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1. Introduction 

 

The application and using from laminated composites 
structure in different industries such as aerospace, 
automobile and etc is growing. It is due to the fact that in 
the laminated composites structure, the strength with 
respect to the weight is high and however, these materials 
can improve the stability of structure and decrees the weight 
of system. So in recent years, the study and mechanical 
analysis of the laminated composites structure have been 
intense interests the researchers. In this paper, the laminas 
are reinforced with CNT which can increase the stiffness of 
the structure. 

Mechanical analysis of laminated plates has been 
investigated by many authors. Free vibration of laminated 
plates was addressed by Gupta et al. (2003) to show the 
capability of the present method in the vicinity of higher 
order shear deformation theory and simply supported edges 
of plates. Lee and Park (2007) investigated buckling 
behaviors of laminated composite structures with a 
delamination using the enhanced assumed strain (EAS) 
solid element. The EAS three-dimensional finite element 
(FE) formulation was described. Dash and Singh (2012) 
addressed the buckling and post-buckling of laminated 
composite plates using higher order shear deformation 
theory associated with Green–Lagrange non-linear strain– 
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displacement relationships. Buckling analysis of laminated 
composite plates was carried out by Singh and Chakrabarti 
(2012) using an efficient C0 FE model developed based on 
higher order zigzag theory. In this model the first 
derivatives of transverse displacement have been treated as 
independent variables to overcome the problem of C1 
continuity associated with the FE implementation of the 
plate theory. Static and dynamic characteristics of 
composite plates subjected to an arbitrary periodic load in 
hygrothermal environments were presented by Wang et al. 
(2013). Meshless collocations utilizing Gaussian and 
Multiquadric radial basis functions for the stability analysis 
of orthotropic and cross ply laminated composite plates 
subjected to thermal and mechanical loading were presented 
by Singh et al. (2013). The material properties of composite 
plates were depended on the temperature and moisture. 
Chen et al. (2013) studied the dynamic instability of 
laminated composite plates under thermal and arbitrary in-
plane periodic loads using first-order shear deformation 
plate theory. Based on Bolotin’s method, the system 
equations of Mathieu-type were formulated and used to 
determine dynamic instability regions of laminated plates in 
the thermal environment. Buckling and vibration 
characteristics of circular laminated plates under in-plane 
edge loads and resting on Winkler-type foundation were 
solved by Afsharmanesh et al. (2014) using Ritz method. 
The effects of fiber orientation on the natural frequencies 
and critical buckling loads of laminated angle-ply plates 
were studied. Chaotic motion in a nonlinear laminated 
composite plate under subsonic fluid flow and a 
simultaneous external load was studied by Norouzi and 
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Younesian (2016) based on Melnikov’s integral approach. 
Javed et al. (2016) analyzed vibration of anti-symmetric 
angle-ply plates using spline method for higher order shear 
theory. 

None of the above mentioned works have been 
considered nanocomposite structures. In this regards, within 
the framework of classical beam theory, Yas and Heshmati 
(2012) studied of the vibrational properties of FG 
nanocomposite beams reinforced by randomly oriented 
straight single-walled carbon nanotubes (SWCNTs) under 
the actions of moving load. Timoshenko and Euler–
Bernoulli beam theories were used to evaluate dynamic 
characteristics of the beam. Yang et al. (2015) investigated 
the dynamic buckling behavior of FG-CNT-reinforced 
integrated with two surface bonded piezoelectric layers. 
Geometrically nonlinear large deformation analysis of FG-
CNT-reinforced composite skew plates was presented by 
Zhang and Liew (2015). Bending, buckling and free 
vibration behaviors of functionally graded (FG) carbon 
nanotube (CNT)-reinforced polymer composite beam under 
different non-uniform thermal loads were analyzed by 
Mayandi and Jeyaraj (2015) using finite element method. 
 
 

They showed that the fundamental buckling mode shape 
was not sensitive to the nature of temperature variation but 
bending amplitude of the buckling mode shape is 
significantly influenced by functional grading of CNT and 
volume fraction of the CNT. Parametric studies were 
conducted to examine the effects of CNT content by 
volume, elastic foundation, skew angle, plate width-to-
thickness ratio, plate aspect ratio and boundary conditions 
on the nonlinear responses of the FG-CNT reinforced 
composite skew plates. Kolahchi et al. (2015) studied 
nonlinear buckling analysis of embedded polymeric 
temperature-dependent microplates. Their results indicate 
that the buckling load increases with increasing magnetic 
field. Lei et al. (2016a, b) considered the free vibration and 
buckling behaviors of FG-CNT-reinforced composite thick 
straight-sided quadrilateral plates resting on Pasternak 
foundations based on Ritz method. The first-order shear 
deformation theory (FSDT) was employed for formulation 
of the energy functional to incorporate the effects of 
transverse shear deformation and rotary inertia. Tempera-
ture-dependent nonlinear dynamic stability of FG-CNT-
reinforced visco-plate was present by Kolahchi et al. 
 
