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1. Introduction 

 
Elliptic paraboloid shells have been widely used in 

important aerospace, marine, and structural systems. 
Therefore, there are real, practical needs for researching this 
type of structures. 

There have been extensive research carried out in the 
past years to investigate the behavior and design of circular 
shell structures but the literature on the analysis of non-
circular shells is limited when compared with circular 
shells. The readers are referred to the following papers for 
analysis of non-circular shells. Suzuki et al. (1996) 
presented an exact solution procedure for analyzing free 
vibrations of laminated composite, noncircular thick 
cylindrical shells, and discussed the effects of shear 
deformation and rotary inertia by comparing the results 
from the present theory with those from the classical 
laminated shell theory. Ganapathi and Haboussi (2003) 
studied the free vibration characteristics of thick laminated 
composite non-circular cylindrical shells by using higher-
order theory, and investigated the influences of length and 
thickness ratios, eccentricity parameters, ply-angles and 
number of layers on the free vibration characteristics. 
Sambandam et al. (2003) studied the elastic buckling 
characteristics of laminated cross-ply elliptical cylindrical 
shells under axial compression, and examined the combined 
influence of higher-order shear deformation, shell geometry 
and elliptical cross-sectional parameter, and lay-up on the 
buckling loads of elliptical cylindrical shells. Ganapathi et 
al. (2004) investigated the free flexural vibration charac-
teristics of anisotropic laminated angle-ply elliptical 
cylindrical shells using finite element approach based on 
first-order shear deformation theory, and studied the effects 
of shell geometry, cross-sectional properties, lap-up and 
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ply-angle on the natural frequencies pertaining to different 
types of modes of vibrations. Patel et al. (2005), analyzed 
free vibration characteristics of functionally graded 
elliptical cylindrical shells using finite element formulated 
based on the theory with higher-order through the thickness 
approximations of both in-plane and transverse displace-
ments, and carried out parametric studies to study the 
influences of non-circularity, radius-to-thickness ratio, 
material composition and material profile index on the free 
vibration frequencies and mode shape characteristics. Lo 
and Hyer (2012) used Hamilton's principle coupled with the 
Rayleigh-Ritz technique to compute the fundamental 
frequencies of simply supported thin-walled fiber-
reinforced composite cylinders with elliptical cross 
sections, and investigated the dependence of the 
fundamental frequency on fiber angle, cross-sectional 
geometry, cylinder circumference, and cylinder length. 
Kazemi et al. (2012) investigated the elastic buckling 
behavior of piezocomposite elliptical cylindrical shell, and 
presented a serendipity quadrilateral eight-node element. 
They examined the influences of elliptical cross-sectional 
parameter and displacement feedback gain values on the 
critical buckling loads of elliptical cylindrical shells. Zhang 
et al. (2014) investigated the effects of stiffening rings on 
the dynamic properties of hyperboloidal cooling towers. 
Kang (2015) presented a three dimensional method of 
analysis for determining the free vibration frequencies of 
hyperboloidal shells free at the top edge and clamped at the 
bottom edge. Bochkarev et al. (2015) studied the solution of 
three-dimensional problems of natural vibrations and 
stability of loaded cylindrical shells with circular and 
arbitrary cross sections containing a quiescent ideal 
compressible fluid. 

Concerning the analysis of elliptic paraboloid type of 
non-circular shells , there is a much smaller amount of 
work. One of the earliest works in element formulations for 
the analysis of elliptical parabolic shells was reported by 
Aass (1963) who applied it to elliptic paraboloid shells. 
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Mohraz and Schnobrich (1966) studied the analysis of 
shallow shell structures including elliptic paraboloid shells 
by a discrete element system. Chun et al. (2009) presented a 
shear deformable four-noded finite element based on a 
hybrid/mixed assumed stress for the analysis of anisotropic 
laminated elliptical and parabolic shells, and conducted a 
parametric study of anisotropic elliptical and parabolic 
shells of various configurations to investigate the effects of 
aspect and height ratios as well as layer lay-up schemes. 

