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1. Introduction 

 
The prevalent engineering applications of a kind of 

separators containing rotating fluid flow are coming to be 
ever more obvious. Rotational fluid flow can leads to 
significant changes in stability behavior of the structure. 
However, in this paper, the separator conveying rotating 
fluid is modeled with a cylindrical shell element to analyze 
the stability of it. 

Piezoelectric cylindrical shells have great application in 
different industries. In this regards, there are many works 
for mathematical modelling and mechanical analysis of 
them. Dong and Wang (2006) reported the result of an 
investigation into wave propagation in orthotropic 
laminated piezoelectric cylindrical shells in hydrothermal 
environment. Sofiyev (2011) focused on the thermal 
buckling analysis of functionally graded material (FGM) 
shells resting on the two-parameter elastic foundation. 
Amabili (2011) presented a comparative study on the 
nonlinear forced vibration of laminated circular cylindrical 
shells using different cylindrical shell theories. SSDT was 
used by Mantari and Guedes Soares (2014) for the bending 
analytical solution of FGM shells. An accurate solution 
approach based on the FSDT was developed by Yang et al. 
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(2015) for the free vibration and damping analysis of thick 
sandwich cylindrical shells with a viscoelastic core under 
arbitrary boundary conditions. The dynamic behavior of 
moderately thick FGM embedded cylindrical shell based on 
the FSDT was studied by Bahadori and Najafizadeh (2015) 
using DQM. Sofiyev (2016) investigated the non-linear free 
vibration of functionally graded (FG) orthotropic cylindrical 
shells taking into account the shear stresses. 

None of the above works has analyzed the nano-
composite structures. For obtaining the equivalent 
characteristic of the nanocomposite structures, there are 
many methods such as Mori-Tanaka, micro-mechanic, 
mixture and etc. Vibration analysis of SWCNTs reinforced 
composites was presented by Formica et al. (2010) 
employing Eshelby–Mori–Tanaka approach. Free vibration 
of continuous grading fiber reinforced (CGFR) annular 
plates on an elastic foundation, based on the three-
dimensional theory of elasticity, for different boundary 
conditions at the circular edges was investigated by 
Tahouneh and Ceruti (2013) using DQM. Tahouneh and Yas 
(2014) presented 3D elasticity solution for free vibration 
analysis of 2D continuously graded carbon nanotube-
reinforced (CGCNTR) annular plates resting on a two-
parameter elastic foundation based on Eshelby-Mori-
Tanaka Scheme. Static stresses analysis of carbon nano-tube 
reinforced composite (CNTRC) cylinder made of poly-
vinylidene fluoride (PVDF) was investigated by 
Ghorbanpour Arani et al. (2015a) based on Mori–Tanaka 
theory. Using micro-mechanical model, Ghorbanpour Arani 
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et al. (2013a, 2015b) studied nonlinear vibration, stress 
analysis and stability of embedded piezoelectric composite 
cylindrical shell reinforced by nanotubes. An accurate 
buckling analysis for piezoelectric fiber-reinforced 
composite (PFRC) cylindrical shells subjected to combined 
loads comprising compression, external voltage and thermal 
load was presented by Sun et al. (2016) utilizing the 
Mixture rule. Eshelby-Mori-Tanaka approach was used by 
Tahouneh (2016) for 3-D elasticity solution for free 
vibration analysis of continuously graded carbon nanotube-
reinforced (CGCNTR) rectangular plates resting on two-
parameter elastic foundations. Kumar and Srivastava (2016) 
compared the effective elastic properties of CNT- and 
graphene-based nanocomposites using 3-D nanoscale repre-
sentative volume element (RVE) based on continuum 
mechanics using finite element method (FEM). 

