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Abstract. This paper presents a mathematical model for fixed-end moments of I-sections with straight haunches for the
general case (symmetrical and/or non-symmetrical) subjected to a concentrated load localized anywhere on beam taking into
account the bending deformations and shear, which is the novelty of this research. The properties of the cross section of the
beam vary along its axis “x”, i.e., the flange width “b”, the flange thickness “t”, the web thickness “e” are constant and the height
“d” varies along of the beam, this variation is linear type. The compatibility equations and equilibrium are used to solve such
problems, and the deformations anywhere of beam are found by the virtual work principle through exact integrations using the
software “Derive” to obtain some results. The traditional model takes into account only bending deformations, and others
authors present tables considering the bending deformations and shear, but are restricted. A comparison between the traditional
model and the proposed model is made to observe differences, and an example of structural analysis of a continuous highway
bridge under live load is resolved. Besides the effectiveness and accuracy of the developed models, a significant advantage is
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that fixed-end moments are calculated for any cross section of the beam “I” using the mathematical formulas.
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1. Introduction

Beams with haunches of “l-sections” found its
application in buildings and bridges of various functions. In
buildings, nonprismatic structural members with stepped
haunches, straight or parabolic, which is applied commonly
in engineering design to reduce weight and optimize the
strength and stability or to meet architectural requirements
and specifics functional. On the bridges the live load
corresponds to concentrated loads transmitted by the
vehicles through their wheels to the road surface on the
board.

In structural engineering there are circumstances, where
the beams are non-uniform, in the sense of the geometry
and/or material properties varying along length. One of the
main problems in the analysis of structures with moment of
inertia variable along its length is obtain the fixed-end
moments, stiffness, and carry-over factors.

To middle of last century were developed several design
aids, as those presented by Guldan (1956), and most know
tables published by the Portland Cement Association
(PCA), where stiffness constants and fixed-end moments of
variable section members are presented (Portland Cement
Association 1958). Hypotheses used to simplify the
problem are: (1) the variation of the stiffness (linear or
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parabolic, according the case of geometry) in function of
main moment of inertia in bending; (2) the shear
deformations and the ratio of length-height of beam are
neglected in the definition of several stiffness factors (Tena-
Colunga 1996).

After the publication of the PCA tables, the following
works deserve special mention based on beams theory. Just
(1977) was the first to propose the formulation to bending,
and the axial stiffness matrix for beams of tapering box and
I-section. Schreyer (1978) developed, with the use of a
generalized Kirchhoff hypothesis in which the transverse
shear strain in cylindrical coordinates is assumed to be zero;
a beam theory is developed for linearly tapered members.
Medwadowski (1984) presented a solution of the problem
of bending of nonprismatic beams, including the effect of
shear deformations. Brown (1984) proposed a method to
find a modified bending stiffness matrix for tapered beams.
Matrix of elastic stiffness for two-dimensional and three-
dimensional members of variable section based on classical
theory of beam by Euler-Bernoulli and flexibilities method
taking into account the axial and shear deformations, and
the cross section shape is found in Tena-Colunga and Zaldo
(1994) and in the appendix B (Tena-Colunga 2007). But the
tables are limited to certain relationships, and also the
heights of the haunches are the same at both ends.

