimization procedure, 
the number of function iterations is kept the same as the 
compared algorithms. In LFABC algorithm, the number of 
food sources are respectively taken as 5*n and 10*n. In 
LFBBO and BBO algorithms, the number of habitat and the 
maximum mutation rate is respectively set as 5*n and 

 
 

Table 1 Specifications of the benchmark functions 

Func. name Formulation Range 

Sphere 𝐹𝐹1(𝒙𝒙) = ��𝑥𝑥𝑖𝑖2�
𝑛𝑛

𝑖𝑖=1

 [-5.12, 
5.12] 

Rastrigin 𝐹𝐹2(𝒙𝒙) = 10𝑛𝑛 + ��𝑥𝑥𝑖𝑖2-10cos(2𝜋𝜋𝑥𝑥𝑖𝑖)�
n

i=1

 [-5.12, 
5.12] 

Griewank 𝐹𝐹3(𝒙𝒙) = ��
𝑥𝑥𝑖𝑖2

4000�
𝑛𝑛

𝑖𝑖=1

−��
𝑥𝑥𝑖𝑖
√𝑖𝑖
�

𝑛𝑛

𝑖𝑖=1

+ 1 [-600, 
600] 

Rosenbrock 𝐹𝐹4(𝒙𝒙)=��100(𝑥𝑥𝑖𝑖2 + 𝑥𝑥𝑖𝑖+1)2 + (𝑥𝑥𝑖𝑖 − 1)2�
n-1

i=1

 [-5, 
10] 
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Table 2 Statistical data of the algorithms on mathematical benchmark functions (n = 5) (Best values are bolded) 

F1 LFABC LFBBO LFBSO ABC BBO BSO ELPSO CPSO HSO GA FSO GSA 
Mean 6.87e-10 1.05e-09 3.75e-16 5.28e−11 6.99e-05 2.29e−4 3.20e−15 2.176e−13 5.86e−5 3.95e−5 3.73e−7 4.53e−7 
Std 8.62e-10 2.58e-09 1.43e-16 5.08e−11 6.54e-05 1.27e−4 3.10e−15 1.936e−13 1.031e−4 3.57e−5 3.09e−5 1.432e−6 

Median 4.86e-10 2.40e-10 3.74e-16 3.41e−11 4.35e-05 2.24e−4 2.02e−15 1.55e−13 1.77e−5 2.90e−5 3.17e−5 0 
Min 2.42e-11 3.60e-12 1.58e-16 4.2e−12 5.31e-06 3.42e−5 1.5e−16 3.43e−14 1e−7 2.1e−6 6e−6 0 
Max 4.40e-09 1.37e-08 6.53e-16 1.780e−10 0.000307 4.84e−4 1.15e−14 9.984e−13 5.188e−4 1.648e−4 1.546e−6 4.528e−6 
F2             

Mean 3.19e-06 1.21 1.21 8.43e−6 0.0131 0.975 0.0141 1.9237 0.0215 1.6921 1.791 0.3449 
Std 3.15e-06 1.16 0.943 8.43e−6 0.0136 0.637 0.0083 1.043 0.0373 1.1018 0.9143 0.5652 

Median 2.04e-06 0.995 0.995 4.84e−6 0.0101 1.04 0.0199 1.9899 0.0051 1.5729 1.99 0 
Min 3.89e-07 1.44e-09 0 1.2e−7 0.000554 0.0231 0 0 0 0.1346 0.0001 0 
Max 1.49e-05 4.97 2.98 3.169e−5 0.0651 2.17 0.0798 3.9798 0.1372 3.9168 2.985 1.4171 
F3             

Mean 0.0261 0.161 6.40 0.0136 0.0694 0.687 0.0043 0.0927 0.3492 0.1189 0.03 7.4448 
Std 0.0132 0.103 5.06 0.0065 0.0256 0.418 0.0014 0.0589 0.2301 0.0405 0.0218 3.3767 

Median 0.0243 0.152 4.88 0.0137 0.0626 0.643 0.0029 0.0714 0.2938 0.1152 0.0229 6.7265 
Min 0.00875 0.01232 0.952 0.0003 0.0272 0.163 0.0007 0.0105 0.0023 0.0441 0.0101 3.1479 
Max 0.0618 0.434 24.2 0.0292 0.139 1.59 0.034 0.2587 0.7713 0.1921 0.0948 13.06 
F4             

Mean 0.393 2.13 0.791 0.0746 1.32 0.618 0.0551 0.2621 3.3874 1.1055 2.0458 5.7634 
Std 0.495 0.796 0.737 0.0829 0.913 0.318 0.0239 0.9973 2.5074 0.6436 1.3827 1.7891 

Median 0.185 2.20 0.591 0.044 1.36 0.6733 0 0 3.565 1.1506 1.8992 5.4878 
Min 0.00458 0.604 0.000490 0.0081 0.00482 0.0928 0 0 0.0357 0.0373 0.1552 2.9368 
Max 1.848 4.47 3.51 0.3477 2.54 1.24 0.1308 3.9308 11.5375 2.6914 4.5985 9.4227 

 

Table 3 Statistical data of the algorithms on mathematical benchmark functions (n = 30) (Best values are bolded) 