Stability analysis of cylindrical shells containing 
internal and rotating fluid flow has been presented by many 
researchers. Dowell et al. (1974) studied aeroelastic 
stability of cylindrical shells subjected to a rotating flow. 
Païdoussis et al. (1992) presented a study of the effect of 
some of the system parameters on internal and angular-
flow-induced instabilities of clamped-clamped or 
cantilevered cylindrical shells in coaxial conduits. A linear 
stability analysis was presented by Chen and Bert (1977) 
for a thin-walled, circular cylindrical shell of orthotropic 
material conveying a swirling flow. Flexible cantilever 
pipes conveying fluids with high velocity were analysed by 
Ganesan and Ramu (1995) for their dynamic response and 
stability behaviour. Amabili et al. (2001) studied nonlinear 
stability of circular cylindrical shells in annular and 
unbounded axial flow. Cortelezzi et al. (2004) investigated 
flutter instability of rotating shells with aco-rotating axial 
flow. By coupling the Donnell–Mushtari shell equations to 
an analytical inviscid fluid solution, the linear dynamics of 
a rotating cylindrical shell with a corotating axial fluid flow 
was studied by Gosselin and Païdoussis (2009). Numerical 
analysis of the stability of stationary and rotating cylindrical 
shells interacting with a fluid flowing and rotating inside 
them was presented by Bochkarev and Matveenko (2012a). 
In another work by the same authors (2012b, 2013a, b), the 
stability and dynamic of stationary orrotating elastic 

 
 

circular cylindrical shells interacting with a fluidflow 
having both the axial and circumferential components of 
velocity was analyzed. Viscous fluid induced nonlinear free 
vibration and instability analysis of a functionally graded 
carbon nanotube-reinforced composite (CNTRC) 
cylindrical shell integrated with two uniformly distributed 
piezoelectric layers on the top and bottom surfaces of the 
cylindrical shell were presented by Ghorbanpour Arani et 
al. (2015c). Axially flowing and rotating fluid-particle 
mixture induced vibration and instability of a sandwich 
cylindrical shell were investigated by Ghorbanpour Arani et 
al. (2016) based on Mindlin shell theory and using DQM. 

However, to date, no report has been found in the 
literature on stability analysis of separators conveying 
rotating fluid flow. Motivated by these considerations, in 
order to improve optimum design of separators, we aim to 
investigate the nonlinear vibration and instability of 
embedded piezoelectric nano-composite separators 
containing rotating fluid subjected to magnetic and electric 
fields. To describe the motion of the rotating fluid, the 
perturbation velocity potential function in wave equation 
for the case of small perturbations is used. The separator is 
reinforced with the SWCNTs which the equivalent material 
properties are obtained by Mixture rule. The nonlinear 
formulation is based on the CST, FSDT and SSDT 
considering structural damping based on Kelvin–Voigt 
model. Nonlinear frequency and critical fluid angular 
velocity of the structure are calculated using DQM. The 
effects of the external voltage, magnetic field, visco-
Pasternak foundation, structural damping and volume 
percent of SWCNTs on the vibration and instability 
behavior of the structure are disused in detail. 

 
 

2. Mixture rule 
 
A piezoelectric separator reinforced with SWCNTs 

containing fluid is shown in Fig. 1. The structure is 
surrounded by an elastic medium which is simulated by 
spring, damper and shear constants. The cylindrical 
coordinate is considered in the middle surface of shell in 
which x, θ and Z represent the axial, circumferential and 

 
 

 

Fig. 1 A schematic figure for piezoelectric nano-composite separator conveying rotaring fluid 
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radial directions, respectively. 
According to mixture rule, the effective Young and 

shear moduli of nano-composite structure can be expressed 
as (Lei et al. 2014) 
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where Er11, Er22 and Gr11 indicate the Young’s moduli and 
shearmodulus of SWCNTs, respectively, Em and Gm 
represent the Young’s moduli and shear modulus the matrix; 
ηj (j = 1, 2, 3) is the SWCNTs efficiency parameter; VCNT 
and Vm are the volume fractions of the CNTs and matrix, 
respectively, which are 
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where wCNT, ρm and ρCNT are the mass fraction of the 
SWCNTs, the densities of the matrix and SWCNTs, 
respectively. Similarly, the density (ρ) of the structure can 
be obtained as follows 
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where vr12 and vm are Poisson’s ratios of the SWCNT and 
matrix, respectively. 

