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1. Introduction 

 
Composite materials, due to their unique physical 

properties such as high stiffness to weight ratio, have 
obtained a wide range of applications in fabrication of 
engineering structures and are an attractive research area for 
scientists (Malekzadeh and Setoodeh 2007, Malekzadeh and 
Vosoughi 2009, Sahoo and Singh 2014, Biswal et al. 2016). 
For instance, Vosoughi et al. (2012) investigated thermal 
buckling and post-buckling of laminated composite beams 
applying the first-order shear deformation beam theory and 
differential quadrature method. A modified Fourier-Ritz 
approach was utilized by Wang et al. (2016) to study the 
free vibration of laminated composite beams. They assumed 
that the beam is subjected to an axial load and used a 
standard Fourier cosine series and several closed-form 
functions to state the displacements of the beam. Alesadi et 
al. (2017) employed Isogeometric approach along with 
Carrera’s unified formulation to study free vibration and 
buckling of laminated composite plates. The higher-order 
functions for approximation of the field solution were 
applied by them to increase the accuracy of the 
investigation. 

Carbon nanotubes (CNTs) were introduced by Iijima 
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(1991) in 1991. Afterwards, several studies on CNTs 
demonstrated that they have significant mechanical 
properties which make them suitable reinforcement for 
composite structures (Esawi and Farag 2007, Thostenson et 
al. 2001). So, carbon nanotube reinforced composites 
(CNTRCs) have been increasingly applied in various fields 
of science and technology, and meanwhile, many studies 
have been devoted to develop different approaches to 
examine mechanical behavior of related structures (Cadec 
et al. 2002, Fiedler et al. 2006, Sun et al. 2005). Han and 
Elliot (2007) employed classical molecular dynamics to 
simulate the elastic properties of polymer/carbon nanotube 
composite. Using a micromechanical approach, Thostenson 
and Chou (2003) showed that the size of CNTs influences 
the elastic properties of nanotube-based composites. Lu and 
Hu (2012) investigated mechanical properties of CNTs via 
computational simulations. They developed an improved 
3D finite element model and studied different types of 
single-walled carbon nanotubes (SWCNTs). Wuite and 
Adali (2005) used a micromechanics model to analyze the 
deflection and stress behavior of CNTRC beams. Based on 
the Airy stress-function method, the pure bending and local 
buckling of a composite beam reinforced with SWCNTs 
was investigated by Vodenitcharova and Zhang (2006). 
Formica et al. (2010) conducted a research study on the 
vibrational properties of CNTRCs using an equivalent 
continuum model. 

The most important issue in the analysis of 
nanostructures is applying the nanoscale effects 
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(Malekzadeh and Dehbozorgi 2016, Anjana et al. 2016, 
Bağdatli 2015a, Togun and Bağdatli 2016a). In this regard, 
Shen (2009) presented a macro-mechanical model for 
bending of FG-CNTRCs which afterwards have been 
utilized extensively for bending, buckling and vibrational 
analysis of such nanocomposites (Mehrabadi et al. 2012, 
Zhu et al. 2012, Malekzadeh and Zarei 2014, Zafarmand 
and Kadkhodayan 2014, Malekzadeh and Heydarpour 2015, 
Setoodeh and Shojaee 2016, Jooybar et al. 2016, 
Heydarpour et al. 2014, Setoodeh and Shojaee 2017). 
Among them, some researchers have investigated vibration 
and buckling of FG-CNTRC beams. Ke et al. (2010a) 
utilized Timoshenko beam theory and von Kármán 
geometric nonlinearity to discuss the nonlinear free 
vibration of FG-CNTRC beams using Ritz method. Yas and 
Samadi (2012) examined free vibration and buckling of 
CNTRC Timoshenko beams. They assumed that the beam is 
resting on an elastic foundation. Forced vibration of FG-
CNTRC beams with four different FG distribution patterns 
of reinforcement was studied by Ansari et al. (2014) 
through using Timoshenko beam theory and von Kármán 
geometric nonlinearity and employing generalized 
differential quadrature (GDQ) method to discretize the 
nonlinear governing equations. Wu et al. (2016) considered 
a geometrically imperfect FG-CNTRC beam and applied 
first-order shear deformation beam theory to study the 
nonlinear vibration. The governing equations were derived 
by utilizing the Ritz method and then solved by an iteration 
procedure. Recently, Ghorbani Shenas et al. (2017) dealt 
with free vibration analysis of pre-twisted FG-CNTRC 
beams in thermal environment. They found that an increase 
in the pre-twist angle enhances the fundamental frequency 
parameters. 