Recently published papers are: Yuksel (2009) this study
aimed to investigate the modeling, analysis and behavior of
the non-prismatic members subjected to temperature
changes. Shooshtari and Khajavi (2010) proposed to find
the shape functions and stiffness matrices of nonprismatic
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beam elements. Yuksel (2012) realized a study aimed to
investigate the behavior of non-prismatic beams with
symmetrical parabolic haunches (NBSPH) having the
constant haunch length ratio of 0.5. Fiore et al. (2012) show
a viscoelastic behaviour of non-homogeneous variable-
section beams with post-poned restraints. Won et al. (2012)
presented the forced vibration analysis of damped beam
structures with compaosite cross-section using Timoshenko
beam element. Cristutiu et al. (2012) show an experimental
study on laterally restrained steel columns with variable |
cross sections. Saffari et al. (2012) presented a free
vibration analysis of non-prismatic beams under variable
axial forces. Luévanos-Rojas (2013c) proposed a
mathematical model for rectangular beams of variable cross
section of symmetrical parabolic shape for uniformly
distributed load. Luévanos-Rojas and Montoya-Ramirez
(2014) presented a mathematical model for rectangular
beams of variable cross section of symmetrical linear shape
for uniformly distributed load. Huang et al. (2014)
presented the power spectra of wind forces on a high-rise
building with section varying along height. Luévanos-Rojas
et al. (2014) proposed a mathematical model for rectangular
beams of variable cross section of symmetrical linear shape
for concentrated load. Luévanos-Rojas (2014) presented a
mathematical model for fixed-end moments for two types of
loads for a parabolic shaped variable rectangular cross
section. Albegmprli et al. (2015) show the reliability
analysis of reinforced concrete haunched beams shear
capacity based on stochastic nonlinear FE analysis.
Luévanos-Rojas (2015) proposed a modeling for beams of
“I” cross-section subjected to a uniformly distributed load
with straight haunches taking into account the bending
deformations and shear to obtain the fixed-end moments,
carry-over factors and stiffness factors.

Traditional methods used for the variable cross section
members, the deflections are obtained by Simpson's rule or
some other technique to perform numerical integration, and
tables presenting some books are limited to certain
relationships, and also shear deformations are not
considered (Hibbeler 2006, Vaidyanathan and Perumal
2006, Williams 2008).

This paper presents a mathematical model for fixed-end
moments of I-sections with straight haunches for the
general case (symmetrical and/or non-symmetrical)
subjected to a concentrated load localized anywhere on

beam taking into account the bending deformations and
shear, which is the novelty of this research. The properties
of the cross section of the beam vary along its axis “x”, i.e.,
the flange width “b”, the flange thickness “t”, the web
thickness “e” are constant and the height “d” varies along
the beam, this variation is linear type. The compatibility
equations and equilibrium are used to solve such problems,
and the deformations anywhere of beam are found by
means of the virtual work principle through exact
integrations using the software “Derive” to obtain some
results. The traditional model takes into account only
bending deformations, and others authors present tables
considering the bending deformations and shear, but are
restricted. A comparison between the traditional model and
the proposed model is made to observe differences, and an
example of structural analysis of a continuous highway
bridge under live load is resolved.

2. Formulation the mathematical model
2.1 Properties of the “I” cross-section

Fig. 1 shows a beam in elevation and also presents its
“I” cross-section taking into account the flange width “b”,
the flange thickness “t”, the web thickness “e” are constant,
and the height “d” varies along the beam, this variation is
linear type in three different parts.

Equations of the web height “d,” shear area “As” and
the moment of inertia around the axis Z “l,” to a distance
“x” for each segment are (Luévanos-Rojas 2015)

To0O<x<a
ad + u(a — x)
d,, = D) 1)
d+ - + 2at
Ao=e a ula — x) a @
a
blad + u(a — x) + 2at]?
. —(b —e)[ad + u(a — x)]? 3)
7 12a3
Toa<x<L-c
dy, =d 4)

Fig. 1 I-section with straight haunches
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Ast = €(d + Zt) (5)

_ b(d +2t)3—(b—e)d?®

z2 12 (6)
ToL-c<x<L
dys = cd +f(xc— L+c¢) ™
A= cd+f(x—f+c)+2ct ®)
blcd + f(x — L + ¢) + 2ct]?
_—b-e)ed+ f(x—L+0)]? 9)

I, =
z3 12¢3

2.2 Fixed-end moments for concentrated load

Fig. 2(a) shows the beam “AB” subjected to a
concentrated load localized anywhere on beam and its fixed
ends. The fixed-end moments are found by the sum of the
effects. The moments are considered positive in counter-
clockwise, and negative in clockwise. Fig. 2(b) presents the
same simply supported beam at their ends under the load
applied to find the rotations “O,” and “Og;”, where “i”
takes the values of 1, 2 and 3. The rotations “O4;” and
“Og,” are when the concentrated load is placed on 0 <x <a.
The rotations “Oa,” and “Og,” are when the concentrated
load is located in a < x <L — c. The rotations “Oa3” and
“Ogy” are when the concentrated load is found of L—c <x <
L. Now, the rotations “f;;” and “fy,” are caused by the
unitary moment applied in the support “A”, according to

Fig. 2(c), and in terms of “f;,” and “f,,” are caused by the
unitary moment applied in the support “B”, seen in Fig. 2(d)
(Luévanos-Rojas 2012, 20134, b).