 
 

3. Piezoelectric material basic equations 
 
In piezoelectric material, the constitutive equation 

includes stresses σ and strains ε tensors on the mechanical 
side, as well as flux density D and field strength E tensors 
on the electrostatic side, which may be combined with each 
other as follows (Ghorbanpour Arani et al. 2013b) 
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where Cijkl, eijm, im are elastic constants, piezoelectric 
constants,dielectric constants, respectively, which can be 
determined for separator reinforced with SWCNT from 
Mixture’s rule. In addition, Em (m = x, θ, z) representing 
electric field which can be defined as a function of electric 
potential as 
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The electric potential distribution in the thickness 
direction of the piezoelectric separator can be assumed as 

follows which satisfying the Maxwell equation 
(Ghorbanpour Arani et al. 2015c) 
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where V0 is external electric voltage. Substituting Eq. (9) 
into Eq. (8) yields 
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Based on Kelvin–Voigt (Ghorbanpour Arani et al. 
2015c) model, the elastic constant of structurecan be 
defined as 

(k) (k) 1 ,ij ijC C g
t

    
 (13)

 

where g is structural damping parameter. In the above 
equations, the effect of viscoelasticity in mechanical form 
has been considered and electrical Hysteresis effect (Jalili 
2010) has been ignored. 

 
 

4. Motion equations 
 
Here, three theories of CST, FSDT and SSDT are used 

for mathematical modelling of system. 
 
4.1 CST 
 
Based on CST, the displacement fieldscan be expressed 

as follows (Amabili 2008) 
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where u(x, θ, t), v(x, θ, t) and w(x, θ, t) are translations of a 
point at the middle-surface of the shell. Using Donnell’s 
theory, the nonlinear strain-displacement relations may be 
expressed as 
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The piezoelectric basic equations for CST may be 
simplified as 

 

,

000

00

00

00

0

0

32

31

66

2212

1211



















































































z

x

x

xx

x

xx

E

E

E

e

e

C

CC

CC



















 (16)

 

.

00

00

00

0

000

000

33

22

11

3231























































































z

x

x

xx

z

x

E

E

E

eeD

D

D











 (17)

 
The potential energy of CST can be written as follows 
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where the stress resultants (Nxx, Nθθ, Nxθ, Mxx, Mθθ, Mxθ) are 
defined in Appendix B. The kinetic energy of CST can be 
expressed as follows 
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where the moment of inertia (I0, I1, I2) are defined in 
Appendix B. The external works can be induced by 
nonlinear orthotropic visco-Pasternak medium, rotating 
fluid in the separator and 2D magnetic fields due to the 
existence of SWCNTs. The force induced by nonlinear 
orthotropic visco-Pasternak foundation can be written as 
(Ghoorbanpour Arani et al. 2015c) 
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where angle θ describes the local ξ direction of orthotropic 
foundation with respect to the global x-axis of the system; 
k1w, k2w, cd, kgξ and kgζ, respectively are linear spring, 
nonlinear spring, damper, ξ -shear and ζ-shear constants. 

The pressure induced by a fluid (Pfluid) can be obtained 
by the linearized Bernoulli formula as follows (Bochkarev 
and Matveenko 2013a) 
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where ρ, U and ωf are the density, axial velocity and angular 
velocity of the fluid. Using Eqs. (A1)-(A6), the generated 
forces and the bending moment caused by Lorentz force 
may be calculated as (Ghoorbanpour Arani et al. 2015c) 

 

,
22

2

2

2
2



















  R

u

x

u
hHRm

x  (22a)

 

,
22

2

2

2
2



















  R

v

x

v
hHR xx

m  (22b)

 

,
22

2

2

2
2

2

2

22

2
2























































R

w

x

w
H

x

w

R

w
HhR

xx

m
z

 (22c)

 

,
22

2

2

2
2

2

2

22

2
2





















































R

w

x

w
H

x

w

R

w
HhR

xx

m
z

 (23a)

 

.
12 2

3

33

323


















xR

w

R

wHh
M x

xm




  (23b)

 

The motion equations can be derived based on 
Hamilton's principle as follows 
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Substituting Eqs. (18)-(23) into Eq. (24) yields the CST 

motion equations as follows 
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Noted that the last equation is the perturbation velocity 
potential Φ, in the cylindrical coordinate system (x, θ, z) for 
small perturbations to describe the motion of the rotating 
fluid. In addition, C and M = U/C are respectively sound 
velocity in liquid-particle and the Mach number. 

