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1. Introduction 

 

Analysis of composite steel and concrete and prestressed 
structures is more complex in comparison with analysis of 
pure concrete and steel structures. This firstly comes from 
different rheological properties of materials that act together 
in a composite section. There are viscous deformations of 
concrete, creep and shrinkage, and relaxation of pre-
stressing steel. Over the last several decades, number of 
studies investigated time-dependent behavior of composite 
and prestressed structures and proposed different methods 
for calculating these effects (Amadio et al. 2012, 
Chaudhary et al. 2007, Deretić-Stojanović and Kostić 2014, 
2015, Dezi and Gara 2001, Dezi et al. 1995, 1996, Faella et 
al. 2010, Partov and Kantchev 2009, Ranzi et al. 2013). In 
general, the proposed methods differ in the adopted 
constitutive stress-strain relation for concrete. This relation 
is integral and can be converted into an algebraic form 
applying the specific mathematical transformations. The 
analysis methods that use the algebraic relations for 
concrete stresses and strains, i.e., algebraic methods, are 
approximate methods and effective modulus method (EM) 
(Fritz 1961, Mirza and Uy 2010), mean stress method (MS) 
(Mirza and Uy 2010) and age adjusted effective modulus 
method (AAEM) (Bažant et al. 2013, Fan et al. 2010, Wu et 
al. 2015) are among these. In the numerical, or step-by-step 
methods, time is divided into a number of intervals and the 
integral relations are approximated with finite summations 
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(Fragiacomo et al. 2004, Kwak and Seo 2000, Macorini et 
al. 2006, Nguyen et al. 2010). On the other side are 
methods that adopt the integral relation between concrete 
stresses and strains and do not introduce any additional 
mathematical approximations, apart from inevitable 
approximations related to rheological properties of 
materials. These methods and their solutions can be, 
therefore, considered as exact (Deretić-Stojanović and 
Kostić 2014, Deretić-Stojanović and Kostić 2015, Lazic 
2003). In this approach, all relations are integral and are 
derived using the mathematical theory of linear integral 
operators.  

The operators in the aging linear viscoelasticity are 
firstly used by Mandel (Lazic 2003). In these works, the 
integral relations are presented using the linear integro-
differential operators. These operators are extended to 
matrix and tensor integro-differential operators in (Bažant 
and Huet 1999) where beams consisting of several different 
aging linear viscoelastic materials are analysed. Lazic 
(2003) was the first who used linear integral operators for 
analysis of composite and prestressed beams. He derived 
the force based solution for statically determinate and 
indeterminate structures. The matrix stiffness method for 
the analysis of composite and prestressed beams in 
(Deretić-Stojanović and Kostić 2014, 2015) uses the same 
operators. In both mentioned methods, the ultimate 
equations are nonhomogeneous integral equations: in force 
based method these are equations with the unknown forces, 
while in the displacement based (matrix stiffness) method 
the equations are with the unknown displacements. The 
solutions to these integral equations in the closed form can 
be obtained only for specific creep functions. For the creep 
functions of the hereditary theory and the aging theory, with 
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the constant concrete modulus of elasticity, solutions may 
be obtained applying the Laplace transformations. 

In order to simplify the analysis, different assumptions 
can be introduced. Deriving the algebraic relation for 
concrete stresses and strains in AAEM method, Bazant 
(1972) assumed that stresses changes linearly with concrete 
relaxation function if longitudinal dilatation changes 
linearly with creep function. In the analysis of statically 
indeterminate composite structures, Lazic assumed that 
statically indeterminate forces vary linearly with concrete 
relaxation function. Consequently, the ultimate equations 
for statically indeterminate forces become algebraic 
equations and the solution is approximate (Lazic 2003). 

The work presented in this paper follows the matrix 
stiffness method presented in (Deretić-Stojanović and 
Kostić 2014, 2015), which is denoted as the “exact” method 
in the following. Starting from this method, the analysis is, 
further, simplified introducing the assumption that the 
unknown displacements change linearly over time with the 
concrete creep function. This way, the system of nonhomo-
geneous integral equations with the unknown displacements 
transforms into the system of algebraic equations that can 
be easily solved. Besides the mentioned assumption, other 
mathematical simplifications are not used and the obtained 
solution preserves the high accuracy. 