The compatibility equations and equilibrium of the
beam are (Luévanos-Rojas 2012, 2013a, b, Ghali et al.
2003, Gonzalez Cuevas 2007, McCormac 2007)

To0<x<a
—f11Map + f12Mpa = 641 (10)
—f21Map + f22Mps = Op4 (11)
Toa<x<L-c
—f11Map + f12Mpa = 642 12)
—f21Map + f22Mps = Op; (13)
ToL-c<x<L
—f11Map + f12Mpa = 643 (14)
—f21Map + f22Mps = Op3 (15)

Beam Fig. 2(b) is analyzed to find “O,;” and “Og;”, the
virtual work principle and taking into account the bending
deformations and shear used to obtain the rotations.

Now, the values of “O,” and “Og;” for non-prismatic
members are found by the following equations
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Fig. 2 Beam fixed at its ends
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where: E is the modulus of elasticity, G is shear modulus, V,

and M, is shear force and the bending moment of the real

concentrated load, V; and M; is shear force and the bending

moment due the unitary moment applied in the support “A”,

V, and M, is shear force and the bending moment due the

unitary moment applied in the support “B” to a distance “x”
The shear modulus is

E
G 21+ v) (18)
where v is Poisson’s ratio.

Table 1 presents the equations of the shear forces and
bending moments anywhere of the beam on the axis “x”
(Gere and Goodno 2009).

Using Egs. (16)-(17) to obtain the values of “Op”,
“Og1”, “On2”, “Opy”, “Op3” and “Ogy”

1+v (L—x)x
Ba1 = ELZ{(L_S)I[ A 2L, ]dx

_Sf [1+v (L—x) dx

2L,
sxl 1 (19)
f 1+v N (L —x)? p
s a Ast 2122 *
fL 1+1/_|_(L—x)2 4
g L—c Asx3 2123 *
1+v «x
Op1 = ELZ {(L S)f [ A 2121] dx
_ﬂf F+V—E:£ch (20)
sxl 2121

J‘ [1 +v (L x)x }
—S dx
L—c sx3 2123

1+ L—
B2 = ELZ{(L_ )f [ SXIV %]dx

1+v (L —X)x
T —s) f [ T ]dx 1)

fLC[1+v (L — x)?
—s dx
sx2

21,

Table 1 Shear force and the bending moment
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Egs. (25)-(26)-(27) are used to obtain the values of “f;,”,
“f22” y “f12” (Luévanos-Rojas 2015)

j 1+v (L—x) d
fu = ELZ Ay 2L |

+fL C[1+v (L — x)? "

+
Ast 2122

1+v (L—x)
ch[ Asxs 21,3 ]dx}

(21)

(22)

(23)

(24)

The coefficients of flexibilities through the virtual work
principle are obtained

(25)

(26)

(@7)

(28)
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First condition: The concentrated load “P” is found 0 <x
< a. Egs. (19)-(28)-(30) corresponding to the support “A”
are substituted into Eq. (10), and Egs. (20)-(29)-(30)
corresponding to the support “B” are substituted into Eqg.
(11). Subsequently, the generated equations are solved to
obtain the values of “Mag” and “Mg,”; these are shown in
Egs. (31)-(32).

Second condition: The concentrated load “P” is
localized a <x <L —c. Egs. (21)-(28)-(30) corresponding to
the support “A” are substituted into Eq. (10), and Egs. (22)-
(29)-(30) corresponding to the support “B” are substituted
into Eq. (11). Subsequently, the generated equations are
solved to find the values of “Mag” and “Mgp”; these are
presented in Egs. (33)-(34).