F1 LFABC LFBBO LFBSO ABC BBO BSO ELPSO CPSO HSO GA FSO GSA 
Mean 0.0579238 107.4762 4.66e-11 0.4114 0.0006317 0.0419 5.244e−8 6.11e−8 1.0389 2.0586 1.819e−5 0.0237 
Std 0.207686 20.88617 1.15e-11 0.281 0.0002194 0.0051 1.643e−8 3.64e−8 0.5401 0.5491 4.92e−6 0.0019 

Median 0.0042 106.7063 4.637e-11 0.3935 0.0006021 0.0416 5.176e−8 5.92e−8 0.8989 2.086 1.721e−5 0.023 
Min 0.0001575 75.95851 2.003e-11 0.0265 0.0003066 0.0321 2.979e−8 1.36e−8 0.555 1.0484 9.79e−6 0.0221 
Max 1.1222 143.6848 7.687e-11 1.2233 0.0011622 0.05 7.614e−8 1.500e−7 1.9489 2.9578 3.303e−5 0.0259 
F2             

Mean 10.0972 301.8013 28.5553 62.841 0.1171841 42.7192 8.6403 25.67 24.3984 142.0224 29.7863 5.416 
Std 2.91231 32.82688 7.026427 7.3062 0.0440304 6.3649 4.1871 5.3637 21.9022 15.2892 5.8596 3.1959 

Median 10.9203 299.0897 26.86388 64.5771 0.1076456 43.3136 8.8185 26.8639 18.7426 139.5265 29.8518 4.9023 
Min 3.10826 241.4145 16.9143 52.4758 0.0515707 29.717 3.8941 13.9294 9.3234 109.9212 18.9075 2.508 
Max 15.1387 403.9522 41.78825 77.3247 0.221349 51.9668 18.8062 33.8287 62.5372 171.2527 39.8013 8.8376 
F3             

Mean 1.13901 4.118388 0.008943 1.9129 0.3289801 15.9278 2.748e−4 0.0135 6.0126 7.9564 0.0083 305.1743 
Std 1.16187 16.43281 0.0098425 1.0371 0.0937733 3.8231 1.232e−4 0.013 0.2969 1.434 0.002 5.0033 

Median 0.856 1.117876 0.007396 1.5246 0.3234603 15.7031 2.547e−4 0.0089 5.9205 7.6865 0.0082 307.8109 
Min 0.176166 1.076382 0 1.1524 0.1519639 11.1064 1.628e−4 0.0002 5.6253 5.3898 0.0054 299.4042 
Max 4.67408 91.1243 0.0344575 5.2249 0.5169591 22.802 4.068e−4 0.052 6.3507 11.863 0.0137 308.308 
F4             

Mean 1.85581 4589.148 1876.432 283.8412 34.27486 51.2181 5.8172 52.7099 1452.9 728.1 58.7722 1414.8 
Std 2.74797 832.2331 4697.424 113.1524 20.38742 33.3722 1.384 31.4375 472.7 193.8 34.2257 287 

Median 1.0669 4397.42 161.5686 258.9218 27.09328 32.6838 5.8938 29.2173 1452.5 731.9 29.376 1509.4 
Min 0.15357 3328.112 23.93475 143.4207 17.38066 29.277 1.1337 4.4676 887.2 432.3 24.8685 1005.6 
Max 14.0421 7168.665 20078.28 534.3106 80.29335 111.4459 9.4242 110.5213 1963.2 1307.2 104.6797 1634.8 
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0.01. In LFBSO algorithm, the number of individuals, the 
number of cluster, the selection probability of the cluster 
center, randomly change probability of the cluster and, the 
probability of selecting one cluster are respectively taken as 
5*n, 0.5*n, 0.8, 0.2 and 0.4. ABC and BSO algorithms are 
not reapplied on the benchmark functions. Their results are 
taken from a previous study (Jordehi 2015d). All tests are 
performed 30 times using different seed values and their 
statistical data are presented in Tables 2-4. 

According to the test results, LFABC, LFBBO and 
LFBSO algorithms show satisfactory performances on the 
mathematical benchmark functions. In some functions, the 
LFABC and LFBSO algorithms show the best performance 
among all algorithms. In addition, the performances of the 
LFABC, LFBBO and LFBSO algorithms are generally 
better than their standard versions. Only LFBBO algorithm 

 
 

 
 

does not show better performance in some functions. 
 
 

7. Design examples 
 
In the study, three space steel skeleton structures are 

optimized in order to illustrate efficiency of LF strategy. 
First two structures are considered as steel space frames. 
The members of these structures are selected from the set of 
272 W-sections starting from W100 × 19.3 to W1100 × 499 
mm as given in LRFD-AISC (LRFD 2000). Space braced 
barrel vault is considered as last structure. Members of the 
structure are selected from the entire set of 37 standard 
circular hollow sections. Modulus of elasticity and shear 
modulus are taken as 200 GPa and 77 GPa respectively in 
all structures. Search parameters of the optimization method 
used in these structures are illustrated in Table 5. 