In order to follow the derivations of the proposed 
simplified method, firstly the basic relations of the “exact” 
method are summarized. More details are available in 
(Deretić-Stojanović and Kostić 2014, 2015). Since both of 
these methods, the “exact” and the proposed simplified 
method, use the linear integral operators, the basic notations 
and definitions of the used linear integral operators are 
summarized in Appendices A and B. More information are 
available elsewhere (Lazic 2003). 

 
 

2. Basic relations of the “exact” analysis method 
 
This section contains the short overview of the basic 

relations of the previously developed “exact” matrix 
stiffness method for the analysis of composite and 
prestressed beams (Deretić-Stojanović and Kostić 2014, 
2015). The stiffness matrix for a fixed end frame element 
and a frame element with a moment release at one end, 
obtained using the basic operator flexibility matrix, are 
given. In addition, the stiffness matrix for the symmetric 
frame element (element type “s”), used latter in the 
numerical example, is derived. In this method, relations 
between the generalized element deformations and the 
generalized element forces are integral and presented using 
the mathematical linear integral operators (Appendices A 
and B). 

Because of the viscoelastic properties of concrete and 
relaxation of prestressing steel, in composite and 
prestressed indeterminate structures, deformations and 
forces change over time. As shown in (Deretić-Stojanović 
and Kostić 2014, 2015), using the mathematical theory of 
linear integral operators, it is possible to obtain and 
represent the element stiffness matrix in the same form as 
for the elastic homogeneous frame element. Ultimate 

equations, analogously to the equations for the elastic 
homogeneous structures, are derived from equilibrium 
equations for the joints and, in case of composite and 
prestressed structures, these are system of integral equations 
with deformations as unknowns. 

The “exact” matrix stiffness method of analysis of 
composite and prestressed beams adopts the following 
assumptions related to the material properties and element 
behavior. In general, a cross section consists of concrete, 
prestressing steel, steel section and reinforcement. The 
concrete is modeled as linear viscoelastic aging material. 
Prestressing steel has a relaxation property, and steel and 
reinforcement behaves as linear-elastic materials. Details 
about the adopted constitutive equations, written in operator 
form, are given in Appendix B. In addition, the Bernoulli’s 
hypothesis of plane sections is adopted and it is assumed 
that there is no slip at the steel section-concrete slab 
interface. 

Fig. 1 shows the fixed-end frame element ik with its 
nodal forces in the local coordinate system: the bending 
moments Mi and Mk, the shear forces Ti and Tk and axial 
forces Ni and Nk. The corresponding element end 
deformations are rotations φi and φk and displacements vi, 
vk, ui and uk. 

As shown in (Deretić-Stojanović and Kostić 2014), the 
operator stiffness matrix for this element can be written in 
the following form 

 

 

















































ki

kikiik

kikiikik

ikikikik

kikiikkiikikkiik

kikiikikikkiikik

ik

A

C
l

CC
l

symmetric

SSS
l

N

BC
l

SA

C
l

CC
l

SS
l

C
l

CC
l

SSS
l

NSSS
l

N















1
)(

1

)(
1

1

1
)(

1
)(

11
)(

1

)(
1

)(
1

2

22

K (1)

 

where 
 

ikkikikiikikik llBACBAC  ,,


 (2)
 

Meaning of the operators kiikik ABA

  , ,  and kiB


 can be 

found in (Deretić-Stojanović and Kostić 2014). In a special 
 
 

Fig. 1 Fixed-end frame element: (a) element nodal forces 
in the local coordinate system; (b) element end 
deformations 
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case, when the element has a constant cross section, 
elements of the operator stiffness matrix are proportional to 
only one operator or are linear combination of two 
operators 
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where operators ,11R

 ,22R


 12R


  and 22I


  are defined by Eqs. 

(B17) and (B18); Eu is the relative modulus of elasticity and 
is equal to the modulus of elasticity of steel section Ea; Ai 
and Ji are the area and the moment of inertia of a 
transformed cross section (Appendix C). 

Fig. 2 shows the nodal forces in the local coordinate 
system of a frame element gk with a moment release at end 
“g”. These are: the bending moment Mk, the shear forces Tg 
and Tk and axial forces Ng and Nk. The corresponding 
element end deformations are rotations φk and displace-
ments vg, vk, ug and uk. 