It is well known that some of general shaped shells have 
been quite successfully solved by flat-shell elements of 
rectangular or quadrilateral shapes. For practical purposes, 
the behavior of a curved surface can be reasonably well 
approximated by using small flat elements. The flat element 
approximation also allows an easy coupling with the edge 
beams which sometimes difficult to implement in the 
curved element formulation. 

In this paper, a flat shell element which is a combination 
of membrane element and a plate element is used, based on 
the classical hybrid stress method which was first developed 
by Pian (1964). The element is generated by a combination 
of a hybrid plane stress element with drilling d.o.f. and a 
hybrid plate element. The validity and efficiency of the 
presented element can be found in previous studies of the 
author, Darılmaz (2007, 2012). By using this element, 
influence of aspect and height ratios and material angle on 
static and vibration behaviour of orthotro-pic elliptic 
paraboloid shells is studied. 

 
 

2. Element stiffness formulation 
 
The assumed-stress hybrid method is based on the 

independent prescriptions of stresses within the element and 
displacements on the element boundary. The element 
stiffness matrix is obtained using Hellinger-Reissner varia-
tional principle. The Hellinger-Reissner functional of linear 
elasticity allows displacements and stresses to be varied 
separately. This establishes the master fields. Two slave 
strain fields appear, one coming from displacements and 
one from stresses. 

The Hellinger-Reissner functional can be written as 
 

            
T T

RH
V V

1
D u  dV S  dV

2
    (1)

 

where {σ} is the stress vector, [S] is the compliance matrix 
relating strains, {ε}, to stress ({ε} = [S]{σ}), [D] is the 
differential operator matrix corresponding to the linear 
strain-displacement relations ({ε} = [D]{u}) and V is the 
volume of structure. 

The approximation for stresses and displacements can 
now be incorporated in the functional. The stress field is 
described in the interior of the element as 

 

   [ ]P   (2)
 

and a compatible displacement field is described by 
 

   [ ]u N q  (3)

where [P] and [N] are matrices of stress and displacement 
interpolation functions, respectively, and {β} and {q} are 
the unknown stress and nodal displacement parameters, 
respectively. Intra-element equilibrating stresses and 
compatible displacements are independently interpolated. 
Since stresses are independent from element to element, the 
stress parameters are eliminated at the element level and a 
conventional stiffness matrix results. This leaves only the 
nodal displacement parameters to be assembled into the 
global system of equations. 

Substituting the stress and displacement approximations 
Eq. (2), Eq. (3) in the functional Eq. (1) yields 

 

           T T
RH

1
G q H

2
    (4)

 

where 
 

       
T

V

H P S P  dV  
(5)

 

        
T

G P D N dV  (6)

 
Now imposing stationary conditions on the functional 

with respect to the stress parameters {β} gives 
 

        1
H G  q  (7)

 
Substitution of {β} in Eq. (4), the functional reduces to 
 

               T T 1 T
RH

1 1
q G H G q q K q

2 2
 (8)

 

        T 1
K G H G  (9)

 

is recognized as a stiffness matrix. 
The solution of the system yields the unknown nodal 

displacements {q}. After {q} is determined, element 
stresses or internal forces can be recovered by use of Eq. (7) 
and Eq. (2). Thus 

 

        1
P H G q  (10)

 
 

3. Governing equations 
 
Consider an elliptic paraboloid shell of uniform 

thickness which the orthotropic material property may be 
arbitrarily oriented at an angle  with reference to the x-axis 
of the local coordinate system Fig. 1. 