Table 4 Statistical data of the algorithms on mathematical benchmark functions (n = 100) (Best values are bolded) 

F1 LFABC LFBBO LFBSO ABC BBO BSO ELPSO CPSO HSO GA FSO GSA 
Mean 5.407e-05 604.1784 0.0039396 230.825 0.0219166 0.3696 6.035e-05 5.398e−4 76.0844 29.4081 2.211e−4 0.0672 
Std 3.625e-05 28.2017 0.0015288 19.3176 0.0030417 0.0222 1.860e−5 2.639e−4 6.3151 4.6242 2.03e−5 0.0102 

Median 4.024e-05 612.8889 0.0034889 237.4058 0.0219269 0.372 5.811e−5 4.095e−4 78.0859 31.2806 2.216e−4 0.0691 
Min 9.566e-06 545.3276 0.0092637 198.6946 0.0170282 0.3406 4.297e−5 2.708e−4 69.0111 23.7734 2.001e−4 0.0562 
Max 0.0001655 651.0005 0.0016971 249.1387 0.0302057 0.3937 7.997e−5 9.951e−4 81.1562 35.0934 2.524e−4 0.0763 
F2             

Mean 66.9981 1412.731 111.3497 753.3054 1.59653 164.6546 5.5402 78.782 415.5759 768.2887 214.1549 29.8488 
Std 7.4067 53.35139 18.68541 12.2647 0.2806993 44.1605 1.1612 16.5476 171.3781 29.2261 30.192 1.9899 

Median 68.2809 1416.113 114.4244 756.6776 1.602431 146.3873 5.7829 82.187 360.5646 775.294 218.9371 29.8488 
Min 49.2414 1314.54 71.67504 735.1485 0.9935574 135.4258 1.0448 49.8618 300.2257 720.2649 169.1787 27.8589 
Max 80.1129 1513.306 146.0594 767.0975 2.460157 230.4178 9.793 95.721 713.7281 797.1519 246.7955 31.8387 
F3             

Mean 1033.13 28.6495 0.0314067 817.3863 0.7864 83.5311 0.2612 0.2841 271.336 104.867 0.0152 1.1321 
Std 82.7464 40.47719 0.0097468 63.1554 0.1172872 18.4563 0.1092 0.041 28.4434 11.0502 0.0011 0.3453 

Median 1045.7 4.789451 0.0304533 844.5736 0.77688 84.5294 0.2127 0.2793 268.3095 108.7177 0.0151 0.6543 
Min 753.727 3.902631 0.0152764 722.3432 0.60815 60.9781 0.1846 0.2347 244.5269 86.0552 0.0136 0.2126 
Max 1169.06 95.00575 0.0538454 879.0898 1.17754 104.0877 0.3863 0.3603 301.1716 113.7519 0.0165 1.4532 
F4             

Mean 4.35886 29337.21 193.0249 1380800 137.3483 206.5988 8.739 209.9321 319290 26131 97.8001 93.0768 
Std 3.07626 2067.502 42.41771 191900 46.48899 35.155 2.5665 83.3498 26200 3856 0.9119 0.1221 

Median 4.5148 29758.55 192.0106 1278300 130.5773 215.7586 8.3733 225.3372 317150 25822 97.7481 93.0122 
Min 0.172849 23389.19 118.0326 1252700 94.9541 156.385 3.7441 70.9597 294240 21330 96.4872 93.0005 
Max 9.89806 33284.24 276.4468 1710000 255.0533 238.4931 18.0996 306.3208 34649 31699 98.7111 93.2176 

 

Table 5 Search parameters of the optimization methods 

Algorithm 428-member steel frame 1024-member space frame 693-member braced barrel vault 

ABC FS = 30, 
LFS(ABC/LFABC) = 150/100 

FS = 30, 
LFS(ABC/LFABC) = 150/100 

FS = 30, 
LFS(ABC/LFABC) = 150/100 

BBO NH(BBO/LFBBO) = 50/100, 
NED(BBO/LFBBO) = 2/5, mmax = 0.01 

NH(BBO/LFBBO) = 50/100, 
NED(BBO/LFBBO) = 2/5, mmax = 0.05 

NH(BBO/LFBBO) = 50/100, 
NED(BBO/LFBBO) = 2/5, mmax = 0.01 

BSO 
NI = 100, 

NCl(BSO/LFBSO) = 5/10, 
PS3 = 0.2, PS4,1 = 0.8, PS4,2 = 0.4 

NI = 100, 
NCl(BSO/LFBSO) = 5/10, 

PS3 = 0.2, PS4,1 = 0.8, PS4,2 = 0.4 

NI = 100, 
NCl(BSO/LFBSO) = 5/10, 

PS3 = 0.2, PS4,1 = 0.8, PS4,2 = 0.4 
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Table 6 Member grouping of the first design example 

Story Side 
beam 

Inner 
beam 

Corner 
column 

Side 
column 

Inner 
column 

1 1 2 9 10 11 
2 3 4 12 13 14 
3 5 6 15 16 17 
4 7 8 18 19 20 

 

 
 

Table 7 Load details and displacement limitations of 
the first and second examples 

Load type 428 member frame 1024 member frame 
Dead load 2.88 kN/m2 2.88 kN/m2 
Live load 2.39 kN/m2 2.39 kN/m2 
Snow load 0.755 kN/m2 0.755 kN/m2 
Wind speed 38 m/s 38 m/s 
Top story D. 3.5 cm 3.5 cm 
Inter-story D. 0.875 cm 0.875 cm 

Def. limit 2 cm 2 cm 
 

 
 

 
Fig. 2 3D view of the first design example 

 
 

 
Fig. 3 Side view of the first design example 

 
 

Table 8 Design details of the best solutions for the first example (NA: Not Available) 