In above relations Nf
x and Nf

θ are combination of 
mechanical and electrical forces which can be expressed in 
dimensionless form as 
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The following boundary conditions are assumed for the 
separator based on CST 
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• Clamped- Clamped (CC) 
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• Clamped- Simple (CS) 
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(31c)

4.2 FSDT 
 
Based on FSDT, the displacement field can be expressed 

as may be written as (Amabili 2008) 
 

1( , , , ) ( , , ) ( , , ),xu x z t u x t z x t      (32a)
 

2 ( , , , ) ( , , ) ( , , ),u x z t v x t z x t      (32b)
 

3( , , , ) ( , , ),u x z t w x t   (32c)

 
where ψx (x, θ, t) and ψθ (x, θ, t) are the rotations of the 
normal to the mid-plane about x- and θ- directions, 
respectively. However, the nonlinear strain-displacement 
relations associated with the above displacement field can 
be derived as 
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Eqs. (6) and (7) for FSDT can be simplified as 
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The potential energy of FSDT can be written as follows 
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where the stress resultants (Nxx, Nθθ, Nxθ, Qx, Qθ, Mxx, Mθθ, 
Mxθ) are defined in Appendix B. The kinetic energy of 
FSDT can be obtained as follows 
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where the moment of inertia (I0, I1, I2) are defined in 
Appendix B. However, Eqs. (A1)-(A3) and (A7)-(A9), the 
generated forces and the bending moment caused by 
Lorentz force may be calculated by 

 

,
22

2

2

2
2



















  R

u

x

u
hHRm

x  (37a)

 

,
22

2

2

2
2



















  R

v

x

v
hHR xx

m  (37b)

 

,
2

2
2

2

2
2



























































Rx

w
H

Rx

w
HhR

xx

m
z

 (37c)

 

,
12 22

2

2

223
























Rx

Hh
M xxm

x  (38a)

 

.
12 2

2

22

223


















xR

Hh
M x

xm 






 (38b)

Noted that the induced forces due to the viscoelastic 
foundation and rotating fluid are the same as Eqs. (20) and 
(21), respectively. Substituting Eqs. (35), (36), (37), (38), 
(20) and (21) into Eq. (24) yields the CST motion equations 
as follows 
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The following boundary conditions are assumed for the 

separator based on FSDT: 
 
• Simple-Simple (SS) 
 

0 0,xx xxx v w N M          

0,xx xxx L v w N M
x  

        


(46a)

 
• Clamped- Clamped (CC) 
 

0 0,xx u v w            
 

0 0,xx u v w
x   
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

(46b)
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• Clamped- Simple (CS) 
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4.3 SSDT 
 

Based on SSDT, the displacement field can be obtained 
as (Thai and Vo 2013) 
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  wb(x, θ, t) and ws(x, θ, t) are the 

bending and shear components oftransverse displacement. 
The nonlinear kinematic relations can be expressed as 
follows 
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 Eqs. (6) and (7) for SSDT can be 

simplified as 
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The potential energy of SSDT can be expressed as 

follows 
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where the stress resultants (Nxx, Nθθ, Nxθ, Qx, Qθ, Mxx, Mθθ, 
Mxθ, Sxx, Sθθ, Sxθ, Fxx, Fθθ) are defined in Appendix B. The 
kinetic energy of SSDT can be obtained as follows 
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where the moment of inertia (I0, I1, I2, I3, I4, I5) are defined 
in Appendix B. However, using Eqs. (A1)-(A3) and (A10)-
(A12), the generated forces and the bending moment caused 
by Lorentz force may be calculated by 
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Noted that the induced forces due to the viscoelastic 
foundation and pulsating fluid are the same as Eqs. (20) and 
(21), respectively. Substituting Eqs. (50)-(53) and (20)-(21) 
into Eq. (24) yields the SSDT motion equations as follows 
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,0     :  ZX GGG   (58)
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The following boundary conditions are assumed for the 
separator based on SSDT: 

 

• Simple-Simple (SS) 
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• Clamped- Clamped (CC) 
 

0 0,b sx u v w w         
 

0 0,b sx u v w w
x

 
       



(60b)