The stress-strain relation with respect to x, y and z axes 
can be written as 

 

      
           
          

x 11 12 16 x

y 12 22 26 x

16 26 66 xyxy

 
 


   

or

 
      ij 

  
(i, j = 1, 2, 6) 

(11)
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Fig. 1 Global and local axis of elliptic paraboloid shell 
 
 

     
         

xz xz44 45

yz yz45 55

 
 

   
or

 
      ij 

     
(i, j = 4, 5) 

(12)

 
][ ij  in Eqs. (11) and (12) is defined as 

 

            
1 T

ij 1 ij 1T T      (i, j = 1, 2, 6) (13)

 

           
1

ij 2 ij 2T T  (i, j = 4, 5) (14)
 

in which 
 

 
cos sin sin cos

sin cos sin cos

sin cos sin cos cos sin

 
 

  
 
   

2 2

2 2
1

2 2

2

T 2

   

   

     

 
(15)

 

  cos sin

sin cos2T
 
 

 
  
 

 (16)

 
  
        
  

11 12

ij 12 22

66

0

0

0 0

     (i, j = 1, 2, 6), 

 

        
44

ij
55

0

0
     (i, j = 4, 5) 

(17)

 

 


1
11

12 21

E

1    
 


12 2

12
12 21

E

1


   

 


2
22

12 21

E

1   (18a)

 
 66 12G     44 13G    55 23G  (18b)

 

 




ij ji
ij

ij ji

E E
G

2 1        
(i, j = 1, 2, 3) (18c)

 

The stress resultants are given by 
 

 
/

/

   
   

   
   
   


x x xh 2

y y y
h 2

xy xy xy

N M

N M 1 z dz

N M





   (i, j = 1, 2, 3) (19a)

 
/

/

   
   

   


h 2
x xz

y yzh 2

Q
 dz

Q




     

(i, j = 1, 2, 3) (19b)

From Eqs. (19a) and (19b) the constitutive equations of 
the elliptic paraboloid shell are obtained as 

 
    F E   (i, j = 1, 2, 3) (20)

 

where 
 

   , , , , , , , x y xy x y xy x yF N N N M M M Q Q  (21)

 

   , , , , , , , x y xy x y xy xz yz          (22)
 

The elasticity matrix can be expressed as 
 

 

        
         
    

ij ij

ij ij

ij

A B 0

E B C 0

0 0 D

 
(23)

 

in which 
 

/

/

       
h 2

ij ij
h 2

A dz ,  
/

/

       
h 2

ij ij
h 2

B z dz , 

/

/

       
h 2

2
ij ij

h 2

C z dz

      
(i, j = 1, 2, 6) 

(24a)

 
/

/

       
h 2

ij ij
h 2

D dz

     
(i, j = 4, 5) (24b)

 
 

4. The hybrid stress element 
 
The element is generated by a combination of a hybrid 

membrane element and a hybrid plate element. 
 

4.1 Membrane component of the element 
with drilling degree of freedom 

 

Generally membrane elements have two translational 
d.o.f (u, v) per node but the need for membrane elements 
with a drilling degree of freedom arises in many engineer-
ing problems. A drilling rotation is defined as inplane 
rotation about the axis normal to the plane of element. This 
type of element is useful in solving folded plate structures 
and provides an easy coupling with edge beams which have 
six d.o.f per node. Inclusion of a drilling degree of freedom 
gives also the improved behavior of the element (Allman 
1984). The possibility of membrane elements with drilling 
d.o.f was opened by Allman (1984), Bergan and Felippa 
(1985). The concept has been further elaborated by many 
other researchers (Cook 1986, MacNeal and Harder 1988, 
Yunus et al. 1989, Ibrahimbegovic et al. 1990, Choi and 
Lee 1996) for more improved elements. 

Formulation of drilling d.o.f for the present element is 
based on the procedure given by Yunus et al. (1989). The 
displacement fields are expressed in terms of translational 
and rotational d.o.f.’s at the corner nodes only. 

The membrane displacement field for the 4-node 
element is derived from an 8-node element, Fig. 2. 

Z

X

Y

y

x

z 
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Rotational d.o.f. are associated with parabolic displaced 

shapes of element sides. In Fig. 3, rotational d.o.f. zi and zj 
are shown at nodes i and j of the element side of length L. 

 can be regarded as quadratic in side-tangent 
coordinates. zi and zj produce the edge normal displace-
ment  and midside value m 

 

 ( )
 zi zj

s L s

2L
  

     
  m zi z j

L

8
   (25)

 
The x and y components of  are  cos and  sin. 