For this element, the operator stiffness matrix has the 
following form (Deretić-Stojanović and Kostić 2015) 
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Similarly to the fixed-end frame element, in a case that 
element has a constant cross section, elements of the 
operator stiffness matrix become a linear combination of the 

 
 

Fig. 2 Frame element with a moment release at end “g”:
(a) element nodal forces in the local coordi- 
nate system; (b) element end deformations
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Operators ,h


(h = 1, 2) and R

  are defined latter in 

Eqs. (25) and (B7), γhl, (h, l = 1, 2) are the elements of the 
symmetric scalar matrix of the reduced cross section 
geometry [γhl]2,2, Eq. (C.5), and constants s, n1-n3, z1-z3 and 
d1-d3 are defined in Appendix C, Eqs. (C.10)-(C.13). 

In addition, to take advantage of the analysis of 
symmetric structures, the operator flexibility matrix for a 
frame element intersected by the symmetry plane (denoted 
as element type “s”) follows. Its use is illustrated latter in 
the numerical example. 

The element type “s” represents the half of the fixed-end 
frame element ii’ under the symmetric deformation 
conditions, as depicted in Fig. 3 (s-s is the symmetry plane). 

For the element ii’, the following relations hold 
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The unknowns are displacements ui, vi and φi at the i end 

of the element. The stiffness matrix can be derived using 
Eq. (6) and the stiffness matrix of the fixed end frame 
element given by Eq. (1) (index k is replaced by index i’). 
Because of symmetry conditions, it holds 
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Introducing the following operator substitutes 
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Fig. 3 Frame element type “s”: (a) element nodal forces 
in the local coordinate system; (b) element end 
deformations
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the stiffness matrix of the element type “s” can be written in 
the following form 

 

 






















isis

isis

s

ES

SN

K






0

000

0

 (9)

 
For the element with a constant cross section, the 

elements of the operator stiffness matrix, Eq. (9), are 
proportional to one of the operators ,11R
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 12R
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Vectors of equivalent nodal forces can be determined 

from relations given in (Deretić-Stojanović and Kostić 
2015) and the remaining part of the analysis of composite 
and prestressed structures follows the standard displacement 
based finite element method. Therefore, the final system of 
equations can be written in the form 

 

][]][[ SqK 


 (11)
 

where ][K

  is the stiffness matrix of a structure, [q] is the 

vector of displacements and the vector [S] includes external 
nodal forces and nodal forces due to the element loads. 
Decomposing the vector of displacements [q] into the 
vector of unknown and known displacements and making 
the corresponding decompositions on the stiffness matrix 
and the vector of equivalent nodal forces, the system of 
ultimate equations for determining the unknown displace-
ments obtains. It should be emphasized here that this 
ultimate system represent the system of nonhomogeneous 
integral equations and the stiffness matrix ][K


  is the 

operator matrix. The solution to the integral equations in the 
closed form can be obtained only for some analytical forms 
of the concrete creep function (Rate of Creep Method 
(RCM), Maslov-Arutiunyan’s function, Hereditary Theory) 
(Lazic 2003). In most other cases, the numerical methods 
are necessary. 

 
 

3. Simplified analysis method 
 
As explained in the preceding section, the “exact” 

method of analysis of composite and prestressed beams 
requires the system of nonhomogeneous integral equations 
to be solved which complicates the problem. For this 
reason, the following approximate method is proposed. 

We assume that the deformations, i.e. generalized joint 
displacements (displacements and rotations) qλ (λ = 1, 2,... 
n) change linearly with the concrete creep function F*, Eq. 
(B5). If we denote time parameter with t (t = 0 is the time of 
concrete preparing) and with t0 the age of concrete when 

first stress and deformation appear (in days), then the 
introduced assumption implies 
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where qλo = qλo(to, to) are known values of deformations, 
i.e., joint displacements at time t = to, and Δqλ are unknowns 
that should be determined, and which are constant for each 
pair of time arguments (t, to). Bazant in his work (Bazant 
1972) introduced the same assumption. With this 
assumption, the ultimate system of equations modifies. For 
elements with a constant cross section, in the operator 
stiffness matrices given by Eqs. (3), (5) and (10) for the 
fixed end element, element with a moment release at one 
end and the element type “s”, respectively, the following 
integrals appear: , FRhl
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 FI
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

 h, l = 1, 2. It will 
be shown here that, with appropriate transformations, these 
integrals can be written as a linear combination of functions 
F*, *

11B and ,*
h h = 1, 2. Consequently, the ultimate 

system of nonhomogeneous integral equations transforms 
into the system of nonhomogeneous algebraic equations 
with the unknowns Δqλ (λ = 1, 2,... n). 