#  ABC LFABC BBO LFBBO BSO LFBSO 
1 Beam W310×38.7 W410×46.1 W360×32.9 W310×28.3 W310×32.7 W310×23.8 
2 Beam W360×32.9 W310×28.3 W250×32.7 W310×38.7 W200×26.6 W310×21 
3 Beam W460×52 W360×44 W460×52 W360×39 W310×32.7 W360×44 
4 Beam W460×52 W460×52 W310×32.7 W410×38.8 W250×49.1 W360×32.9 
5 Beam W310×32.7 W410×60 W530×66 W460×52 W610×82 W410×46.1 
6 Beam W310×32.7 W410×38.8 W460×52 W530×92 W250×73 W410×38.8 
7 Beam W310×38.7 W360×32.9 W360×32.9 W460×60 W460×52 W360×32.9 
8 Beam W360×39 W410×60 W460×52 W460×52 W610×113 W250×32.7 
9 Column W200×46.1 W460×144 W410×53 W310×97 W250×49.1 W310×79 
10 Column W200×46.1 W310×38.7 W250×49.1 W200×52 W310×86 W310×86 
11 Column W200×46.1 W200×46.1 W200×46.1 W310×38.7 W200×71 W360×91 
12 Column W840×210 W460×144 W410×100 W310×97 W310×107 W360×134 
13 Column W460×74 W310×143 W250×80 W360×72 W310×86 W310×107 
14 Column W690×140 W200×46.1 W360×134 W410×100 W250×73 W460×97 
15 Column W1000×321 W460×144 W460×113 W310×97 W310×107 W360×216 
16 Column W920×201 W310×143 W310×97 W460×89 W310×86 W310×107 
17 Column W760×147 W360×147 W360×147 W410×100 W250×73 W760×196 
18 Column W1100×390 W760×173 W920×201 W460×113 W310×107 W360×216 
19 Column W920×201 W690×217 W840×193 W460×89 W310×86 W690×125 
20 Column W760×147 W360×216 W530×150 W410×100 W250×73 W920×342 

Max. strength ratio 1 0.883 0.978 0.902 0.988 0.998 
Top drift (cm) 2.91 3.01 2.867 3.266 3.325 2.933 

Inter story drift (cm) 0.875 0.535 0.875 0.872 0.866 0.87 
Max. deflection (cm) 0.49 0.512 NA 0.246 0.385 0.234 
Maximum iteration 50000 50000 50000 50000 50000 50000 

Weight (kN) 1512.11 1481.73 1332.29 1239.21 1354.02 1326.74 
 

103



 
Ibrahim Aydogdu, Serdar Carbas and Alper Akin 

 
Fig. 4 Plan view of the first design example 

 
 

 
Fig. 5 Search histories of best designs for the first example 

 
 

7.1 Four-story, 428-member steel frame 
 
428 member 3-D frame which is previously used in the 

literature (Aydoğdu and Akın 2014, Akın and Aydoğdu 
2015, Aydoğdu et al. 2016, Çarbaş 2016) is considered as 
the first design example in the study. 3-D, side and plan 
views of the frame are shown in Figs. 2-4, respectively. In 
the example problem, the frame members are grouped into 
20 independent design groups which are illustrated in Table 
6. Dead, live, snow and wind loads are considered for the 
design of the structure. The design loads and load combina-
tions are computed from the ASCE 7-05 (ASCE 7-05 2005). 
The load combinations of the study are described as: 1.2DL 
+ 1.6LL + 0.5SL, 1.2DL + 0.5LL + 1.6SL, 1.2DL + 1.6WL 
+ LL + 0.5SL. The load details and displacement limitations 
are illustrated in Table 8. 

It is clearly illustrated in the table that the lightest 
weight is obtained as 1239.21 kN by using the LFBBO 
algorithm. This weight is 7.06%, 7.51%, 9.26%, 19.57% 
and 22.02% lighter than the optimum weights of LFBSO, 
BBO, BSO, LFABC and ABC algorithms respectively. In 
addition, when LF distribution is taken into account, 2.05%, 
2.06% and 7.51% lighter designs are obtained for ABC, 
BSO and BBO algorithms respectively. The design histories 
of these algorithms for the best solutions are also plotted in 
Fig. 5. 

From Table 8, it can be concluded that while the inter-
story drift constraint is active in the optimum designs, the 
top-story sway limitation is relatively not active. 
Additionally, it is noted from this table that the strength 
limitations are dominant in the design problem. In the 
optimum frames, the strength ratios of some members are 
very close to their upper bound of 1.0. Hence, in the 

 
Fig. 6 3-D view of the second design example 

 
 

Table 9 Member grouping of the second design example 

Story Side 
beam 

Inner 
beam 

Corner 
column 

Side 
column 

Inner 
column 

8 1 2 17 18 19 
7 3 4 20 21 22 
6 5 6 23 24 25 
5 7 8 26 27 28 
4 9 10 29 30 31 
3 11 12 32 33 34 
2 13 14 35 36 37 
1 15 16 38 39 40 

 

 
 

optimum results, it is the strength constraints that govern 
the design. 

Another interesting result derived from Fig. 5 is that the 
optimum design algorithms with or without the effect of LF 
perform similar convergence rates except LFBBO. LFBBO 
has better convergence than the others. For this example, 
the deflection values observed for all optimum designs are 
very low. 