Therefore, after adding the contribution to displacement 
from nodes i and j, the total displacements u and v of a 
typical point on the edge are 

 

    cos

sin

                  
       

ji
z j zi

i j

uuu L s sL s s
vv vL L 2L


 


(26)

 
Side 1-5-2 of the element, Fig. 2 d.o.f. at node 5 are 

related to d.o.f. at nodes 1 and 2 of the element. By 
evaluating Eq. (2) with s = L/2 with i = 1, j = 2, Lcos = y2 
‒ y1 and Lsin = x1 ‒ x2 , yields 

 

         
               

zj zi5 1 2 2 1

5 1 2 1 2

u u u y y1 1
v v v x x2 2 8

   (27)

 
After doing the same for d.o.f. at nodes 6, 7 and 8 d.o.f. 

in Figs. 1(b) and (c) by the transformation, the complete 
relation can be written 

 
 

     ..... T T
1 1 2 2 8 8 membrane16 x12

u v u v u v T q (28)
 

where 
 

   1 1 z1 2 2membrane
q u v u v  

         z2 3 3 z3 4 4 z4u v u v  
(29)

 

So the midside nodal displacements can be written in 
terms of the corner nodal displacements and rotations and 
the displacement field for the 4-node, twelve d.o.f. 
membrane element can be derived from an 8-node 
membrane element. This is done through the use of the 
transformation matrix [T]. The form of [T] is given in 
Appendix 1. 

The biggest difficulty in deriving hybrid finite elements 
seems to be the lack of a rational methodology for deriving 
stress terms, Feng et al. (1997). It is recognized that the 
number of stress modes m in the assumed stress field should 
satisfy 

 m n r  (30)
 

with n the total number of nodal displacements, and r the 
number of rigid body modes in an element. If Eq. (30) is not 
satisfied, use of too few coefficients in {β}, the rank of the 
element stiffness matrix will be less than the total degrees 
of deformation freedom and the numerical solution of the 
finite element model will not be stable and produces on 
element with one or more mechanism. 

Increasing the number of β’s by adding stress modes of 
higher-order term, each extra term will add more stiffness 
and stiffens the element, Pian and Chen (1983), Punch and 
Atluri (1984), Darılmaz and Kumbasar (2006). 

The assumed stress field for the membrane part which 
satisfies the equilibrium conditions for zero body forces and 
avoid rank deficiency is given as 

 

     2 2
x 1 2 3 4 5 6N x y x xy y       
     2 2

y 4 7 8 9 10 11N y x y x xy       
/ /      2 2

xy 2 4 5 9 11 12N y 2 xy y 2 x x 2     

(31)

 
4.2 Plate component of the element 
 

The flexural component of the element is identical to 
that of the plate bending element presented by the author, 
Darılmaz (2005), and corresponds to the Mindlin/Reissner 
plate theory. Only the assumed stress field which satisfies 

 

Fig. 2 Displacements for (a) 8-node membrane; (b) 4-node membrane 

 

Fig. 3 Side displacement produced by drilling degrees of 
freedoms zi and zj 
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the equilibrium conditions for the plate part is given here 
 

   x 1 4 6 8M y x xy     
   y 2 5 7 9M x y xy     

/ /    2 2
xy 3 10 11 12 13M x y x 2 y 2      

   x 6 11 8 13Q y y     
   y 7 10 9 12Q x x     

(32)

 

The nodal displacements for the plate are chosen as 
 

   1 x1 y1 2 x2 y2plate
q w w   

 
y2 3 x3 y3 4 x4 y4w w    

 

(33)

 

The combination of membrane and plate element yields 
the element which has 6 d.o.f per node and totally 24 d.o.f . 

 
 

5. Element mass matrix 
 
The problem of determination of the natural frequencies 

of vibration of a plate reduces to the solution of the standard 
eigenvalue problem [K] ‒ ω2-[M] = 0, where  is the natural 
circular frequency of the system. Making use of the 
conventional assemblage technique of the finite element 
method with the necessary boundary conditions, the system 
matrix [K] and the mass matrix [M] for the entire structure 
can be obtained. 

