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1. Introduction 

 
For the stability and sensitivity design and diagnosis 

approaches, some methodologies have been developed with 
determining the structural characteristics. Bond graphs have 
been devised by in late fifties. Researchers have elaborated 
this graphical model representation into a methodology that 
has experienced a considerable progress over the decades 
due to the steady work of many researchers all over the 
world. Since the early days, many researchers have been 
published on bond graph modeling with the aim of 
reflecting a part of contemporary research on and 
application of bond graph modeling in various areas in 
engineering (He et al. 2015, Gawthrop et al. 2005, 
Samantaray et al. 2006, Behzadipour and Khajepour 2006, 
Banerjee et al. 2009, Tsai and Gero 2010, Moustafa et al. 
2010, Hroncova et al. 2012). However, the bond graph 
method is not well-known and understood in structural 
engineering, therefore, this method is rarely used to analyze 
a structural system. There are a limited number of studies 
on formulating structures using bond graphs and lumping 
techniques for distributed systems. Hybrid systems are also 
another approach in design procedures (Rahal et al. 2016, 
Borutzky 2012a, b, Margetts et al. 2013). 

Margolis had studied the bond graphs to construct finite 
mode, long wavelength models of multidimensional 
structures in 1980 (Margolis 1980). A physically complex 
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steel structure 40 m long, 10 m wide, and 7 m tall was 
modeled using bond graphs. The resulting model required 
only 40 equations to compute the system natural 
frequencies and corresponding mode shapes. Margolis 
studied bond graph modeling for interacting lumped and 
distributed systems in another research work in 1985 
(Margolis 1985). In this research work, a history has been 
given for the use of bond graphs in modeling distributed 
system dynamics. It started with the bond graph 
microelement which exactly represents the governing 
partial differential equations. This led directly to the 
cascading of elements to obtain a lumped representation for 
the distributed system. The delay bond concept was also 
discussed. A research paper developed by Orlikowski and 
Hein (2011) presents the use of bond graph and DTFM 
method for modeling of beam/bar systems and trusses in the 
structural engineering. 

Moustafa et al. (2007) developed a fault diagnosis 
methodology for civil engineering structures based on the 
bond graph approach in 2007. According to this study, the 
bond graph theory provides a modeling framework that 
includes parametric models of the physical system and the 
sensors. Structural faults were modeled as abrupt or gradual 
damage in structural components. Sensor faults were 
modeled as biases or drifts from true measurements. A 
statistical method was used to identify significant deviations 
of measurements from nominal behavior of the structure. 
Fault isolation was carried out by comparing predicted 
effects of hypothesized faults with observed behavior of the 
structure. In the study, physical dynamic systems such as 
frame structures were modeled using shear frame models. 
The effectiveness and accuracy of bond graph models of 
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structures as compared to traditional structural dynamics 
modeling techniques were examined. The determined 
displacement, velocity and acceleration responses for the 
frame structure were computed using the derived simulation 
models and by the dynamic analysis by using Duhamel’s 
integral. 

The present paper documents the development of bond 
graph modeling for distributed parameter systems using 
lumping techniques to develop a new stability and 
sensitivity design and diagnosis approach which was not 
published before in the area. The proposed methodology, 
with its simplicity, can be used for stability and sensitivity 
analyses as alternative to finite element method for steel 
structures. In some cases, finite element analysis can be 
complicated due to design details of the steel structures. The 
proposed approach is more practical and can be used by the 
practitioners in the structural design area including 
nonlinear problems. Nonlinear effects pose for steel 
structures are no particular problems with the proposed 
method. Principal emphasis is on the use of bond graphs 
and lumping techniques to predict the dynamic response of 
a structural system. The paper covers various analytical 
approaches for stability and sensitivity analysis issues in the 
structural systems. 