Using Eq. (B17), the integral  FRhl


 can be written in 

the following form 
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According to Eqs. (A3) and (B10), this integral can be 
written as (F* is the nondimensional creep function) 
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Using relation (B18), the integral  FI22


 has the 

following form 
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In order to determine the value of the integral ,*
11FB

  

the following substitutes are useful (Lazic 2003) 
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where operator 11L

  is inverse to the operator ,11R


 i.e., the 

following relation holds true 
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Also, it holds 
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The function *
11K  (which is the function corresponding 

to the operator ,11K

  see Appendix A) depends linearly on 
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the concrete creep function F*: 
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For known creep function F*, and known function *
11K  

(determined from Eq. (19)), function *
11B  can be 

determined as a solution to the integral Eq. (18). In its 
integral form, this equation is 
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And τ is the age of concrete (in days) when stress, not 
necessarily first, starts acting, i.e. t > τ ≥ t0. 

From Eqs. (B17), (17) and (16b), the following relation 
may be obtained 
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Using Eq. (21), operator ,11L
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 and its corresponding 

function *
11L  are 
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Multiplying Eq. (16b) by function F* and using Eq. 
(B10(b)), the following relation obtains 
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Also, using relations (A3), (B10), (22b) and (23) 
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Operator h


(h = 1, 2) in the integral *Fh


and the 
corresponding function ,*

h are given as (Deretić-
Stojanović and Kostić 2014) 

 

2 ,1   )(   ,1     )(   ,1 ***  hba hhhhhh 


(25)
 

where θh is given by Eq. (C.13), and the operator h

  is 

defined in the following way 
 

2 ,1     ,  hR hh


  (26)

 

Also, the following relation holds 
 

2 ,1     ,1*   hhhhh 


 (27)
 

Operator ,h depends linearly on the concrete creep 

function F*, i.e. 

2 ,1     ,11 *   hFhhh   (28)
 

From Eqs. (27) and (28) it follows 
 

2 ,1     ,11 **   hFhhh 


 (29)
 

Finaly, multiplying Eq. (25) and using Eq. (29), the 
integral *Fh


can be written as a linear combination of 

functions F* and ,*
h  i.e. 

 

2 ,1     ),1( ***   hFF hhhh 


 (30)
 

These functions *
h  are solutions to the following 

parametric nonhomogeneous integral equations (written in 
the operator form in Eq. (27)) 
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where λ is a parameter (λ = θ1 and λ = θ2), and the integration 
over the time variable ω goes from time τ to time t. 

The application of the presented approximate method is 
given in the following numerical example. The computa-
tions are performed in an own computer program written in 
FORTRAN. 

 
 

4. Numerical example 
 
The symmetric composite continuous beam from Fig. 4 

is analyzed. Cross sections have two axes of symmetry and 
the beam is loaded with the uniformly distributed loading q 
and concentrated forces P (acting at points A, B, A’ and B’). 

 
 

Fig. 4 Continuous composite beam
 
 

Table 1 Geometrical properties of cross sections 1-1 and 2-2 

 Section 1-1 Section 2-2 

Ai (m
2) 0.136305 0.165855 

Ji (m
4) 1.59077915·10-2 3.02789565·10-2 

γ1 7.556949488·10-1 7.811341232·10-1 

γ2 7.819942511·10-1 8.070313288·10-1 
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Fig. 4 contains data about cross sections, loading and 
materials. 

Cross section geometrical properties from Table 1 are 
calculated according to the expressions given in Appendix 
C. 

Taking advantage of the symmetric characteristics of the 
continuous beam from Fig. 4, only half of the beam is 
analyzed. Therefore, there are two unknown generalized 
displacements: horizontal displacement u and rotation φ 
(Fig. 5). 