Element mass matrix is derived from the kinetic energy 
expression. 

       
T

k
A

1
E q R q dA

2
 

(34)

 

where }{q  denotes the velocity components and [R] is the 
inertia matrix. 

The nodal and generalized velocity vectors are related 
with the help of shape functions 

 

    


 
4

i
i 1

q N q  (35)

 

Substituting the velocity vectors in the kinetic energy, 
Eq. (34) yields the mass matrix of an element. 

 

          
T T

k i i
A

1
E q N R N q dA

2
 

(36)

 

       
T

k i i
A

1
E q m q dA

2
 

(37)

 

where [m] is the element consistent mass matrix and is 
given by 

       
T

A

m N R N dA  
(38)

 
 

6. Numerical study 
 
A parametric study is carried out to investigate the 

influence of aspect and height ratios, and material angle on 
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Fig. 4 Geometry of elliptic paraboloid shell 
 
 

static and free vibration behaviour of orthotropic elliptic 
paraboloid shells. A simply supported orthotropic elliptic 
paraboloid shell is considered with the coordinates x along 
the circumferential direction, y along the meridian direction 
and z along the thickness direction, Fig. 4. Material 
properties are chosen as, E1 = 60.7×109N/m2, E2 = 24.8×109 
N/m2, G12 = G13 = G23 = 12×109 N/m2, 12 = 21 = 0.23,  = 
1300 kg/m3 where E1 and E2 are the modulus of elasticity 
along x and y axes of element, Gij is the shear modulus and 
ij is Poisson’s ratio, respectively. 

Displacements and internal forces are investigated with 
variations in aspect ratios, height ratios and material angle. 
The aspect ratio, b/a, of elliptical shell is taken as the ratio 
of the radius length of Y-axis to that of X-axis. Whereas, the 
height ratio h/b, of elliptical shell is taken as the radius 
length of Z-axis divide into that of Y-axis. 

To obtain the optimal mesh for the problem a conver-
gence analysis is carried out, and 60 elements in circumfe-
rential direction, 16 elements in meridianal direction is 
used. 

The influence of aspect ratio b/a of elliptical paraboloid 
shells is analysed by varying the aspect ratio (b/a = 1.0, 2.0 
and 4.0). Displacement and internal forces are investigated 
for different height ratio values (h/b = 0.25, 0.50 and 1.0). 
The calculated non-dimensional axial forces yN  and xN  
are given in Table 1, Table 2 for points P1 and P2 (shown in 
Fig. 4). It is observed that generally both yN  and xN  
values are decreasing with the increasing aspect ratio (b/a). 
For b/a  2, it was found that increase in the height ratio 
(h/b) results in greater increase in yN  and xN  values. For 
example for b/a = 4, yN increased 53% for  = 0o. 
Furthermore, it can be observed that yN  is less sensitive to 
material angle than .xN  

In Table 3 and 4 non-dimensional moment values, xM  
and ,yM  are given for vertex point P3 along X and Y axis. 
It is observed that generally both xM  and yM  values are 
decreasing with the increasing aspect ratio (b/a). Further-
more, it is noticed that material angle and height ratio (h/b) 
can significantly effect the moment values at vertex point. 
For b/a 2, with decrease in height ratio results increase in 

xM  and yM values due to the increasing effect of flexural 
behaviour in the vicinity of vertex point. For example for 
b/a = 1, xM increased 519% for  = 0o. 
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Non-dimensional vertical displacements along X and Y 
axis of elliptic paraboloid shells for various aspect ratios 
and height ratios are depicted in Figs. 5-7. For all cases the 

 

 

 

 
 

maximum displacement is observed at the vertex point. This 
displacement is increasing with the decreasing height ratio 
(h/b). For aspect ratios different than b/a = 1, displacements 