 
 

2. Sensitivity and stability analysis 
 

With the proposed approach, sensitivity analysis will be 
more realistic and easier comparing to existing ones. The 
bond graph method with lump mass technique predicts the 
dynamic response of steel frame structures very well. An 
equilibrium point always represents an equilibrium solution 
of the differential equation, that is, a solution x = constant 
for all t, time. The equation points are found here by setting 
energy variables (xi, momentums and angular velocities) to 
zero in 20 state space equations. The calculated equilibrium 
point is given below 

 

x1 = F(t)/c3, x2 = 2F(t)/c3, x3 = 3F(t)/c3, x4 = 4F(t)/c3, 
x5 = 5F(t)/c3, x6 = 6F(t)/c3, x7 = 7F(t)/c3, x8 = 8F(t)/c3, 
x9 = 2F(t)/c3, x10 = 10F(t)/c3, and x11 = ………… = x20 = 0 

 

where c3 = EI/Δx2, E is young’s modulus, I is the moment 
of inertia and Δx is the height of the lump masses. F(t) is the 
dynamic (time varying) blast load applied to the system. 

 
 

3. Modeling structural system 
 

For the structural steel frame structures, developed 
models for the current paper is very similar to the one 
analyzed by Moustafa et al. (2007). In both studies, bond 
graph method is employed to calculate the response of steel 
frame structures to dynamic loading. The main difference 
between two studies is the technique that is used to form the 
bond graphs. Moustafa et al. (2007)’s paper used mass-
spring system technique and a lumping technique for 
distributed system is used in the present study. The lumping 
technique for distributed system is more complicated and 
accurate than the mass-spring system technique. 

Using the information provided for two story structure 
in the paper by Moustafa et al. (2007), a bond graph is 
developed for the present study. Utilizing the bond graph, 
the state space equations are written. Finally, the response 
of the structure (floor displacements) is estimated. The 
Matlab was employed to calculate the floor deflections. Fig. 
1 shows the floor deflections for the steel frame structure 
described by Moustafa et al. (2007). The story drift time 
histories in Fig. 1 match perfectly to the floor displacements 
reanalyzed in the present study (see Fig. 1). 

 
 

4. Structural assessment 
 
With the proposed methodology, in the analytical part, 

the structural system is analyzed utilizing bond graph 
method and a lumping technique for distributed structural 
system. Most often, a typical mechatronic system consists 
of different domain subsystems and when the structural 
analysis of such system is desired, the modeler will consider 
using one of the many available finite element codes 
(Orlikowski et al. 2009, Orlikowski and Hein 2011). These 
codes offer many advantages in that they are typically 
straightforward, although tedious, to use. A principal 
disadvantage to their use is that relatively large amounts of 
computer time and capacity are required for accurate system 
representation. In addition, physical insight into the physics 
of the problem is virtually lost in the mire of nodal points 
and junction constraints. The possibility of generating 
accurate lower order models for parameter and/or control 
studies is very small (Margolis 1985). Distributed parameter 
are given in terms of partial differential equations. 
However, similar to lumped parameter systems, they can 

 

 

(a) Dynamic response of the frame to sinusoidal loading 
(Moustafa et al. 2007) 

(b) Re-analysis of the steel frame structure described by 
Moustafa et al. (2007) 

Fig. 1 Comparison of the model by Moustafa et al. (2007) 
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also be described by the transfer function method. In this 
case, the distributed transfer function is the corresponding 
mathematical model (Orlikowski et al. 2009). 

Through use of normal modes, bond graphs can be used 
to construct perhaps the most accurate low order models for 
linear distributed systems. By requiring relatively few 
equations, when compared to finite difference and finite 
element models, a physically understandable model results 
for design and automatic control applications can be 
obtained. Distributed parameter systems are, analytically, 
those represented by partial rather than total differential 
equations. Distributed systems can be accurately 
approximated by the “lumped” assumptions. 

In the flow of defining the distributed representation of a 
dynamic component or subsystem, it is typical to start with 
spatially distributed finite lumps. However, a large number 
of lumps may be required to obtain accuracy at low 
frequencies. In addition, each new lump while improving 
low-frequency prediction, introduces new, totally inaccurate 
high frequencies. This approach to distributed system 
representation must be used cautiously, and with awareness 
on the part of the modeler. The following describes the 
basic methodology of lumping technique for distributed 
system. The beam is assumed to have a uniform cross-
sectional area A, mass density ρ, Young’s modulus E, shear 
modulus G, area moment of inertia I, and length L. Fig. 2 
shows the beam displaced at some instant of time. The 
spatial variable x defines a position along the beam, and 
w(x, t) is the transverse displacement of the position x at the 
time t. 