Meanwhile, analytical solutions are always needed for 
verification of numerical solutions to provide fast and 
accurate results for practical problems, whenever possible 
(Sedighi et al. 2012, Yazdi 2013, Javanmard et al. 2013, 
Bayat et al. 2013, Setoodeh and Afrahim 2014, Setoodeh et 
al. 2016, Setoodeh and Rezaei 2017a, b, Bağdatli 2015b, 
Togun and Bağdatli 2016b). According to the available 
literature and despite the attention given to CNTRCs, no 
analytical expressions for the nonlinear frequencies and 
post-buckling loads of FG-CNTRC beams have been 
derived so far. Accordingly, this paper aims to provide an 
analytical solution for nonlinear vibration and post-buckling 
behavior of Euler-Bernoulli nanocomposite beams 
reinforced by SWCNTs resting on a nonlinear elastic 
foundation. The governing equation is formulated via using 
Hamilton’s principle and Galerkin’s procedure. The 
variational iteration method is employed to solve the 
developed governing equation with quadratic and cubic 
nonlinearities and the analytical expressions are obtained 
for nonlinear natural frequencies, post-buckling loads and 
vibration response of the CNTRC beam. The influences of 
different parameters such as nanotube volume fraction, 
vibration amplitude, end supports, slenderness ratio and 
nonlinear foundation parameters on the natural frequencies 
and buckling loads of the CNTRC beams are illustrated 
through tables and figures. 

 

2. Material properties of FG-CNTRC beam 
 
It is assumed that the CNTRC beam is made of a 

mixture of SWCNTs as reinforcements and isotropic matrix. 
The distribution patterns of reinforcements in the thickness 
direction of the beam are shown in Fig. 1. The effective 
Young’s modulus and shear modulus of CNTRC are 
predicted based on the rule of mixture and can be written as 
(Yas and Samadi 2012) 
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where superscript and subscript cnt and m denote the 
material properties of CNTs and matrix, respectively. E11

cnt, 
E22

cnt  and G12
cnt  are respectively the Young’s and shear 

moduli of SWCNTs; Em and Gm are the corresponding 
material properties related to the isotropic matrix. 
Accounting for the size-dependent material properties, η1, 
η2 and η3 are CNTs efficiency parameters and can be 
evaluated through matching the elastic modulus of 
CNTRCs obtained from the rule of mixture with those from 
MD simulations (Han and Elliot 2007). Also, Vcnt and Vm 
refer respectively to the volume fractions of CNTs and 
matrix, with the relation Vcnt + Vm = 1. Using a similar 
manner, the Poisson’s ratio ν and mass density ρ can be 
given by 
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The distribution of CNTs along the thickness direction 

of the FG-CNTRC beam is expressed as 
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where Λ𝑐𝑐𝑐𝑐𝑐𝑐  is the mass fraction of the CNTs. It is noted 
that Vcnt= V𝑐𝑐𝑐𝑐𝑐𝑐∗  corresponds to the FG-CNTRC beams with 
uniformly distribution of reinforcing phase. 

 
 

  
(a) UD-CNTRC (b) FG-CNTRC 

Fig. 1 SWCNTs distribution patterns in the FG-CNTRC 
beam 
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Fig. 2 Geometry of the FG-CNTRC beam on nonlinear 

elastic foundation 
 
 
3. Governing equation 

 
A CNTRC beam of length l, width b and thickness h 

resting on a nonlinear elastic foundation, and subjected to 
an axial force is shown in Fig. 2. Based on the Euler-
Bernoulli beam theory, the displacements of an arbitrary 
point in the beam along the x and z axes can be described in 
the following form (Lai et al. 2012) 
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where t denotes the time and U and W are, respectively, the 
axial and transverse displacements at the mid-surface of the 
beam with z = 0. The normal stress σxx takes the following 
form by utilizing the von Kármán strain-displacement 
relation and linear elastic constitutive law 