Table 1 Non-dimensional axial force )10(  / 3 bqNN yy  for elliptic paraboloid shell 

 h/b 
b/a = 1 b/a = 2 b/a = 4 

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

Point           

P1 

0o -1146.9 -840.6 -947.3 -680.9 -681.4 -912.0 -396.6 -556.4 -847.1 

45o -1036.3 -860.1 -950.1 -710.9 -703.0 -913.5 -394.5 -557.9 -832.5 

90o -1080.4 -796.6 -904.1 -702.0 -727.1 -984.6 -391.5 -596.3 -951.6 

P2 

0o -1146.9 -840.6 -947.3 -378.4 -412.0 -721.2 -165.6 -352.0 -731.4 

45o -1036.3 -770.8 -886.3 -213.7 -272.7 -569.8 -65.2 -190.4 -489.8 

90o -1080.4 -796.6 -904.1 -226.8 -317.4 -629.9 -77.3 -324.6 -755.4 
 

Table 2 Non-dimensional axial force )10(  / 3 bqNN yy  for elliptic paraboloid shell 

 h/b 
b/a = 1 b/a = 2 b/a = 4 

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

Point           

P1 

0o -644.9 -472.9 -534.3 -378.4 -412.0 -721.2 -165.6 -352.0 -731.4 

45o -352.2 -247.5 -272.7 -213.7 -272.7 -569.8 -65.2 -190.4 -489.8 

90o -247.6 -182.5 -207.6 -226.8 -317.4 -629.9 -77.3 -324.6 -755.4 

P2 

0o -644.9 -472.9 -534.3 -212.4 -232.0 -408.0 -93.2 -198.9 -413.7 

45o -258.5 -194.2 -234.1 -15.8 -29.2 -103.9 -6.0 -16.9 -53.9 

90o -247.6 -182.5 -207.6 -51.4 -72.6 -145.1 -17.5 -74.7 -174.4 
 

Table 3 Non-dimensional moment )10(  / 32  qbMM yy  at vertex point for elliptic paraboloid shell 

 h/b 
b/a = 1 b/a = 2 b/a = 4 

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

           

X 

0o 2.143 0.983 0.346 1.380 0.717 0.239 0.172 -0.083 -0.191 

45o 1.243 0.676 0.269 1.164 0.798 0.361 -0.089 -0.110 -0.154 

90o -0.864 -0.147 0.002 0.317 0.560 0.306 -0.577 -0.804 -0.564 

/y 

0o 2.143 0.983 0.346 0.408 0.175 0.063 -0.053 -0.086 -0.079 

45o 1.243 0.676 0.269 0.191 0.120 0.062 -0.163 -0.166 -0.073 

90o -0.864 -0.147 0.002 -0.085 0.008 0.015 -0.290 -0.364 -0.249 
 

Table 4 Non-dimensional moment )10(  / 32  qbMM yy  at vertex point for elliptic paraboloid shell 

 h/b 
b/a = 1 b/a = 2 b/a = 4 

0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

           

X 

0o 4.128 1.894 0.667 2.446 1.339 0.513 0.654 0.238 0.017 

45o 1.243 0.676 0.269 1.175 0.817 0.396 0.174 0.164 0.038 

90o -0.448 -0.077 0.001 0.239 0.327 0.198 -0.095 -0.135 -0.075 

/y 

0o 4.128 1.894 0.667 0.915 0.373 0.076 -0.282 -0.360 -0.351 

45o 1.243 0.676 0.269 0.267 0.166 0.066 -0.418 -0.418 -0.262 

90o -0.448 -0.077 0.001 -0.101 0.023 0.009 -0.492 -0.615 -0.441 
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Fig. 5 Non-dimensional displacements )/( 43
1 qbhE 

along X and Y axis (h/b = 1,  = 0o) 
 
 

Fig. 6 Non-dimensional displacements )/( 43
1 qbhE 

along X and Y axis (h/b = 0.5,  = 0o) 
 
 

 
 
along X axis are larger than displacements along Y axis. 

The vertical displacement at the vertex point P3 under 
uniform distributed load is obtained. The variation of non-
dimensional vertex point displacement versus aspect ratio 
b/a is given in Fig. 8. It is observed that the vertical 
displacement at vertex point of elliptical paraboloid 
converged to a constant value for b/a  3. In addition, it is 
noted that the behaviour is sensitive between aspect ratios 
1.0 and 2.0. 