In Fig. 3, the bond graph is shown. Here, the lumped 
model is reduced to a Bernoulli-Euler beam model. This 
graph was used for steel structure frame modeling in the 
present study as the Bernoulli-Euler model. The lumped 

 
 
 

Fig. 3 Bong graph finite lump model of Bernoulli-
Euler beam (Karnopp et al. 1990) 

 
 

parameter representations have the advantage that they can 
be straightforwardly combined into an overall system 
model. Also, nonlinear effects pose no particular problems. 
The disadvantage to the lumped parameter approach 
described so far is that the model will generate a large state 
space, and can cause severe computational problems due to 
large disparities in the time scales of the distributed portion 
of the model and the remainder of the system. However, 
true continuum models can yield insight into system 
behavior when analytical solutions are available, which 
typically restricts us to the linear case. Furthermore, it is 
usually difficult to incorporate a continuum model into an 
overall system model with interactions with complex 
lumped systems (or other continuous systems) external to 
the continuum. Thus, bond graph modeling of distributed 
system using lumping technique is utilized to analyze the 
structural steel frame system subjected to dynamic blast 
loading. 

 
4.1 Description of structural system 
 
A steel frame structure is analyzed employing bond 

graph modeling of distributed system using lumping 
technique. The structure consists of steel frame spaced at 
every 4.5 m. The height of the columns and the span of the 
floor beams are 4.5 m. A blast pressure of 40 MPa is acting 
on the wall of the structure. An individual blast load is 
calculated and applied to the system to represent the blast 
loading as shown in Fig. 4. The duration of the blast is 16 
ms. A blast can be characterized by a peak pressure and an 
impulse. Impulse is the integration of the pressure-time 
history. Structural response to a blast is dependent upon 
both the peak pressure and blast impulse. Fig. 5 shows the 
idealized shape of the free-field blast load that was assumed 
for this analysis. The negative phase of the blast wave is 
usually ignored due to its small amplitude. 

The structural frames are fixed to ground. Only one steel 
frame is analyzed to represent the response of the structure 
to dynamic load. In this example, the columns and beams 
are made up with W16×100 steel beams. As per TM5-1300 
(1990), for blast-resistant design only the peak response, 
from the first cycle, of the structure is important. This first 
response cycle is minimally affected by damping in the 
system and damping effects are subsequently neglected in 
the theoretical procedure given in TM5-1300 (1990) for 

(a) 
 

(b) 

Fig. 2 Uniform beam in transverse motion 
(Karnopp et al. 1990) 
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evaluating blast load response (ASCE 1997, Sabuwala et al. 
2005). Thus damping effect is neglected in this study. 

 
4.2 Analysis of structural system using 

bond graph method 
 

The steel frame structure shown in Fig. 4 is analyzed 
employing bond graph modeling of distributed system using 
lumping technique. 10 lumped masses (the height of the 
each lumped mass is approximately 500 mm) were used to 
represent the column of the steel frame. The steel frame 
idealized as shown in Fig. 6. The cross-sectional area for 

 
 

Fig. 6 The equivalent lump mass model used in bond 
graph modeling 

 
 

each lump mass is equals the sum cross sectional areas of 
two column members (two identical columns are combined 
in one). Similarly, the moment of inertia of each or each 
lump mass is equals the sum moment of inertias of two 
column members. The top lump mass has the mass of the 
beam and the slab attached to beam. The system is non-
autonomous system because a dynamic blast force is acting 
on the top lumped mass. The bond graph for the structural 
system is provided in Fig. 7. The bond graph model 
includes 20 variables (10 lumped mass rotations and 10 
lumped mass moments). 