 

( )


















∂
∂

+
∂
∂

−
∂
∂

=
2

2

2

11 2
1

x
W

x
Wz

x
UzQxxσ  (6) 

where 
 

( )
( )z
zEQ

2
11

11 1 ν−
=  (7) 

 
According to Hamilton’s principle, one can write 
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where δ represents the variational symbol and 𝑈𝑈𝑒𝑒 , T and 
Wext are respectively the strain energy, kinetic energy and 
work done by the external forces obtained as follows 
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where F is the axial force and kl, knl and ks are the linear, 

nonlinear and shear coefficients of the nonlinear elastic 
foundation, respectively. Substituting Eqs. (9)-(11) into 
Hamilton’s principle in Eq. (8) and applying integration by 
parts and then setting the coefficients of δU and δW equal to 
zero, yields 
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Also, the corresponding boundary conditions at end 

points are obtained as 
 

U = 0   or   N = 0 (14) 
 

( ) 0=
∂
∂

−++
∂
∂

x
WFNk

x
M

s     or   W = 0 (15) 

 

0=
∂
∂

x
W    or   M = 0 (16) 

 
In Eqs. (12)-(13), M and N are respectively the bending 

moment and normal force stress resultants expressed as 
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Since the value of the longitudinal inertia is very small, 

then Eq. (12) can be simplified as N = constant = N0. By 
integrating Eq. (17) with respect to x and considering U = 0 
at x = 0 and x = l, i.e., immovable end supports 
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In view of Eqs. (18) and (20), the bending moment is 

restated as 
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By inserting Eq. (20) into (21) and then substituting the 

result into Eq. (13), the nonlinear governing equation of 
motion of the FG-CNTRC beam takes the following form 
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For generality and simplicity, the following dimension-

less parameters are considered 
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where A110 and I110 are the corresponding values of A11 and 
I1 for a homogenous beam made of matrix material. Using 
above dimensionless quantities leads to the following 
dimensionless governing equation 
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where Kl, Knl and Ks are the dimensionless coefficients of 
the nonlinear elastic foundation and F� is the dimensionless 
axial force defined as 
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Separation of variable analysis and Galerkin method are 

employed to obtain the uncoupled nonlinear ordinary 
differential equation. The transverse displacement equation 
of the beam can be written as multiplication of two 
independent functions 
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where ϕ is the fundamental vibration mode of the beam 
which must satisfy the kinematic boundary conditions and 
is presented in Table 1 (Rao 2007). The values of Cn, Dn and 
Zn are obtained according to the maximum displacements of 
the beam, which are computed as C1 = 1, D1 = 0.6297 and 
Z1 = 0.6626 for the first mode. Also, w is an unknown time-
dependent function which should be determined. 
Employing Galerkin’s procedure, the governing equation 
takes the following simplified form 
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Table 1 Vibration modes of the CNTRC beam 

Boundary condition Mode shape ϕ(ζ) Coefficient β 
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Table 2 Comparison of nonlinear frequency ratio (ωnl/ωl) for S-S and C-C isotropic beams (l/h = 15) 

 SIWmax  1st approximation 2nd approximation 3rd approximation Azrar et al. (1999) Ke et al. (2010b) 

S-S 

0.5 1.0232 1.0231 1.0231 - 1.0231 
1 1.0897 1.0892 1.0892 1.0892 1.0892 
2 1.3229 1.3180 1.3178 1.3178 1.3178 
3 1.6394 1.6263 1.6257 1.6257 1.6257 

C-C 

0.5 1.0056 1.0056 1.0056 - 1.0056 
1 1.0222 1.0222 1.0222 1.0222 1.0222 
2 1.0862 1.0857 1.0857 1.0857 1.0857 
3 1.1852 1.1832 1.1831 1.1831 1.1831 
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Three types of end supports are considered for the FG-

CNTRC beams, simply supported at both ends (S-S), 
clamped at both ends (C-C) and clamped at x = 0 and 
simply supported at x = l (C-S). For each of them, the 
following boundary conditions must be satisfied: 
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• Clamped-clamped 
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• Clamped-simply supported 
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The initial conditions for vibration of CNTRC beams 

are 
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In the post-buckling analysis, the variation with respect 

to time is zero. Therefore, according to Eq. (28), the post-
buckling load of the FG-CNTRC beams can be obtained as 
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where a is the maximum dimensionless deflection of the 
beam at t = 0, i.e., a = w�max. By neglecting nonlinear and 
time dependent terms in Eq. (28), the critical buckling load 
can be also determined as 
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4. Method of solution 