 

• Clamped- Simple (CS) 
 

0 0,b sx v w w        
 

0.b s xxx L v w w M
x

 
       


(60c)

 
 

5. Solution method 
 
There is a lot of numerical method to solve the initial-
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and/or boundary value problems which occur in engineering 
domain. Some of the common numerical methods are FEM, 
Galerkin method, finite difference method (FDM), GDQM 
and etc. FEM and FDM for higher-order modes require to a 
great number of grid points. Therefore these solution 
methods for all these points need to more CPU time, while 
the GDQM has several benefits that are listed as below 
(Bert and Malik 1996, Liew and Liu 2000, Gupta et al. 
2006) 

 
(1) GDQM is a powerful method which can be used to 

solve numerical problems in the analysis of 
structural and dynamical systems. 

(2) The accuracy and convergence of the GDQM is 
higher than FEM. 

(3) GDQM is an accurate method for solution of 
nonlinear differential equations in approximation 
of the derivatives. 

(4) This method can easily and exactly satisfy a 
variety of boundary conditions and require much 
less formulation and programming effort. 

(5) Recently, GDQM has been extended to handle 
irregular shaped. 

 
Due to the above striking merits of the GDQM, in recent 

years the method has become increasingly popular in the 
numerical solution of problems in engineering and physical 
science. DQM is used in this paper which approximates the 
partial derivative of a function with respect to a spatial 
variable at a given discrete. Hence, the nth-order and mth-
order of partial derivative of function F(x, θ) with respect to 
x and θ respectively, can be written at the point (xi, θi), as 
follows (Nie and Zhong 2007, 2010, Tornabene and Ceruti 
2013, Fantuzzi et al. 2015, Ghorbanpour Arani et al. 2013, 
2015c) 
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where 

)(n
ikA  and 

)(m
jlB  are the weighting coefficients corres-

ponding to the nth-order and mth-order partial derivative of 
F(x, θ) with respect to x and θ respectively, which can be 
written for fist derivative as follows 
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where 
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Noted that for higher order derivative, the following 
formulas can be used 
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In addition, Nθ and Nθ are the number of grid points in x 
and θ directions respectively, which can be obtained by 
Chebyshev polynomials as follows (Ghorbanpour Arani et 
al. 2013, 2015c) 
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However, applying DQM to motion equations yields the 
following coupled matrix equations 
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(72)

 

where [K] and [KNL] are the linear and nonlinear stiffness 
matrixes, respectively; [CL] and [CNL] are the linear and 
nonlinear damp matrixes, respectively; [C]f and [K]f are the 
respectively, damping and stiffness matrixes related to 
pulsating fluid; [M] is the mass matrix; {Y} is the 
displacement vector (i.e., {Y} = {u, v, wb, ws, ψx, ψθ, ϕ, Φ}; 
subscript b and d represent boundary and domain points. 

For solving the Eq. (72) and reducing it to the standard 
form of eigenvalue problem, it is convenient to rewrite Eq. 
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(72) as the following first order variable as 
 

},]{[}{ ZAZ   (73)
 

in which the state vector Z and state matrix [A] are defined 
as 
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(74)

 

where [0] is the zero matrix; [I] is the unitary matrix. Noted 
that the eigenvaluses obtained from Eq. (73) are complex 
which the imaginary and real parts are related to frequency 
and damping of structure, respectively. 

 
 

6. Numerical result 
 

A separator made from PVDF is considered with the 
mechanical and electrical properties listed in Table 1 
(Ghorbanpour Arani et al. 2015b). The geometrical 
parameters of separator are considered as length to 
thickness ratio of a / h = 20and thickness to radius ration of 
h/R = 0.03. In all of the figures, the dimensionless frequency 

 
 

 
 

)/( 11Ch   and dimensionless angular fluid velocity 

)/( 11Chff   are used. The key issue for successful 

application of the rule of mixture is to determine the 
SWCNT efficiency parameter ηj (j = 1, 2, 3). For short 
fibers, η1 is usually taken to be 0.2 (Lei et al. 2014). 
However, there are no experiments conducted to determine 
the value of ηj for the PVDF matrix reinforced with 
SWCNTs. However, for parametric study, we chose from 
the reported values of Lei et al. (2014). 