In the structural model, linear elastic material is 
assumed. The material non-linearity can be included in the 
model by replacing the Young’s modulus E. However, it is 
believed that the stresses due to the blast loading in the steel 
frame system will be lower than the yield strength of the 
steel material. Thus, a linear elastic material is used in the 
analysis. The main interest of the current study is to 

 
 

Fig. 4 The steel frame structural system 

Fig. 5 Idealized shape of the blast load 

Fig. 7 The bond graph for the equivalent lump mass model 
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calculate the maximum deflection of the frame structure. 
The frame has the maximum deflection at the floor beam 
level. To calculate the maximum deflection of the frame 
structure is equal to sum of the 10 lumped mass deflections. 
The calculated maximum deflection time history using bond 
graph method with lump mass technique for the steel frame 
structure is provided in Fig. 8. The calculated peak 
deflection is approximately 20 mm. 

Strctural effectiveness of bond graphs to model this 
system is demonstrated. To do this, the dynamic responses 
of this system are computed and compared with those 
computed from the finite element analysis. By doing this, 
we will ensure that the stresses are lower than the yield 
strength and the linear elastic material assumption is 
acceptable. In addition, the sufficiency of the number of the 
lump masses used in bond graph is tested. If the number of 
the lump masses in bond graph is not sufficient, the 
maximum deflection time histories are expected to be 
significantly different. 

Finite element analysis is performed for the structural 
frame system. The deflected shape of the structure provided 
in Fig. 9 shows the effective stress distribution. According 
to Fig. 9, we can conclude that the elastic material 
assumption in the bond graph modeling is correct because 

 
 

 
 

the response of the structure is in elastic material region. 
The finite element analyses are performed for two cases: 
with damping and without damping. The maximum 
deflection time history of the steel frame structure with the 
bond graph method is compared with those computed from 
the finite element analysis in Fig. 10. The maximum 
deflection time histories for three analyses are well 
compared. The bond graph method with 10 lump masses 
slightly underestimates the deflections. This might be 
because the bond graph is based on Bernoulli-Euler beam 
assumption which the shear deflections are neglected. It can 
be concluded that the number of lump masses used in bond 
graph method is sufficient and the bond graph method with 
lump mass technique can predict the response of the steel 
structure as well as finite element analysis method. 

 
 

5. Sensitivity assessment 
 
The equilibrium point is changed with respect to time, 

or in other words the structural system is in equilibrium at 
any time. At time = td (duration of the dynamic loading), 
the equilibrium point is the origin. There is only one 
equilibrium point at each time. The Jacobian matrix is same 

 

Fig. 8 Maximum steel frame deflection calculated using bond graph modeling with lump mass technique 

Fig. 9 Deflected finite element model and Effective stress distribution 
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as the coefficient matrix that includes the coefficients of 
variables xi in the state space matrix. The Jacobian matrix 
does not vary with time and consists of constant numbers. 
20 eigenvalues are shown in Table 1. Ten of the eigenvalues 
are zero and the rest is negative real number. In the case of 
eigenvalues of negative real number and unequal, the 
equilibrium point is a stable point and/or the equilibrium 
point is stable. When one or more eigenvalues are zero, the 
Jacobian matrix has a nontrivial null space. Any vector in 
the null space is an equilibrium point for the system; that is, 
the system has an equilibrium subspace, rather than an 
equilibrium point. 
 

5.1 Bifurcation analysis 
 
The qualitative behavior of a system is determined by 

the pattern of its equilibrium points and periodic orbits, as 
well as by their stability properties. One issue of practical 
importance is whether the system maintains its qualitative 
behavior under infinitesimally small perturbations. When it 
does so, the system is said to be structurally stable. In 
particularly, with bifurcation analysis, the interest is the 
perturbations that will change the equilibrium points or 
periodic orbits of the system or change their stability 
properties (Loureiro et al. 2012). The effect of c1, c2 and c3 
constant in state space equations on the stability properties 
where c1 = ρ1AΔx2, c2 = ρ2AΔx2, and c3 = EI/Δx2. The ρ 
represents mass densities, A is cross sectional area. Four 
cases are considered to analyze the effect of c1, (the effect 
of the c2 is not considered since c1 and c2 are dependent), 
and c3 on the stability properties. Case 1: c3 is very small, 
Case 2: c1 is very small, Case 3: c1 and c3 is very small, 
Case 4: c3 is negative (not a realistic case). 