 

Fig. 1 The sandwich plate with FG-CNT-reinforced layers resting on elastic foundation 
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(2016). They showed that the lowest and highest dynamic 
instability region were respectively obtained for FGX- and 
FGO-CNTRC viscoplates. Kiani (2016) obtained the 
buckling loads and buckling pattern of composite plates 
reinforced with carbon nanotubes with uniform or 
functionally graded distribution across the plate thickness. 
Using the Ritz method and Airy stress function formulation, 
the distribution of stress resultants in the plate domain was 
obtained as a two-dimensional elasticity formulation. 
Vibration analysis of embedded functionally graded (FG)-
carbon nanotubes (CNT)-reinforced piezoelectric cylindrical 
shell subjected to uniform and non-uniform temperature 
distributions were presented by Madani et al. (2016) using 
differential cubature (DC) method. 

However, the buckling analysis of sandwich nano-
composite plates has not been studied by researchers. In this 
paper, buckling load of the sandwich plates with FG-CNT-
reinforced layers is obtained based on Reddy shear 
deformation plate theory. The material properties of the 
plates and constants of elastic medium are assumed 
temperature-dependent. Mixture rule is utilized for 
calculating the equivalent characteristic of the nano-
composite structure. The effects of different parameters 
such as volume percent and distribution types of the CNTs, 
temperature change, elastic medium, magnetic field and 
geometrical parameters of the plates on the buckling load of 
the sandwich structure are shown on the buckling behaviour 
of the structure. 

 
 

2. Formulation 
 

A sandwich plate with FG-CNT-reinforced layers resting 
on elastic medium is shown in Fig. 1 with length a, width b 
and thickness h. 

 

2.1 Reddy plate theory 
 

In the Reddy plate theory, the displacement field is a 
cubic function of z and transverse shear stresses are the 
functions of second order. However, the displacement field 
of this theory can be written as (Reddy 1984) 
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where u, v and w are the displacement components of the 
mid-plane and ϕx, ϕy are the angle of rotation around the y 
and x axes of cross-section, respectively. Also c1 = ‒4 / 3h2 
in which h is the thickness of the plate. So the kinematic 
relations are defined as follows 
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where c2 = 3c1. Based on this theory, the stress-strain 
relations can be written using Hook’s law as follows 
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where αxx, αyy and T are thermal expansion and temperature 
change, respectively; Qij (i, j = 1, 2,..., 6) denotes elastic 
coefficients which can be obtained by Mixture rule. 

 
2.2 Mixture rule 
 
According to this theory, the effective Young and shear 

moduli of structure may be expressed as (Zhang and Liew 
2015) 
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where Er11, Er22 and Em are Young’s moduli of CNTs and 
matrix, respectively; Gr11 and Gm are shear modulus of 
CNTs and matrix, respectively; VCNT and Vm show the 
volume fractions of the CNTs and matrix, respectively; ηj (j 
= 1, 2, 3) is CNT efficiency parameter for considering the 
size-dependent material properties. Noted that this para-
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meter may be calculated using molecular dynamic (MD). 
However, the CNT distribution for the mentioned patters 
obeys from the following relations (Zhang and Liew 2015) 
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Furthermore, the thermal expansion coefficients in the 
axial and transverse directions respectively (α11 and α22) and 
the density (ρ) of the nano-composite structure can be 
written as 
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where wCNT is the mass fraction of the CNT; ρm and ρCNT 
present the densities of the matrix and CNT, respectively; 
vr12 and vm are Poisson’s ratios of the CNT and matrix, 
respectively; αr11, αr22 and αm are the thermal expansion 
coefficients of the CNT and matrix, respectively. Noted that 
v12 is assumed as constant. 