 
7.2 Eight-story, 1024-member space frame 
 

In the second design example taken from previous studies 
(Aydoğdu et al. 2012a, b, 2016, Aydoğdu and Akın 2014), 
the eight-story steel space frame has 1024 members and 384 
joints collected into 40 independent design groups. 3-D, 
plan and side views of the frame are shown in Figs. 6-8, 
respectively. The member grouping of the frame is given 
Table 7. The frame members are selected from the set of 
272 W-sections starting from W100 × 19.3 to W1100 × 499 
mm as given in LRFD-AISC (LRFD 2000). The load 
combinations of the study are described as: 1.2DL + 1.6LL 
+ 0.5SL, 1.2DL + 0.5LL + 1.6SL, 1.2DL + 1.6WXL + LL + 
0.5SL and 1.2DL + 1.6WYL + LL + 0.5SL. The design 
loads, basic wind speed, drift and deflection limits of the 
frame are computed according to ASCE 7-05 (ASCE 7-05 
2005) and Ad Hoc Committee on Serviceability, are 
illustrated in Table 7. 
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Table 10 Design details of the best solutions for the second example (NA: Not Available) 

# Group Type ABC LFABC BBO LFBBO BSO LFBSO 
1 Beam W360×32.9 W200×26.6 W310×21 W200×46.1 W200×26.6 W410×114 
2 Beam W250×32.7 W150×37.1 W310×21 W530×150 W200×26.6 W410×114 
3 Beam W530×92 W410×60 W410×53 W250×73 W410×60 W410×114 
4 Beam W250×58 W460×60 W250×49.1 W530×150 W360×51 W410×114 
5 Beam W360×101 W360×79 W610×101 W200×46.1 W250×44.8 W410×114 
6 Beam W200×71 W410×100 W250×58 W250×49.1 W310×67 W410×114 
7 Beam W530×92 W310×32.7 W410×100 W200×59 W530×74 W410×114 
8 Beam W530×66 W310×32.7 W250×80 W530×150 W310×79 W410×114 
9 Beam W690×140 W530×85 W610×155 W310×79 W530×92 W410×114 

10 Beam W530×66 W250×32.7 W530×165 W250×80 W460×89 W410×114 
11 Beam W760×134 W250×131 W690×125 W360×91 W610×92 W410×114 
12 Beam W310×28.3 W360×57.8 W310×107 W530×150 W460×89 W410×114 
13 Beam W840×176 W760×196 W610×125 W610×101 W530×92 W410×114 
14 Beam W410×60 W530×66 W460×52 W530×150 W610×101 W410×114 
15 Beam W760×173 W460×97 W840×176 W760×134 W530×92 W410×114 
16 Beam W410×38.8 W310×32.7 W310×28.3 W530×150 W530×101 W410×114 
17 Column W360×44 W310×74 W310×107 W310×158 W610×92 W410×114 
18 Column W410×100 W530×92 W360×196 W530×150 W360×101 W410×114 
19 Column W200×52 W200×35.9 W200×41.7 W530×150 W610×92 W410×114 
20 Column W460×128 W360×287 W310×117 W310×158 W690×217 W410×114 
21 Column W610×195 W840×210 W360×196 W530×150 W690×217 W410×114 
22 Column W250×58 W200×35.9 W250×58 W530×150 W690×217 W410×114 
23 Column W1000×321 W360×287 W360×162 W310×158 W760×314 W410×114 
24 Column W760×284 W1000×296 W360×237 W530×150 W760×314 W410×114 
25 Column W360×162 W530×165 W250×67 W530×150 W760×314 W410×114 
26 Column W1000×321 W310×375 W360×162 W310×158 W1000×415 W410×114 
27 Column W840×299 W1000×412 W360×347 W530×150 W1100×390 W410×114 
28 Column W360×262 W1000×258 W310×97 W530×150 W1100×390 W410×114 
29 Column W1000×443 W310×375 W610×174 W310×158 W1100×433 W410×114 
30 Column W1000×321 W1000×412 W1100×390 W530×150 W1100×433 W840×226 
31 Column W360×287 W1000×258 W530×150 W530×150 W1100×433 W410×114 
32 Column W1000×477 W310×375 W760×314 W310×158 W1100×499 W410×114 
33 Column W1100×433 W1000×412 W1100×499 W530×150 W1100×499 W1100×499 
34 Column W1000×321 W1000×258 W530×150 W530×150 W1100×499 W410×114 
35 Column W1000×477 W610×415 W920×446 W310×158 W1100×499 W410×114 
36 Column W1100×499 W1000×412 W1100×499 W530×150 W1100×499 W1100×499 
37 Column W1000×321 W1000×258 W920×201 W530×150 W1100×499 W410×114 
38 Column W1000×477 W610×415 W1000×443 W310×158 W1100×499 W410×114 
39 Column W1100×499 W1000×412 W1100×499 W530×150 W1100×499 W1100×499 
40 Column W1000×321 W1000×258 W1000×258 W530×150 W1100×499 W840×226 

Max. strenght ratio 0.986 0.989 1 0.91 0.998 0.968 
Top drift (cm) 6.577 6.239 6.508 5.095 4.986 4.905 

Inter storey drift  (cm) 0.874 0.871 0.875 0.874 0.714 0.827 
Max. deflection (cm) N.A N.A N.A 0.29 0.115 0.618 
Maximum iteration 75000 75000 75000 75000 75000 75000 

Weight  (kN) 7210.12 7689.51 6462.79 6092.91 7652.84 6793.57 
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Fig. 7 Plan view of the second design example 

 
 