The beam from Fig. 5 can be modeled with one fixed 
end element with a moment release at end 1 (element 1: 
length l1 = lgk = 6 m), and one element type “s” (element 2: 
length l2 = lii’ = 9 m). The unknown displacements u and φ 
are grouped into the vector qn 

 












u

n ][q  (32)

 
Because of the double symmetry of the cross sections 1-

1 and 2-2, the following relations hold (according to the 
Eqs. (C.5)-(C.9)) 

 
  2112221112112    ,0   ,   ,   ,0 (33)

 
Therefore, the elements of the operator stiffness 

matrices for the elements 1 and 2 simplify. According to the 
Eq. (5), and using Eq. (33), the elements of the operator 
stiffness matrix for the element 1 with a uniform, double 
symmetric cross section (Section 1-1) can be found as 
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The same expressions (34) can, also, be derived directly 

from the operator flexibility matrix, using Eq. (33) (Deretić-
Stojanović and Kostić 2015) and inverting the flexibility 
matrix to obtain the stiffness matrix. 

According to Eqs. (4) and (34), the operator flexibility 
matrix for the element 1 has the following form 
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From Eq. (10), using Eq. (33) and Eq. (B17), the 

elements of the operator stiffness matrix for the element 2 
(element type “s”) with a uniform, double symmetric cross 
section (Section 2-2) can be found as 

Fig. 5 Symmetric part of the composite beam and 
unknown displacements 
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According to Eqs. (9) and (36), the operator stiffness 
matrix for the element 2 is in the form 

 

 






















is

is

E

N

K






00

000

00

2  (37)

 

The vectors of the equivalent nodal forces for the 
elements 1 and 2 are (Deretić-Stojanović and Kostić 2015) 
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Finally, the unknown displacements u and φ can be 
obtained from the following uncoupled system of two 
integral equations 
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In this example, the concrete creep function is adopted 
in accordance with the creep function of the aging theory 
with constant concrete modulus of elasticity since, in this 
case, the system of equations (39) can be solved applying 
the Laplace transformations. Therefore, the concrete creep 
function F* and the corresponding concrete relaxation 
function R* (that is solution to the integral Eq. (B11)) are 

 

)(        ),(   1 ** beRaF r
r

    (40)
 

where φr is the reduced concrete creep coefficient defined in 
Eq. (B2). 

Using the assumption of the approximate method (Eq. 
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(12)), i.e. that displacements u and φ linearly depend on the 
concrete creep function F* in the system of Eq. (39), we 
have 
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Using Eqs. (34), (36) and (B17) for operators ,gkN

  

,isN

  gkD


  and ,isE


  the product of the operator R


  and 

the function F*, i.e., integral ,*FR

  appears in Eq. (41). 

According to the relation (B10(b)) this integral is equal to 
the function 1*, and the Eq. (41) linearly depend on the 
functions R* and F*, i.e., Eq. (41) becomes system of 
algebraic (not integral) equations with unknowns Δu and 
Δφ. 

For the considered continuous beam, solutions at time t 
= t0 and time t → ∞ are given in Table 2. In addition, for 
comparison, the solutions obtained applying the “exact” 
analysis method from Section 2, and the widely used EM 
method are also given. As known, the EM method is based 
on the following algebraic relation between stress σc and 
strain εc for concrete 
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EEt
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where εcs is the shrinkage strain, and Ec,eff is the effective 
elastic modulus of concrete (Fritz 1961). The EM method is 
accurate only for the creep function of the Hereditary 
Theory (HT) in time t → ∞. At t = t0 all three methods give 
the same solution. 

In addition, it should be noted that the creep function of 
the RCM used in the “exact” method and the creep function 
of the HT in the EM method give, respectively, the upper 
and lower bounds for the displacements. Results obtained 
using other theories, should take place in-between, as 
solutions of the simplified method satisfy. 

Results from the Table 2 show that the simplified 
method solutions are closer to the solutions of the “exact” 
analysis method than the solutions of the EM method. This 
confirms that the introduced assumption about the linear 
dependency of the displacements on the concrete creep 
function F* is reasonable. On the other side, introducing 
this assumption, the analysis simplify significantly since 
instead of a system of integral equations, the system of 
algebraic equations need to be solved. This is a major 
advantage of the presented simplified method which allows 
its use in practical engineering applications. 