 
There are several classical methods for solving 

nonlinear differential equations. But, due to the difficulties 
and limitations associated with analytical solutions, 

different numerical techniques have become more popular 
in recent years. The variational iteration method is an 
analytical method presented by He (1999), which has 
overcome the difficulties of traditional perturbation/non-
perturbation techniques and has many advantages such as 
fast convergence and ease of calculations along with the 
accuracy. Furthermore, this method provides closed form 
solutions which are really important for parametric studies. 

In VIM, a general differential equation can be stated in 
the following form (He 2007) 
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where L, Γ and g(t) are, respectively, linear operator, 
nonlinear operator and a real inhomogeneous term. The 
main concept of this method is to find a correction 
functional as follows 
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in which λ is the general Lagrange multiplier that can be 
determined using the stationary conditions of variational 
theory. The subscript n refers to nth order approximation, 
and 𝑢𝑢�𝑐𝑐  denotes a restricted variation, i.e., 𝛿𝛿𝑢𝑢�𝑐𝑐 = 0. 

 
4.1 Application of VIM to vibration analysis 
 
By omitting the axial force in Eq. (28) and defining the 

following coefficients for simplicity, one obtains 
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Substituting Eq. (39) into Eq. (37), and calculating the 

variation with respect to w and using integration by parts 
leads to the following equation 
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Therefore, the Lagrange multiplier must satisfy the 

following stationary conditions 
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Accordingly, the Lagrange multiplier can be determined 

as 
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Considering the initial conditions in Eq. (33) and based 
on the response of linear vibration of the beam, for the first 
iteration, w0 is estimated as 
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The coefficient of the cos(ωs) must be equal to zero to 

avoid producing secular terms in the next iterations, thus 
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where ω0 is the first-order approximation of the natural 

 

Table 3 Nonlinear frequency ratio (ωnl/ωl) for S-S (E2/E1 = 5) and 
C-S (E2/E1 = 0.2) beams (l/h = 16) 

SIWmax  
S-S C-S 

Present Lai et al. (2012) Present Lai et al. (2012) 
1 1.0789 1.0787 1.0479 1.0476 
2 1.3320 1.3293 1.1776 1.1772 
3 1.6713 1.6622 1.3669 1.3673 
4 2.0397 2.0261 1.5965 1.5984 

 

  
 

 

 

 
 

 

 

 

Fig. 3 Dimensionless nonlinear frequencies versus vibration amplitude for CNTRC beams with different volume 
fractions: (a) S-S UD; (b) S-S FG; (c) C-C UD; (d) C-C FG; (e) C-S UD; and (f) C-S FG 
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Fig. 4 Vibration response of FG-CNTRC beams at a = 1: 
(a) S-S; (b) C-C; and (c) C-S 

 
 

nonlinear frequency. It is worth noting that in the case of 
linear vibration, the linear natural frequency can be 
obtained as ωl=�θ1 . Also, the first-order approximate 
solution for w is developed as 

 
( ) ( ) ( ) 43211 3cos2coscos AAAAw +++= ωτωτωτ  (47) 
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By repeating the previous procedure and avoiding the 

secular terms, the natural frequency and periodic solution of 
the second-order approximation can be determined which 
are given in Appendix A. The third-order approximation can 
be also calculated similarly. However, the formulations are 
not brought here for the sake of brevity and only the related 

 
 

 

Fig. 5 Dimensionless nonlinear frequencies versus slender-
ness ratio for S-S CNTRC beams at a = 0.5: (a) UD; 
and (b) FG 

 
 

results are exhibited to demonstrate the fast convergence of 
the method. 