 
2.3 Energy method 
 

The strain energy of the structure can be written as 
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Substituting Eqs. (4) and (5) into Eq. (20) yields 
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where the stress resultants can be defined as 
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The work due to the in-plane external loads, elastic 

medium and magnetic field can be expressed as (Madani et 
al. 2016, Kolahchi et al. 2016b, c) 
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(24)

 
where Kw and Gξ, Gι are Winkler’s spring modulus and 
shear layer coefficients, respectively. In addition, angle θ 
describes the local ξ direction of orthotropic foundation 
with respect to the global x-axis of the plate; η is the 
magnetic permeability and Hx is the magnetic field. Also

pN M
xx   and M
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M
yy NN   are applied loads to the plate 

in x and y directions, respectively and α is a constant 
coefficient. In addition, T
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T NN   ,  are thermal forces which 

may be written as 
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The governing equations can be derived by Hamilton’s 

principal as follows 
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Combining Eqs. (4)-(8), (22) and (23), the stress 
resultants can be obtained as follows 
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In which N is the number of sandwich plate layers. 
Finally the governing equations are obtained by substituting 
Eqs. (31)-(43) into governing equations (Eqs. (26)-(30)). 

 
 

3. Solution method 
 

Here, the Navier method is used for obtaining the 
buckling load of the sandwich structure for the simply 
supported boundary conditions. However, the displacement 
of the structure can be written as (Akhavan et al. 2009) 
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in which m and n are the wave numbers in x and y axes, 
respectively. Substituting Eqs. (45)-(49) into governing 
equations yields 

 

[ ] [ ] [0],GK p K   (50)
 

where [K] and [KG] are stiffness and geometric matrixes, 
respectively. Finally, buckling load of the system (P) can be 
calculated by using eigenvalue problem which is discussed 
in the next section. 

 
 

4. Numerical results 
 
In this section, the numerical results of buckling 

analysis of FG-CNT-reinforced sandwich plates resting on 
an orthotropic temperature-dependent elastic foundation are 
presented. Each layers of the sandwich structure are made 
from Poly methyl methacrylate (PMMA) with the constant 
Poisson’s ratios of vm = 0.34, temperature-dependent thermal 
coefficient of αm = (1 + 0.0005ΔT) × 10-6

 / K, and 
temperature- dependent Young moduli of Em = (3.52 ‒ 
0.0034T) GPa in which T = T0 + ΔT and T0 = 300 K (room 
temperature). CNTs as reinforcement of the lamina layers 
have the material properties listed in Table 1 (Zhang and 
Liew 2015). Since the surrounding medium is relatively 
soft, the foundation stiffness Kw may be expressed by 
(Zhang and Liew 2015) 
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where Es, vs, Hs are Young’s modulus, Poisson’s ratio and 
depth of the foundation, respectively. In this paper, Es is 
assumed to be temperature-dependent while vs is assumed 
to be a constant. The elastic medium is made of Poly 
dimethylsiloxane (PDMS) which the temperature-dependent 
material properties of which are assumed to be vs = 0.48 and 
Es = (3.22 ‒ 0.0034T) GPa in which T = T0 + ΔT and T0= 
300 K (room temperature) (Kolahchi et al. 2016a). 

The effect of distribution type of CNT in layers of 
sandwich plates on the dimensionless buckling load 

)/( 11hEpP m  of system versus spring constant of elastic 
medium is presented in Fig. 2. The CNT uniform distri-
bution and three types of FG patterns namely as FGV, FGO 
and FGX are considered. It can be seen that the buckling 
load increases with increasing the spring constant of elastic 
medium. It is since increasing the spring constant of elastic 
medium leads to stiffer structure. With respect to the 
distribution types of CNTs in the sandwich plate, it can be 
concluded that the FGX pattern is the best choice compared 
to other cases. It is because, in the FGX mode, the buckling 
load is maximum which means the stiffness of system is 
higher with respect to other three patterns. Meanwhile, the 
buckling load of structure with CNT uniform distribution is 
 
 
 

Fig. 2 CNTs distribution type effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 
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higher than FGV and FGO models. However, it can be 
concluded that the CNT distribution close to top and bottom 
are more efficient than those distributed nearby the mid-
plane. 

The effect of the CNT volume fraction on the 
dimensionless buckling load of the sandwich plate with 
respect to the spring constant of elastic medium is shown in 
Fig. 3. It can be found that increasing the CNT volume 
fraction increases the dimensionless buckling load of 
structure. This is due to the fact that the increase of CNT 
volume fraction leads to a harder structure. It is also 
concluded that the effects of CNT volume fraction becomes 
more prominent at higher spring constant of elastic 
foundation. 