The magnitude of displacements seems mostly related 
with the bending stiffness along meridian axis of the 
elliptical paraboloid shell. In Fig. 8 it can be observed that 
in case when material angle lowers the bending stiffness, 
displacements are increasing. Additionaly material angle 
can effect the direction of displacement. An interesting 
contrast is observed with vertex displacement for h/b = 

Fig. 7 Non-dimensional displacements along X and Y axis 
(h/b = 0.25,  = 0o) 

 
 

Fig. 8 Vertical displacement at the vertex point versus 
aspect ratio b/a 

 
 

 
 

 
Mode 1 Mode 2 Mode 3 

Fig. 10 First three modes of the elliptic paraboloid shell 
(b/a = 1, h/b = 1,  = 0°) 

 
 
0.25, h/b = 0.5 and  = 90°, under vertical distributed loads 
the vertex displacement is in upward direction, Fig. 9. 

To investigate the dynamic characteristics of elliptic 
paraboloid shells non-dimensional natural frequencies are 
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Fig. 9 Deformed shape of elliptic paraboloid shell for different material angles b/a = 2, h/b = 0.5 
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obtained for different aspect ratios, height ratios and 
material angles, and the obtained values are given in Table 
5. It is observed natural frequencies are more sensitive to 
aspect ratio and height ratio than material angle. 

For the sake of brevity mode shapes are shown in Fig. 9-
11 for aspect ratios b/a = 1.0, 2.0, 4.0, height ratio h/b = 1 
and material angle  = 0o only. 

 
 

6. Conclusions 
 
An assumed stress hybrid finite element is used for the 

 
 
static and free vibration analysis of elliptic paraboloid 
shells. A parametric study is carried out to investigate the 
influence of aspect ratio, height ratio and material angle on 
the static and dynamic behaviour of elliptic paraboloid 
shells. Based on the above parametric study, the following 
concluding remarks are made: 

The vertical displacement at vertex point of elliptical 
paraboloid to a constant value for b/a  3 and rapidly 
increasing for aspect ratio b/a < 2. 

Generally an increase in height ratio increases axial 
forces and decreases moments. 

Magnitude of displacements seems mostly related with 
the bending stiffness along meridian axis of the elliptical 
paraboloid shell. 

Natural frequencies are more sensitive to aspect ratio 
and height ratio than material angle. 

For the design of simply supported elliptic paraboloid 
shells, the variation of internal forces, displacements and 
frequencies with the aspect ratio a/b and height ratio h/b is 
presented in figures and tables that can be directly used in 
design practice. 
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Appendix 1 
 

 
 
 
 
Appendix 2: Notation 
 
E1, E2: moduli of elasticity along x and y axes of element 

respectively 
G12, G13, G23: shear moduli of elasticity in x-y, x-z and y-z 

planes of element 

x, y, z: element local axis 
X, Y, Z: system global axis 

12, 21: Poisson ratio 
[D]: differential operator matrix 

[E]: elasticity matrix 

[G]: nodal forces corresponding to assumed stress field 

[N]: shape functions 

[R]: inertia matrix 

[P]: interpolation matrix for stress 
{q}, {q̇}: displacement and velocity components  

{u}: displacements 

{β}: stress parameters 
{σ}: internal forces 

Qx, Qy: internal shear forces per unit length 

Nx, Ny, Nxy: membrane forces per unit length 
Mx, My, Mxy: internal moments per unit length 

 

 
 
 
 
 
 

:xN  non-dimensional in-plane force along x local axis 
(circumferential force) 

:yN  non-dimensional in-plane force along y local axis 
(meridian in-plane force) 

:xM  non-dimensional moment about x local axis 

:yM  non-dimensional moment about y local axis 
q: uniform distributed load 

ρ: mass per unit volume 
ω: natural circular frequency 

ϕ: material angle in an element with reference to x-axis 
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