Third condition: The concentrated load “P” is placed L —
€ <x < L. Egs. (23)-(28)-(30) corresponding to the support
“A” are substituted into Eqg. (10), and Egs. (24)-(29)-(30)
corresponding to the support “B” are substituted into Eq.
(11). Subsequently, the generated equations are solved to
obtain the values of “Mag” and “Mz,”; these appear in Egs.
(35)-(36).

Egs. (31)-(32)-(33)-(34)-(35)-(36) are shown in the
appendix.

3. Validating the proposed model

Tables 2-3 show the results of the two models for the
fixed-end moments factors (mas and mgs) for a beam
subjected to a concentrated load located anywhere on the

beam. The proposed model (PM) is the mathematical model
presented in this paper, the bending deformations and shear
are considered, and the traditional model (TM) takes into
account only the bending deformations. Table 2 for L =20 d
— d =0.05L. Table 3 forL=10d — d = 0.10 L. These
comparisons were made for v = 0.30 (structural steel), b =
13.02t - t=0.0768 b,d =2691e - e=0.0372d, b =
0.813 d, u = f, because these values are presented in Tables
Appendix B (Tena-Colunga 2007). The results appearing in
Table 2 (proposed model) mentioned above are identical to
the Tables shown in Appendix B (Tena-Colunga 2007).

Other way to validate the proposed model is as follows:
To the first condition is substituted “u=0h and f =0 h” or
“a=L c=0Landu=0h"into Egs. (31)-(32). To the
second condition is substituted “a=0Landc=0L" or “u=
Oh and f = Oh” into Egs. (33)-(34). To the third condition is
substituted “u=0hand f=0h"or“a=0L,c=Landf=
0h” into Egs. (35)-(36). To all the conditions are neglected
the shear deformations. The results obtained for the three
conditions, the fixed-end moments are: “Mag = Ps(L —
S)?/L* and “Mga = PS?(L — s)/L?”. The values presented
above are for a constant cross section.

A way to validate the continuity of the cross section is
as follows: when the slope of the beam in the lower face
varies, i.e.,, when the positive slope changes to the
horizontal slopffae of the straight line in “a”, and the
horizontal slope changes to the negative slope in “L — c”,
the concentrated load is placed on these points, and the
fixed-end moments are the same results. For example,
substituting “s = a” into Egs. (31)-(33) to obtain “Mug” and
also into Egs. (32)-(34) to found “Mgs”, and now
substituting “s = L — ¢” into Egs. (33)-(35) to found “Mpg”
and also into Egs. (34)-(36) to obtain “Mg,”.

Then the model proposed in this paper is valid and is not
limited to certain dimensions or proportions as some
authors show, and also the bending and shear deformations
are considered.

4. Application

A continuous road bridge of three stretches for a beam
of variable I-section with straight haunches is illustrated in
Fig. 3. The first and third light (A-B and C-D) are of 12.00
m, and contains antisymmetric haunches and deferential
depths in its ends. The second light (B-C) is 15.00 m, but
the haunches are perfectly symmetrical. Fig. 4 shows the

Fig. 3 Highway bridge of structural steel beams with straight haunches
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Fig. 4 Critical position of the loads

critical position of the live loads for each stretch of the
highway bridge and taking into account the live loads that
provide specifications for the design of bridges (AASHTO
2014). Constant data over all the cross section are: b = 0.75
m, t = 0.05 m, e = 0.032 m. To obtain the final moments
using the proposed model by means of matrix methods.