Fig. 4 illustrates the variation of the dimensionless 
buckling load versus the spring constant of elastic medium 
for the symmetric and anti-symmetric sandwich plate. It can 
be seen that in symmetric laminated composites (with three 
number of layers), the dimensionless buckling load 

 
 

 
 

increases compared with the anti-symmetric ones (with two 
number of layers). The reason is that the symmetric 
laminated composite plates are more balance and stable. 

The effect of temperature change on the dimensionless 
buckling load of the nanocomposite sandwich plate with 
respect to the spring constant of elastic medium is 
demonstrated in Fig. 5. The same as other figures, 
increasing the spring constant of elastic medium increases 
the dimensionless buckling load of the structure. It can be 
also found that the dimensionless buckling load of the 
structure decreases with increasing temperature change 
which is due to the higher stiffness of the nanocomposite 
sandwich plate with lower temperature. 

Fig. 6 examines the influence of the loading types on the 
dimensionless buckling load of the structure versus the 
spring constant of elastic medium. Two types of loading 
include axial (along the x axis) and biaxial (along the x and 
y axes) are considered. As can be seen, in biaxial loading 
type the dimensionless buckling load is lower than axial 

Fig. 3 CNTs volume percent effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 

Fig. 4 Number of laminas effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 

Fig. 5 Temperature change effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 

Fig. 6 Loading type effects on the variation of dimension-
less buckling load versus spring constant of elastic 
medium 
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loading type. The reason is that, in biaxial loading type, the 
load which applied to the edges is higher than the axial 
loading type and therefore the buckling of the structure 
occurs sooner. Also the effect of loading type is apparent in 
higher spring constant of elastic medium. 

The effect of the length to width ratio (a/b) on the 
dimensionless buckling load with respect to the spring 
constant of elastic medium is depicted in Fig. 7. As can be 
seen, the dimensionless buckling load of the sandwich plate 
decreases with increasing length to width ratio. It is because 
that increasing length to width ratio leads softer structure. 
Meanwhile, the effect of length to width ratio on the 
dimensionless buckling load becomes more prominent at 
higher spring constant of elastic medium. 

The effect of the shear constant of elastic medium on the 
dimensionless buckling load versus spring constant of 
elastic medium is shown in Fig. 8. It can be observed that 
with increasing the shear and spring constants of elastic 
medium, the dimensionless buckling load is enhanced. It is 

 
 

physically due to the fact that with increasing the shear and 
spring constants of elastic medium, the stiffness of the 
structure increases. 

Fig. 9 demonstrated the effect of axial magnetic field on 
the variation of dimensionless buckling load versus spring 
constant of elastic medium. As can be seen, with increasing 
the axial magnetic field, the structure becomes stiffer and 
consequently, the dimensionless buckling load enhances. 

 
 

5. Conclusions 
 
In the present paper, based on Reddy shear deformation 

theory and Hamilton’s principle, the governing equations of 
nanocomposite sandwich plates subjected to thermo-
magneto-mechanical loadings were derived. Each layers of 
the sandwich structure was reinforced with FG-CNT and 
the corresponding effective material properties were 
obtained by Mixture rule. The structure was rested on the 
orthotropic temperature-dependent elastic medium. The 
problem of buckling of nanocomposite sandwich plates was 
then solved using an Navier method for the simply 
supported boundary conditions. The influences of different 
parameters such as the volume percent and distribution 
types of the CNTs, temperature change, elastic medium, 
magnetic field and geometrical parameters of the plates on 
the buckling load of the sandwich structure were 
investigated. It was found that the FGX pattern was the best 
choice compared to other case. Also, it was observed that 
increasing the CNT volume fraction increases the 
dimensionless buckling load of structure. It can be also 
found that the dimensionless buckling load of the structure 
decreases with increasing temperature change. In addition, 
with increasing the shear and spring constants of elastic 
medium, the dimensionless buckling load was enhanced. 
Furthermore, with increasing the axial magnetic field, the 
structure becomes stiffer and consequently, the dimension-
less buckling load enhances. 
 

Fig. 7 Length to width ratio effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 

Fig. 8 Shear constant of elastic medium effects on the 
variation of dimensionless buckling load versus 
spring constant of elastic medium 

Fig. 9 Axial magnetic field effects on the variation of 
dimensionless buckling load versus spring 
constant of elastic medium 
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