 
Fig. 8 Side view of the second design example 

 
 

The example is solved by the LFBBO, BSO and LFBSO 
algorithms. The obtained results are compared to results of 
ABC, BBO and LFABC algorithms achieved by the authors 
formerly (Aydoğdu and Akın 2014, Aydoğdu et al. 2016, 
Çarbaş 2016). The lightest weight, the maximum strength 
ratio, maximum displacements and W-section designations 
of the optimum designs are given in the Table 10. It is 
clearly illustrated in the table that the lightest weight is 
obtained as 6092.91 kN by using the LFBBO algorithm. 
This weight is 0.83%, 6.07%, 10.97%, 11.5%, and 25.6% 
lighter than the optimum weights of LFABC, BBO, ABC, 

 
 

 
Fig. 9 Search histories of best designs for the 

second example 
 
 

 
Fig. 10 3D view of the third design example 

 
 
BSO, and LFBSO algorithms respectively. In addition, 
when LF distribution is taken into account, 6.07%, 10.17% 
and 14.1% lighter designs are obtained for BBO, ABC and 
BSO algorithms respectively. The design histories of these 
algorithms for the best solutions are also plotted in Fig. 9. 
The eight-story, 1024-member steel skeletal frame is the 
most challenging design example of this study with the 
greatest number of design variables. Both the strength ratio 
constraints and the drift constraints are active for this 
example. Both strength and serviceability constraints are 
dominant in the optimum design as shown in Table 10. 
From optimal design attained by BBO algorithm, the 
strength ratios of some members are at the upper bound of 
1.0, while attained by other algorithms are close to the 
 
 

 
Fig. 11 Plan view of the third design example 
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Table 11 Design details of the best solutions for the third example 

 ABC LFABC BSO LFBSO BBO LFBBO 
1 P2.5 PX1.25 PX1.25 P2.5 PX1.25 P2.5 
2 P1 P1 P1 P1 P1 P1 
3 P.75 P1 P1 P.75 P1 P.75 
4 P1 P1 P1 P1 P1 P1 
5 P.75 P.75 P.75 P.75 P.75 P.75 
6 PX1.25 P1.25 P1.25 PX1.25 P1.25 P1.5 
7 P1 P1 P1 P1 P1 P1 
8 P1 PX1 PX1 P1 PX1 P1 
9 P1 P1 P1 P1 P1 P1 
10 P.75 P1 P.75 P.75 P1 P.75 
11 PX1 PX1.25 P1 P1.25 P1 P1.25 
12 P1 P1 P1 P1 P1 P1 
13 P1 PX1 P2.5 P1 P2.5 P1 
14 P1 P1.25 P1.25 P1 P1.25 P1 
15 P3.5 P.75 P.75 P.75 P.75 P.75 
16 PX1 P1 P1 PX1 P1 PX1 
17 P1 PX1 P.75 P1 P.75 P1 
18 P1 PX1 P1.25 P1 P1.25 P1 
19 P1 P1.5 P1.25 P1 P1.5 P1 
20 P.75 P.75 P1.25 P.75 P1.25 P.75 
21 P1 PX.75 PX.75 PX.75 PX.75 PX1 
22 P.75 P1.5 P.75 P.75 P.75 P.75 
23 P2 PX1.25 P.75 PX3 P3 PX1.25 

Max. Str. R. 0.995 0.989 0.934 0.989 0.937 0.999 

Max. Def. 
(cm) 0.753 0.813 0.839 0.741 0.833 0.771 

Max. Iter. 30000 30000 30000 30000 30000 30000 
Weight (kN) 33.15 31.28 30.66 29.86 32.11 28.85 

 

 
 
upper bound of 1.0. The inter-story drifts in all optimum 
designs have nearly an upper bound of 0.875. The top-story 
drifts located at the joints on the top story of the steel frame 
do not have values close their upper bounds of 7.0 for any 
optimum design. LFBBO shows rapid convergence to the 
optimum design compared to the other algorithms, Fig. 8. 
The deflection values observed for all optimum designs are 
also very low. 

 
 

 
Fig. 13 Search histories of best designs for 

the third example 
 
 

7.3 693-member braced barrel vault 
 
The third design example taken from previous studies 

(Hasançebi and Çarbaş 2011, Hasancebi and Azad 2014) is 
the spatial braced barrel vault. The structure has 693 
members and 259 joints collected into 23 independent 
design groups. 3-D, plan and views of the structure are 
shown in Figs. 9, 10 and 11 respectively. Member grouping 
of the structure is illustrated in these figs. as well. Structure 
is exposed to both dead (35 kg/m2) and wind loads (positive 
wind load: 160 kg/m2; negative wind load 240 kg/m2). Two 
load combinations are considered in the example which is 
1.5D+1.5W+ and 1.5D+1.5W‒. The displacements of all 
joints in all directions are limited to 6.36 cm. The strength 
and stability requirements of steel members are imposed 
according to AISC-LRFD (1999). Sap2000 Open Applica-
tion Programming Interface (OAPI) is used to analyze and 
design of the structure. 