As shown in Table 2, the stability properties change only 
 
 

in Case 4 which is an unrealistic case as young’s modulus 
or the moment of inertia of any section cannot be zero. The 
height of the lump mass should be positive real too. It can 
be concluded that no bifurcation is expected for this system 
in the given framework. 

 
5.2 Sensitivity equations 
 
In this procedure, we need to solve the nonlinear 

nominal state equation and the-linear time-varying 
sensitivity equation. Except for some trivial cases, we will 
be forced to solve these equations numerically. The 
sensitivities for 20 variables are calculated but the plots of 
sensitivities for only two variables (x5, and x10, rotations at 
the 5th and 10th lump mass, respectively) are shown in 
Figs. 12 and 13. According to the figures, the lump mass 
rotations are more sensitive to variations in the Young’s 
modulus and the moment of inertia of section than to 
variations in the mass density and cross-sectional area. 

 
5.3 Lyapunov stability analysis 
 
Stability theory plays a central role in systems theory 
 
 

Table 2 Calculated eigenvalues for four cases 

 Original Case 1 Case 2 Case 3 Case 4 

1 0.000 0 0 0 0 

2 0.000 0 0 0 0 

3 -0.007 -6.7E-13 -0.01191 -1.2E-12 166.4497

4 -0.024 -2.4E-12 -1.4E+08 -0.01377 139.6852

5 -0.547 -5.5E-11 -5.4E+09 -0.53963 103.1389

6 -4.077 -4.1E-10 -4.1E+10 -4.06824 65.70026

7 -14.431 -1.4E-09 -1.4E+11 -14.421 34.85711

8 -34.857 -3.5E-09 -3.5E+11 -34.8473 14.43094

9 -65.700 -6.6E-09 -6.6E+11 -65.6919 4.077254

10 -103.139 -1E-08 -1E+12 -103.133 0.547242

11 -139.685 -1.4E-08 -1.4E+12 -139.682 0.024194

12 -166.450 -1.7E-08 -1.7E+12 -166.449 0.00666

13 0.000 0 0 0 0 

14 0.000 0 0 0 0 

15 0.000 0 0 0 0 

16 0.000 0 0 0 0 

17 0.000 0 0 0 0 

18 0.000 0 0 0 0 

19 0.000 0 0 0 0 

20 0.000 0 0 0 0 
 
 

Fig. 10 Comparison of the maximum steel frame 
deflection time histories 

Table 1 Calculated 20 eigenvalues 

Modes 1 2 3 4 5 6 7 8 9 10 

Eigenvalues 0.000 0.000 -0.007 -0.024 -0.547 -4.077 -14.431 -34.857 -65.700 - 

 

Modes 11 12 13 14 15 16 17 18 19 20 

Eigenvalues - - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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and engineering. There are different kinds of stability 
problems that arise in the study of dynamical systems. The 
stability of equilibrium points is concerned mainly. Stability 
of equilibrium points is usually characterized in the sense of 
Lyapunov. An equilibrium point is stable if all solutions 
starting at nearby points stay nearby; otherwise, it is 
unstable. It is asymptotically stable if all solutions starting 
at nearby points not only stay nearby, but also tend to the 
equilibrium point as time approaches infinity (Khalil 2002). 

The analysis shows that V(x) = 0 at any time and at any 
equilibrium point as illustrated in Fig. 14. Thus, the system 
is stable at in all equilibrium points and at any time. 

 
 

 
 

6. Conclusions 
 
A Steel frame structure was analyzed employing the 

bond graph method and the lumping techniques. The 
dynamic response of the structure to the blast loading (time 
varying load) was studied. The effectiveness of bond graphs 
to model this system is demonstrated. The dynamic 
responses of this system were computed and compared with 
those computed from the finite element analysis. The 
maximum deflection time histories from two methods were 
found to be comparable. The stability and sensitivity of the 
structural system was studied in different aspects. Finally, 
the structural system was found to be stable. 

With the study, given results make a new approach in 
the field. Especially the calculated maximum deflection 
time histories were close to what it should be. Also, the 
sensitivity and the stability of the steel frame structure was 
studied with the proposed method. Thus, the proposed 
methodology can be used for stability and sensitivity 
analyses of steel structures. That is also another important 
part in the study. 
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