 
 

5. Results and discussions 
 
At the first stage, the fast convergence and accuracy of 

the solution are verified. The results of first, second and 
third iterations for the nonlinear frequency ratios (ωnl/ωl) of 
isotropic homogenous S-S and C-C beams at different 
vibration amplitudes (Wmax �I S⁄⁄ ) are presented in Table 2. 
Note that Wmax is the dimensional maximum transverse 
displacement, I denotes the area moment of inertia and S is 
the cross-section area of the beam. It is found that the 
present results exhibit excellent agreement with those 
available solutions reported by other references used direct 
numerical integration method (Ke et al. 2010b) and 
harmonic balance method (Azrar et al. 1999). Moreover, the 
fast rate of convergence of the results is observed. Table 3 
shows a comparison between the predicted values of the 
nonlinear frequency ratios (ωnl/ωl) and those reported by 
Lai et al. (2012) based on an analytical perturbation 
approach for large amplitude vibration of functionally 
graded beams. The nonlinear frequency ratios at different 
vibration amplitudes for both of simply supported-simply 
supported and clamped-simply supported FG beams with 
materials properties of E1 = 70 GPa, ν1 = 0.33 and ρ1 = 
2780 kg/m3 are presented. The subscripts 1 and 2 denote the 
top surface and the bottom surface of the FG beam, 
respectively. Again, a good agreement between the 
solutions is achieved. 

At the second part, some parametric studies are 
performed to show the effects of different parameters on the 
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Fig. 6 Nonlinear frequency ratios versus vibration 
amplitude of S-S FG-CNTRC beams with 
Vcnt

*  = 0.12 for different values of foundation 
parameters: (a) Kl (Ks = Knl = 0);(b) Ks (Kl = 
Knl = 0); and (c) Knl (Kl = Ks = 0) 

 
 

vibration and stability behavior of FG-CNTRC beams. Both 
of the uniform and functionally graded distributions of 
nanotubes are considered which are designated respectively 
by UD-CNTRC and FG-CNTRC. The selected matrix 
material is Poly methyl methacrylate (PMMA) with νm = 
0.3, ρm = 1190 kg/m3 and Em = 2.5 GPa at room 
temperature. The armchair (10, 10) SWCNTs are considered 
as reinforcements with νcnt = 0.19, E11

cnt = 600 GPa and ρcnt 
= 1400 kg/m3. By modifying the rule of mixture based on 
molecular dynamics results, the CNT efficiency parameters 
ηj (j = 1,2,3) are introduced according to the reported 
effective properties of CNTRCs. The efficiency parameters 
are obtained by matching the atomistic values of Young’s 
moduli with the counterparts computed by the modified 
form of the rule of mixture as (Yas and Samadi 2012): η1 = 
1.2833, η2 = 1.0556 for Vcnt

*  = 0.12; η1 = 1.3414, η2 = 
1.7101 for Vcnt

*  = 0.17; η1 = 1.3238, η2 = 1.7380 for Vcnt
*  = 

0.28. Also, it is assumed that η2 = η3. For PMMA/CNT 
composites, the beams have slenderness ratio of l/h = 15, 
unless otherwise stated. 

Fig. 3 shows the variations of dimensionless nonlinear 
frequency versus dimensionless vibration amplitude for 
UD- and FG-CNTRC beams with different boundary 
Conditions. 