 
 

Table 2 Solution for generalized displacements u and φ at time 
t = t0. and time t → ∞ according to the simplified, 
EM and the “exact” analysis methods 

Time Method u (m) φ (rad) 

t = t0 all 8.39E-08 -7.66E-06 

t → ∞ 

simplified 2.26E-07 -2.15E-05 

“exact” 2.39E-07 -2.28E-05 

EM 2.10E-07 -2.00E-05 
 

5. Conclusions 
 
This paper presents the simplified method for the 

analysis of composite and prestressed structures. The 
proposed method is based on the previously developed 
“exact” matrix stiffness method, but introduces the 
assumption that unknown deformations change linearly 
with the concrete creep function F*. With this assumption, 
the ultimate equations with the unknown deformations that 
are nonhomogeneous integral equations in the “exact” 
method, transform into the system of algebraic equations 
which can be easily solved. Besides this assumption, no 
other mathematical simplifications are applied. Conse-
quently, as illustrated on the numerical example, the results 
obtained with the proposed method are very close to the 
“exact” solution, while the solution algorithm is much 
simpler and faster, and therefore, more suitable for practical 
applications. 
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Appendix A 
Linear integral operators 

 
The linear integral operator G


 is associated with a 

function of two variables G (t, τ) which satisfies the 
condition G (t,τ) ≡ 0 for t < τ. The operator G


 is defined 

for any function U = U (t, τ), τ ≥ to as 
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In functions I (t, τ) and U (t, τ), the second variable τ is a 
parameter if τ = to. 

The laws of algebra of ordinary numbers are valid for 
linear integral operators with the exception of the 
commutative law, which, generally, does not hold. 
However, for the rheological properties of materials which 
are adopted in this paper, all defined operators have the 
commutative property. 

The following notations are adopted 
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where δ (t-τ) is the Dirac function and H (t-τ) is the 
Heaviside step function. 

The operator ,1

  associated with the Dirac function, is 

the unity operator. It can be shown that the following 
relations hold 
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The function G* is denoted as the integral of the 
function G′. 

Operators G

  and L


  are inverse when they satisfy 

relations 

)(   1     )(   ,1 bGLaLG
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Multiplying Eq. (A4) with function 1* and using Eq. 
(A3), obtains 
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The above relations are the nonhomogeneous integral 
equations. These equations can be transformed to the 
Volterra integral equations of the second kind. In that form, 
the Eq. (A5(a)) is 
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Appendix B 
Linear integral operators in 
linear viscoelastic aging creep theory 

 
The analyzed cross section of a composite and pre-

stressed beam consists of concrete, prestressing steel, steel 
section and reinforcement. Concrete is modeled as linear 
viscoelastic aging material, prestressing steel has a 
relaxation property, while other materials (reinforcement 
and steel section) behave as linear-elastic. 

The following concrete constitute relation is adopted. 
Using the Boltzmann-Volterra’s superposition principle, the 
uniaxial creep law for concrete is 
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where ε(t, τ) is the total strain, εcs(t,τ) is the shrinkage strain; 
σc(θ,τ) is the concrete stress. Also 

 

rr
c

co

c

co

oocco
co

c

tt
E

E

t
E

E

tee
tff

tetEE
E

tE
tee














),(),(

),,(1
)(

1
1

)(

1
),(

,1)(   ),(   ,
)(

)(

28

28

****  (B2)

 

where φ(t, τ) is the creep coefficient, Ec(t) is the concrete 
modulus of elasticity; Eco is the elastic modulus of concrete 
at time to, Ec28 is the elastic modulus of concrete at time t = 
28 days, φr(t, τ) = φr is the reduced concrete creep coefficient 
used in the numerical example and 1* = 1*(t, τ) is the 
Heaviside step function (see Appendix A, Eq. (A2)). 

The integral Eq. (B1) may be written symbolically in the 
operator form (see Appendix A) as 
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where F


 is the linear integral operator, with the meaning 
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and the operator 1

  is the unity operator associated with 

the Dirac function (see Eq. (A2)). 
The non-dimensional concrete creep function F* is 

defined as the integral of the function F′ 
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The solution to the integral Eq. (B3) is 
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where 
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and e is as defined in Eq. (B2); and the operator   is 
associated with the function ψ′ defined below. 