 

6.1 Validation 
 

In this section, neglecting the piezoelectric properties, 
volume percent of SWCNT, structural damping and 
viscoelastic medium, the results are validated with the 
Bochkarev and Matveenko (2013a) for vibration and 
stability of cylindrical shell containing rotating fluid. The 
comparison results are shown in Figs. 2(a) and (b) for 
imaginary and real parts of eigenvalue. It can be seen that 
the present results are close to the results of Bochkarev and 
Matveenko (2013a), indication validation of present work. 
Noted that the little difference between this work and 
Bochkarev and Matveenko (2013a) is due to the different 
solution method (i.e., DQM in this work and finite element 
method in Bochkarev and Matveenko (2013a)). 

 

6.2 DQM Convergence 
 

The convergence and accuracy of the DQM in 
evaluating the imaginary and real parts of eigenvalue are 
shown in Figs. 3(a) and (b) for CST, 3(c) and (d) for FSDT, 
3(e) and (f) for SSDT for different grid point numbers. Fast 
rate of convergence of the methods are quite evident and it 
can be found that 15 and 17 grid points can yield accurate 
results in CST and FSDT-SSDT, respectively. 

 

6.3 The effect of different parameters 
 

In all of the figures, the imaginary and real parts of 
dimensionless eigenvalue are shown for different theories 
versus dimensionless fluid angular velocity for the 

 

Table 1 Mechanical and electrical properties of PVDF 

PVDF SWCNT 

C11 = 238.24 (GPa) E = 1 (TPa) 

C22 = 23.6 (GPa) υ = 0.34 

C12 = 3.98 (GPa) ρ = 2300 kg/m3 

C66 = 6.43 (GPa)  

e11 = ‒0.135 (C/m2)  

e12 = ‒0.145 (C/m2)  

 = 1.1068×10-8 (F/m)  

ρ = 1780 kg/m3  
 

(a) (b) 

Fig. 2 Validation of present work with the result of Bochkarev and Matveenko (2013a) 
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SWCNTs volume percent of ρ = VCNT = 0.01. Figs. 4-9(a)-
(b), (c)-(d) and (e)-(f) are related to CST, FSDT and SSDT, 
respectively. Noted that the imaginary and real parts of 
eigenvalue are corresponded to frequency and damping of 

 
 
structure, respectively. Generally, the dimensionless 
frequency is divided to two parts of forward (the increasing 
part) and backward (the decreasing part) propagating 
waves. As can be seen at a special value of the dimension- 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 3 Convergence and accuracy of DQM 
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less fluid angular velocity, the backward frequency reaches 
to zero and then grows until the forward and backward 
frequencies reach to each others at a certain dimensionless 
fluid angular velocity. In this state, the real part of the 

 
 
eigenvalue becomes positive and consequently, the flutter 
instability has been occurred. 

Figs. 4(a) and (b), 4(c) and (d), 4(e) and (f) show the 
dimensionless eigenvalue, respectively corresponding to 

(a) (b) 
  

(c) (d) 
 

 

(e) (f) 

Fig. 4 The effects of external electric voltage on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT-(e), (f): SSDT 
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CST, FSDT and SSDT, for different dimensionless applied 
voltage ).///( 11110

*  ChVV  It can be found that 
applying negative and positive voltages to separator, 
respectively increases and decreases dimensionless 

 
 
frequency and critical angular fluid velocity. It is because 
applying negative voltage induces tensile force in structure 
while the positive one leads to a compressive force in 
separator. However, it can be concluded that the applied 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 5 The effects of SWCNT as reinforcer on the on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 
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external voltage is an effective controlling parameter for 
vibration and stability smart control of separators conveying 
rotating fluid flow. 

The SWCNT volume fraction effects (ρ) on the 
dimensionless imaginary and real parts of eigenvalue are 

 
 
illustrated in Figs. 5(a) and (b) corresponding to CST, 5(c) 
and (d) corresponding FSDT, 5(e) and (f) corresponding to 
SSDT. As can be seen, the dimensionless frequency and 
critical angular fluid velocity of the separator are increased 
with reinforcing the structure with SWCNTs. In the other 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 6 The effects of magnetic field on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 
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words, increasing volume fraction of SWCNTs leads to 
higher dimensionless frequency and critical angular fluid 
velocity. Physically it means that with reinforcing the 
separator with SWCNT, the stiffness of structure increases. 