It is found that for S-S and C-S FG-CNTRC beams, the 
curves are unsymmetrical which is due to presence of 
quadratic nonlinearity in the governing equation that refers 
to bending-stretching coupling effect. Also, it can be 
observed that increase in the vibration amplitude and CNT 
volume fraction leads to the higher nonlinear frequencies. It 
can be seen that for both distributions with increasing the 
constraints at the edges of the beams, the nonlinear fre-
quency ratio decreases. Furthermore, the degree of harden-
ing type of nonlinearity is less for the C-C boundary 
condition compared to those of C-S and S-S boundary 
conditions. Fig. 4 depicts the vibration response of S-S, C-C 
and C-S FG-CNTRC beams versus dimensionless time in 
terms of different volume fractions. It is shown that the S-S 
and C-S beams oscillate unsymmetrically which is related 
to the bending-stretching coupling effect. Fig. 5 demon-
strates the effect of slenderness ratio on the dimensionless 
nonlinear frequencies of S-S CNTRC beams with different 
volume fractions. It can be concluded that the natural 
frequency decreases with increasing the slenderness ratio. 
Furthermore, the impact of nonlinear elastic foundation 
coefficients on the dimensionless nonlinear frequency ratio 
of S-S FG-CNTRC beams is investigated in Fig. 6. It can be 
noticed that an increase in the nonlinear elastic foundation 
coefficient leads to larger nonlinear frequency ratio. More-
over, the beams with the smallest linear and shear founda-
tion coefficients possess the highest nonlinear frequency 
ratios. 
The variations of dimensionless post-buckling loads versus 
dimensionless maximum deflection for S-S, C-C and C-S 
CNTRC beams having different volume fractions are 
demonstrated in Fig. 7. The results reveal that increase in 
both the maximum deflection of the beam and volume 
fraction enhances the post-buckling load of the CNTRC 
beams. Moreover, as expected, the values of post-buckling 
loads of C-C beams are larger than those of C-S and S-S 
beams. In Fig. 8, the dimensionless post-buckling loads of 
beams with different volume fractions versus slenderness 
ratio are plotted. One can see that the post-buckling load 
decreases with increasing the slenderness ratio. 
Additionally, the influences of nonlinear elastic foundation 
parameters on the dimensionless post-buckling load ratio 
(Fnl/Fl) of beams with simply supported boundary 
conditions are studied in Fig. 9. As observed, an enhance in 
the linear and shear coefficients of the elastic foundation 
results in smaller dimensionless post-buckling load ratio. 
However, it is noticeable that the value of the dimensionless 
post-buckling load ratio increases with increasing the 
nonlinear elastic foundation parameter. It can be also seen 
that the nonlinearity is more significant for larger values of 
foundation stiffness and the effect of nonlinearity is 
enhanced with increasing the elastic foundation 
coefficients. 
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Fig. 7 Dimensionless post-buckling loads versus dimensionless maximum deflection of CNTRC beams with different 
volume fractions: (a) S-S UD; (b) S-S FG; (c) C-C UD; (d) C-C FG; (e) C-S UD; and (f) C-S FG 

  
Fig. 8 Dimensionless post-buckling loads versus slenderness ratio for S-S CNTRC beams at a = 0.5: 

(a) UD; and (b) FG 
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Fig. 9 Post-buckling load ratios versus dimensionless 
maximum deflection of S-S FG-CNTRC beams 
with Vcnt

*  = 0.12 for different values of 
foundation parameters: (a) Kl (Ks = Knl = 0); 
(b) Ks (Kl = Knl = 0); and (c) Knl (Kl = Ks = 0) 

 
 
6. Conclusions 

 
As a first endeavor, the closed form solutions for 

nonlinear natural frequencies, vibration response and post-
buckling loads of nanocomposite beams reinforced by 
single-walled carbon nanotubes are provided based on 
Euler-Bernoulli beam theory and von Kármán geometric 
nonlinearity. It is assumed that the beam is resting on a 
nonlinear elastic foundation to present a more general 
problem. The material properties of the CNTRC beams are 
graded through the thickness of the beam and the modified 
form of the rule of mixture is used to estimate the effective 
properties. Employing the variational iteration method, the 
nonlinear governing equations are analytically solved to 
present explicit relations for the vibration and stability 

response of the nanocomposite beams. The correctness and 
fast convergence rate of the method are demonstrated 
through several examples that include isotropic and 
functionally graded beams with different combinations of 
simply supported and clamped boundary conditions. 
Moreover, the formulation provides the possibility of 
performing different parametric studies. Specifically, the 
influences of the CNTs distributions and volume fractions, 
maximum deflection of the beam, slenderness ratio, elastic 
foundation and boundary conditions on the nonlinear free 
vibration and post-buckling of FG-CNTRC beams are 
discussed. The results demonstrate the necessity of 
conducting a nonlinear analysis even for small values of the 
vibration amplitude. It is observed that the increase in the 
CNT volume fraction, vibration amplitude or maximum 
deflection results in increasing the nonlinear natural 
frequencies as well as post-buckling loads. Furthermore, the 
results reveal that the nonlinear frequency ratio of S-S and 
C-S beams is dependent on both the magnitude and sign of 
the vibration amplitude. 
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Appendix A 
 
 
The natural frequencies of the second-order approxima-

tion can be obtained by solving the following equation 
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Also, the second-order approximation of the vibration 

response can be developed as 
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