The non-dimensional concrete relaxation function R* is 
the integral of the function R′ 
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where 
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It can be shown that the operators F


and R


 are 

inverse, i.e., the following relations hold 
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When concrete creep function F* is known, the concrete 

relaxation function R* obtains as a solution to the integral 
Eq. (B10(b)). Using Eqs. (A1) and (A5) this equation can 
be written as 
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In the theory of composite structures, the concrete 

shrinkage function εcs usually is defined in two ways: as an 
arbitrary function which describes experimentally obtained 
curves and as a function with the similar time variation as 
the concrete creep function F*, i.e. 

 

)1(   Frcs  (B12)
 

where a constant r is determined for each pair of time 
arguments (t, to). 

The non-dimensional relaxation function, ),,(** tRR pp   
is assumed to depends linearly on the concrete non-
dimensional relaxation function R*

 = R*(t, τ) over the 
interval (τ, t) 
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In the preceding relations, pR


  is the linear integral 

operator; ρ is constant for each pair (τ, t) and for the initial 
stress σpo in prestressing steel; ζp is relaxation of 
prestressing steel that corresponds to the interval (τ, t) and 
to the initial stress σpo. Finally, for prestressing steel the 
adopted stress-strain relation can be written in the following 
operator form 
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Ep is the elastic modulus of prestressing steel. 
As mentioned, steel section (a) and reinforcing steel (s), 

follow the Hook’s law 
 

sakEkk ,     ,    (B15)
 
Referring to the finite element formulation derived in 

the paper, the following assumptions are adopted: the 
Bernoulli’s hypothesis is valid, i.e., a plane cross section 
remains plane and there is no slip at the steel section-
concrete slab interface. Consequently, the axial strain 

),,( ottx   and the curvature change of the element axis 
),,( ottx   are solutions of the following system of two 

integral equations (Deretić-Stojanović and Kostić 2014) 
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where N = N (x, t, to) is the axial force, and M = M (x, t, to) 
is the bending moment. The elements of the symmetric 
operator matrix   2,2hlR


  are 
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Elements of the symmetric matrix   2,2hl  and its 

principal values γh (h = 1, 2) are defined in Appendix C. 
New operator 22I


  is defined as 
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Operators R


  and  B11


 are defined in Eqs. (B7) and 

(16b). 
 
 
 
 
 
 
 
 

Fig. C1 Composite cross section 

Appendix C 
Reduced cross section geometrical properties 

 
The reduced geometrical properties of the cross section 

from Fig. C1 are defined as follows. The area of each part 
of a composite section k (k = c, p, a, s) is denoted with Ak. 
The reduced areas, Akr, and the area of the transformed 
cross section (with centroid denoted with C in Fig. C1) Ai 
are 
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where vk are reducing factors 
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and Ep, Ea and Es are the modulus of elasticity of prestre-
ssing steel, steel section and reinforcement, respectively; Eu 
is the relative modulus of elasticity. 

The first moment of area of a reduced area Akr with 
respect to the y axis is 

 
sapckAzS krkkr ,,,     ,   (C3)

 
zk is the ordinate of the centroid Ck (k = c, p, a, s) of an 

area Ak (Fig. C1). 
The moment of inertia of a reduced area Akr about the 

axes y passing through the centroid C, Jkr, and the moment 
of inertia of a transformed cross section, Ji, are 
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where Ikr is the moment of inertia of a reduced area Akr 
about the axes passing through the centroid Ck, parallel to 
the y axis. 

The elements γhl of the symmetric scalar matrix of the 
reduced cross section geometry   2,2hlγ  are defined as 
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where ρ is defined in Eq. (B13(b)) and Si is defined as 

.iii JAS   The elements of the symmetric matrix   22,hlγ
are 

 

12211222221111      ,1     ,1    (C6)
 
The principal values of the matrix   22,hlγ  are denoted 

with γh and of matrix   22,hlγ are denoted with γ′h. The 
following relations hold 
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The principal values are ordered in the following way 
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In addition, the following substitutes are used in the 
paper 
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Finally, the constants with the following meaning are 
used in Eq. (5) 
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