 
 
In results, reinforcing the structure with SWCVT causes to 
delay in the flutter instability of structure. 

Figs. 6(a) and (b), 6(c) and (d), 6(e) and (f) for CST, 
FSDT and SSDT, respectively are plotted for showing the 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 7 The effects of structural damping on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 
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effect of dimensionless axial magnetic field (HX = Hx/C11) 
on the dimensionless frequency and critical angular fluid 
velocity of structure. Here, fourvalues of 0, 0.2, 0.4 and 0.6 
are considered. It can be observed that with increasing the 

 
 
dimensionless axial magnetic field, dimensionless critical 
angular fluid velocity and frequency will be increased. It is 
physically due to the fact that with increasing the 
dimensionless axial magnetic field, the stiffness of structure 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 8 The effects of viscoelastic medium type on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 
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increases. 

For presenting the effect of dimensionless structural 
damping parameter (G = g / h / C11 / ρ), Figs. 7(a) and (b), 
7(c) and (d), 7(e) and (f) for CST, FSDT and SSDT, 

 
 
respectively are plotted. As can be seen, with increasing 
dimensionless structural damping parameter, the dimension-
less frequency and critical angular fluid velocity of system 
are decreased. It is due to the fact that with increasing 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 9 The effects of boundary conditions on the imaginary and real parts of frequency 
(a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Dimensionless fluid angular velocity, 
f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, I
m

 (
 

)

 

 

SS

CS
CC

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Dimensionless fluid angular velocity, f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, R
e 

( 
)

 

a/h=20
a/h=25
a/h=30
a/h=35

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

1.2

Dimensionless fluid angular velocity, 
f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, I
m

 (
 

)

 

 

SS

CS
CC

0 1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Dimensionless fluid angular velocity, 
f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, R
e 

( 
)

 

 
SS

CS
CC

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Dimensionless fluid angular velocity, 
f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, I
m

 (
 

)

 

SS

CS
CC

0 0.5 1 1.5 2 2.5 3
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Dimensionless fluid angular velocity, 
f

D
im

en
si

on
le

ss
 f

re
qu

en
cy

, R
e 

( 
)

 

 

SS

CS
CC

707



 
H. Rahimi Pour, A. Ghorbanpour Arani and G.A. Sheikhzadeh 

 
 
dimensionless structural damping parameter, the damping 
force which results in more absorption of energy by the 
system will be induced. 

In order to show the effects of surrounding viscoelastic 
foundation, Figs. 8(a) and (b) for CST, 8(c) and (d) for 
FSDT, 8(e) and (f) for SSDT are shown. Four different 
viscoelastic medium are considered namely as without 
medium, Visco-Winkler, orthotropic visco-Pasternak and 
orthotropic Pasternak. As can be seen considering elastic 
foundation increases the dimensionless frequency and 
critical angular fluid velocity of separators. Physically it 
means that putting the separatorin a viscoelastic medium 
makes it more stable and stiffer. It is also observed that the 
dimensionless frequency and critical angular fluid velocity 
of orthotropic visco-Pasternak or visco-Pasternak model is 
higher than Visco-Winkler one. It is due to the fact that 
Pasternak model considers not only the normal stresses but 
also the transverse shear deformation and continuity among 
the spring elements. In addition, the frequency and critical 
angular fluid velocity predicted by orthotropic visco-
Pasternak medium is lower than visco-Pasternak one. It is 
because in orthotropic visco-Pasternak medium, the shear 
layer is considered with the angle of 45 degree. 

Figs. 9(a) and (b), 6(c) and (d), 6(e) and (f) for CST, 
FSDT and SSDT, respectively are plotted for presenting the 
effect of different boundary conditions on the dimensionless 
frequency and critical angular fluid velocity of structure. 
Here, three boundary conditions of SS, CS and CC are 
considered. It can be observed that for the CC separator, the 
dimensionless critical angular fluid velocity and frequency 
are higher than CS and SS separators. It is physically due to 
the fact that for the CC boundary conditions, the stiffness of 
structure increases. 