The structure is optimized using the ABC, LFABC, 
BBO, LFBBO, BSO and LFBSO algorithms. The lightest 
weight, the maximum strength ratio, maximum displace-
ments and W-section designations of the optimum designs 
are given in the Table 11. It is clearly illustrated in the table 
that the lightest weight is obtained as 28.85 kN by using the 
LFBBO algorithm. This weight is 3.49%, 6.45%, 8.42%, 
11.31% and 14.9% lighter than the optimum weights of the 
LFBSO, BSO, LFABC, BBO and ABC algorithms 
respectively. After usage of LF distribution, 2.67%, 5.97%, 
11.31% lighter designs are obtained for the BSO, ABC and 
BBO algorithms respectively. The design histories of these 
algorithms for the best solutions are also plotted in Fig. 13. 

 
Fig. 12 Side view of the third design example 
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8. Sensitivity analysis of the control parameters 
 
Metaheuristic techniques use two main strategies to 

search for the optimum solution. These are diversification 
and intensification. Efficient metaheuristic method should 
construct dynamic balance between diversification and 
intensification. Detecting suitable control parameters of the 
metaheuristic algorithms is one of the most preferred 
techniques to construct balance. However, the suitable 
control parameters depend on the optimization problem 
structure. Therefore, sensitivity analysis can be required for 
different types of optimization problems. Structural 
optimization problems have different structures than the 
standard benchmark mathematical optimization problems. 
Hence, control parameters of metaheuristics should only be 
obtained from sensitivity analysis for structural optimiza-
tion problems. Control parameters of the ABC, LFABC, 
BBO and LFBBO algorithms for structural optimization 
problems (frame and retaining wall structures) are 
determined using sensitivity analysis or test problems in 
previous studies (Aydoğdu et al. 2016, Çarbaş 2016, 
Aydoğdu 2017). In this study, the control parameters of 
these algorithms are adopted from the previous studies. 

Computation time of single optimization procedure for 
each design example exceeds one day. Therefore, design 
examples are not reasonable for sensitivity analysis. Hence, 
105 member space frame is preferred for sensitivity analysis 
of BSO and LFBSO algorithms which are previously used 
in many studies (Aydoğdu and Saka 2009, Aydoğdu 2010, 
Saka et al. 2011, Akın and Aydoğdu 2015). The frame has 
54 joints and 105 members that are grouped into 11 
independent design variables. 3-D and plan views of the 
structure are given in Figs. 14-15. Both gravity and lateral 
loads which are computed per ASCE 7-10 (Committee 
2010) applied to the frame. The design dead and live loads 
are taken as 2.88 kN/m2 and 2.39 kN/m2. Ground snow load 
is considered to be 0.755 kN/m2 and a basic wind speed is 
105 mph (65 m/s). The unfactored distributed gravity loads 
on the beams of the roof and floors are tabulated in Table 
12. The following load combinations are considered in the 
design of the frame according to code specification. 1.2D + 
1.6L + 0.5S, 1.2D + 0.5L + 1.6S, 1.2D + 1.6W + 0.5L + 
0.5S where D is the dead load, L is the live load, S is the 
snow load and W is the wind load. The structure is tested 
forty-two times by considering different values for NI (25, 
50 and 100), NCl (0.05*NI and 0.1*NI) and PS4,1 (0.3, 0.4, 
0.5, 0.6, 0.7, 0.8 and 0.9). Ps3 and PS4,1 parameters are not 
included in the sensitivity analysis since these parameters 
are not effective for sensitivity analysis. Therefore, values 
Ps3 and PS4,1 parameters are determined according to 
experimental studies in the literature (Shi 2011, 2014). In 
each test, the frame is optimized ten times using different 
seed values. Mean values of these tests are illustrated in 
Tables 13-14. According to the tables, most suitable control 
parameters are bolded in the tables. 

 
 

9. Conclusions 
 
In this study, the effect of the LF strategy on stochastic 

search techniques is investigated in the optimum design of 

steel skeleton structures. For this purpose, three real size 
steel structures are optimized using three stochastic search 
techniques (ABC, BBO and BSO) and their enhanced 
versions which make use of the LF strategy. It is observed 
from the results obtained from the design examples that 
make use of the LF strategy yields 2.5%-14.1% lighter 
optimum designs. The effect of the LF strategy even 
becomes very effective in the case of BBO and LFBBO 
algorithms in the design of first and third structures. The 
difference between BBO and LFBBO methods is 7.51% in 
the first problem and 11.31% in the third. The effect of LF 
strategy is less effective for ABC and BSO methods in these 
design examples. The differences in these methods vary 
from 2.05% to 5.97%. For the second design example, 
which contains more design variables and constraint 
functions than the first and third problems, 6.07%-14.1% 
lighter optimum designs are obtained when LF strategy is 
considered. In this example, the largest weight difference is 
perceived in the BSO results; whereas, the smallest weight 
difference is observed for the BBO method. Based on 
comparison of the results, the LF strategy considerably 
increases the robustness and efficiencies of the stochastic 
search algorithms considered in this study. For the BBO 
algorithm, the LF strategy is more effective in the small-
scale problem. On the contrary, the LF strategy is more 
effective in the large-scale problem for the BSO algorithm. 
It can be concluded that the LF strategy can have a notable 
effect in enhancing the performance of the stochastic search 
techniques in the optimum design of steel skeleton 
structures. Furthermore, the LFBBO algorithm showed the 
best performance among all design examples. 

Although, LF strategy can have a notable effect in 
enhancing the performance of the stochastic search 
techniques for the optimum design of the steel skeleton 
structures, alternative strategies like chaotic operators, 
whose efficiencies are proved for different optimization 
problems, are also available in the literature (Talatahari et 
al. 2012, Gandomi and Yang 2014, Jordehi 2014, 2015b, c, 
Kaveh et al. 2014) and these alternative strategies could be 
compared in future studies to LF. 
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Abbreviation list 
 

3-D : Three Dimensional 

ABC : Artificial Bee Colony 

ACO : Ant Colony Optimization 

BBO : Bio-Geography Based Optimization 

BSO : Brain Storm Optimization 

BtoC : Beam To Column 

CtoC : Column To Column 

CPSO : Conventional Particle Swarm Optimization 

ELPSO : Enhanced Leader Particle Swarm Optimization 

FFA : Firefly Algorithm 

GA : Genetic Algorithm 

GSA : Gravitational Search Algorithm 

HSO : Harmony Search Optimization 

LF : Levy Flight 

LFABC : Artificial Bee Colony With LF Distribution 

LFBBO 
 : Bio-Geography Based Optimization 

With LF Distribution 

LFBSO : Brain Storm Optimization With LF Distribution 

LRFD-
AISC : Load And Resistance Factor Design-American 

Institute Of Steel Construction 

PSO : Particle Swarm Optimization 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Symbol list 
 

Bfi
b : Flange width of the beam for 

the ith beam-column connection 

Bfi
c : Flange width of the column for 

the ith beam-column connection 

Centerk,j : Center of kth cluster for jth design variable 

Ci : Violation of the ith constraint function 

DL : Dead Load 

Di
c : Depth of a column for 

the ith beam-column connection 

Di
b : Depth of lower-story column for 

the ith column-column connection 

Di
a : Depth of upper-story column for 

the ith column-column connection 

Fi : Fitness value of the ith design 

FS : Number of food source in the ABC algorithm 

gi : ith constraint function 

HSI : High suitability index 

Iter : Current iteration number in 
the optimization process 

Itermax : Maximum iteration number defined in 
the optimization method 

li : Length of the ith member 

LFS : Limit Of Food Source 

LL : Live Load 

mi : Mutation rate of ith design for the BBO algorithm 

mmax : Maximum mutation rate defined in the algorithm 

Mnx : Nominal moment capacity for 
strong axis bending 

Mny : Nominal moment capacity for weak axis bending 

Mux : Ultimate moment occurred in the member 
for strong axis bending 

Muy : Ultimate moment occurred in the member 
for weak axis bending 

nbc1 : 
Number of beam-column connections for 
connection type 1: beam is connected to 
the web of a column 

nbc2 : 
Number of beam-column connections for 
connection type 2: beam is connected to 
the flange of a column 

nbm : Number of beam members 

nc : Number of constraint function 

ncc : Number of column-column connections 

NCl : Total Number of Clusters (For BSO Algorithm) 

NED : Number of Elite Designs (For BBO Algorithm) 
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NG : Number of structural member groups 
(Number of design variables) 

NH : Number of Habitat (For BBO Algorithm) 

NI : Total number of Individuals 
(For BSO Algorithm) 

NIi : Number of individual in the ith cluster 

nj : Number of joints in the structure 

Nlc : Number of load cases defined in 
the optimization problem 

NM : Number of members in the structure 

Nsec : Number of section defined in 
the optimization problem 

nst : Number of story in the structure 

PS3 : Pre-determined probability used for 
changing centers of clusters (for BSO algorithm) 

PS4,1 : 
Pre-determined probability used for 
selecting one cluster to generate new design 
(for BSO algorithm) 

PS4,2 : Usage probability for the center of 
the selected cluster 

PCl,i : Selection probability of cluster i 
(for BSO algorithm) 

Pi : Selection probability of ith structural design 

Pmax : Maximum selection probability in 
the optimization algorithm 

Pn : Axial load capacity of the member 

Pu : Ultimate axial force occurred in the member 

rnd : Uniformly distributed random number 
between [0, 1] 

tfi
c : Flange thickness of the column for 

the ith beam-column connection 

SIV : Suitability index variable 

SL : Step length values used for generating new 
individual (for BSO algorithm) 

V : Total violation of the structural design 

W : Weight of the structure 

wi : Weight per meter of section assigned 
to the member i 

wi
b : Unit weight of the lower column for 

the ith column-column connection 

wi
a : Unit weight of the upper column for 

the ith column-column connection 

WL : Wind Load 

WL+ : Wind Load with positive Direction 

WL- : Wind Load with negative Direction 

WXL : Wind Load with global X Direction 

WYL : Wind Load with global Y Direction 

WL : Wind Load 

Wp : Penalized weight of the structure 

x : Vector of the sequence number of sections 
assigned to the structure members 

xcand
j : Value of jth design variable for candidate design 

Xi,j : Value of jth design variable for ith design 
(individual) 

α : Step size of the LF distribution 
which is relevant to the scales of the problem 

β : Stability (Levy) index 

φc : Factor of safety for compression 

φb : Factor of safety for bending 

δ : Computed deflection of the beam member 

δal : Allowable deflection limit of the beam member 

δi : Computed displacement of the ith joint 

δial : Allowable deflection limit 

∆is : Computed inter-story drift 

∆is
al : Allowable inter-story drift 

∆top : Computed top-story drift 

∆top
al : Allowable top-story drift 

Γ : Gamma function 

λi : Immigration rate of the ith individual 

µi : Emigration rate of the ith individual 

⊕ : Entry wise multiplications 
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