A comparison of three different theories in predicting 
the dimensionless frequency and critical angular fluid 
velocity is presented in Figs. 10(a) and (b) corresponding to 
CST, 10(c) and (d) corresponding FSDT, 10(e) and (f) 
corresponding to SSDT. It can be found that the dimension-
less frequency and critical angular fluid velocity predicted 
by SSDT are lower than FSDT and CST. It is perhaps due to 

 
 
the fact that the flexibility of structure modeled by SSDT is 
lower that other theories. Furthermore, the displacement 
field in SSDT is close to the deflection of structure and it 
can be another reason for more accuracy of this theory. It 
can be also found that the results calculated by CST are 
much overestimated with respect to FSDT and SSDT. 

 
 

7. Conclusions 
 
Assessment of CST, FSDT and SSDT for nonlinear 

vibration and stability analysis of piezoelectric nano-
composite separators containing rotating fluid was achieved 
in the present work. To consider the structural damping 
effects in the structure, Kelvin–Voigt theory was incor-
porated. The behavior of the rotating fluid was described in 
the framework of the potential theory and linearized 
Bernoulli formula. The separator was subjected to 3D 
electric and 2D magnetic fields and was surrounded by 
nonlinear orthotropic visco Pasternak foundation. 
Numerical simulation is done using a DQM for calculating 
the dimensionless frequency and critical angular fluid 
velocity. The effects of different parameters such as external 
voltage, magnetic field, visco-Pasternak foundation, 
structural damping and volume percent of SWCNTs were 
shown on the vibration and stability of structure. Numerical 
results shown that at a special value of the dimensionless 
fluid angular velocity, the forward and backward 
frequencies reach to each other’s which the flutter 
instability was occurred. It can be found that applying 
negative and positive voltages to separator, respectively 
increases and decreases dimensionless frequency and 
critical angular fluid velocity. The dimensionless frequency 
and critical angular fluid velocity of the separator were 
increased with reinforcing the structure with SWCNTs. It 
can be observed that with increasing the dimensionless axial 
magnetic field, dimensionless critical angular fluid velocity 
and frequency will be increased. In addition, with 
increasing dimensionless structural damping parameter, the 
dimensionless frequency and critical angular fluid velocity 

(a) (b) 

Fig. 10 Comparison of imaginary and real parts of frequency (a), (b): CST-(c), (d): FSDT -(e), (f): SSDT 
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of system were decreased. It can be also found that the 
dimensionless frequency and critical angular fluid velocity 
predicted by SSDT were lower than FSDT and CST. The 
results of this study were validated by Bochkarev and 
Matveenko (2013a). Finally, it was hoped that the results of 
this paper would be beneficial for the design of separators 
used in oil and gas industries. 
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Appendix A 
 

The Lorentz force due to a steady magnetic field, H0 can 
be obtained as follows (GhorbanpourArani et al. 2015c) 
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(A1)

 

where η, , u, h and J are the magnetic permeability of the 
SWCNTs, gradient operator, displacement field vector, 
disturbing vectors of magnetic field and current density, 
respectively.Noted that in this paperthe magnetic field 
isassumed as   eHeHH xxx ˆˆ0   where δ is the 

Kronecker delta tensor. The generated forces and the 
bending moment caused by Lorentz force may be calculated 
by 
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Using Eqs. (14a)-(14c), the Lorentz force per unit 
volume for CST can be calculated as 
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Using Eqs. (31a)-(31c), the Lorentz force per unit 

volume for FSDT can be expressed as 
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Using Eqs. (46a)-(46c), the Lorentz force per unit 
volume for SSDTcan be expressed as 
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Appendix B 
 
The resultant force and moments may be calculated as 
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where k′ is shear correction factor which used in FSDT. 
Furthermore, the moment of inertia in kinetic energy of 
three theories can be defined as 
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Using Eqs. (16) and (17), the resultant force and 

moments for CST can be written as 
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Using Eqs. (33) and (34), the resultant force and 

moments for FSDT can be written as 
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Using Eqs. (48) and (49), the resultant force and 

moments for SSDT can be written as 
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