For the beam A-B: a=3.00m; c=4.00m;d =0.90 m; u
=0.50m; f=1.00m; L=12.00m. To the load P =35 kN, s
= 0.97 m, and is localized of 0 < x < a, the fixed-end
moments are: Mag; = 28.3928 kN-m and Mga; = 4.7250 kN-
m. To the load P = 145 kN, s = 5.27 m, and is found of a <x
<L - c, the fixed-end moments are: Mag, = 249.7065 kN-
m and Mga, = 267.1544 KN-m. To the load P = 145 kN, s =
9.57 m, and is located of L — ¢ < x < L, the fixed-end
moments are: Mpgs = 48.8118 kN-m and Mga; = 265.9288
kN-m. The total fixed-end moments are: Mgt = 326.9111
kKN-m and Mgar = 537.8082 kN-m. The carry-over factors
are (Luévanos-Rojas 2015): Cag = 0.6412 and Cga = 0.4996.
The stiffness factors are (Luévanos-Rojas 2015): kg =
5.5904 and kga = 7.1748. The absolute stiffnesses are: Kag =
5.5904 EI/L and Kga = 7.1748 EI/L.

For the beam B-C: a=4.00 m; ¢ =4.00 m; d =0.90 m; u
=1.00 m; f=1.00 m; L = 15.00 m. To the load P = 35 kN, s
= 2.47 m, and is localized of 0 < x < a, the fixed-end
moments are: Mgc; = 69.5804 kN-m and Mcg; = 11.3585
kN-m. To the load P = 145 kN, s = 6.77 m, and is found of a
< x <L — c, the fixed-end moments are: Mgc, = 370.9744
kN-m and Mcg, = 292.3753 kN-m. To the load P = 145 kN, s
= 11.07 m, and is located of L — ¢ < x <L, the fixed-end
moments are: Mgcz = 111.3617 kN-m and Mcgz = 386.8492

kN-m. The total fixed-end moments are: Mgcr = 551.9165
kN-m and Mcgr = 690.5830 kN-m. The carry-over factors
are (Luévanos-Rojas 2015): Cgc = 0.6121 and Cgg =
0.6121. The stiffness factors are (Luévanos-Rojas 2015):
kec = 7.2120 and kcg = 7.2120. The absolute stiffnesses are:
Kgc =7.2120 EI/L and Kcg = 7.2120 EI/L.

For the beam C-D:a=4.00m; c=3.00m;d=0.90 m; u
=1.00m; f=0.50 m; L =12.00 m. To the load P = 35 kN, s
= 0.97 m, and is localized of 0 < x < a, the fixed-end
moments are: Mcp; = 29.6864 kN-m and Mpc; = 2.8285 kN-
m. To the load P = 145 kN, s = 5.27 m, and is found of a <x
<L —c, the fixed-end moments are: Mcp, = 335.0357 kN-m
and Mpc, = 183.8729 kN-m. To the load P = 145 kN, s =
9.57 m, and is located of L — ¢ < x < L, the fixed-end
moments are: Mcps = 81.6770 kN-m and Mpcs = 236.7392
kN-m. The total fixed-end moments are: Mcpr = 446.3991
kKN-m and Mpcr = 423.4406 kN-m. The carry-over factors
are (Luévanos-Rojas 2015): Ccp = 0.4996 and Cpc =
0.6412. The stiffness factors are (Luévanos-Rojas 2015):
kep = 7.1748 and kpc = 5.5904. The absolute stiffnesses are:
Kep = 7.1748 EI/L and Kpc = 5.5904 EI/L.

The stiffness matrix of the beam “AB” is
Ky = kﬁi k{g] _ [5.5904 3.58491 E1
k4E ki 3.5849 7.17481 L
where
kf = Kup; k33 = Kga; ki? = CapKyp;

AB _ . ,AB — I,AB
k21 - CBAKBAfklz - k21 '
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The stiffness matrix of the beam “BC” is

o = |FiE K| 2120 44142 EI
B kB kB¢| T la4142 7.21201 L
where
kff = Kp¢; kgzc = Kcp; kfzc = CpcKpes
k5{ = CepKep; kTS = k55

The stiffness matrix of the beam “CD” is

i — |k K2 :[7.1748 3.58491 EI
7 kP ksh| T 13.5849 5.59041 L

where
D — 1 . 1,CD — . .CD _ )
kit = Kcp; k32 = Kpe; kiz = CepKeps
cp _ .1.CD _ 1,CD
k31 = CpcKpei k17 = k371

The overall stiffness matrix “Kg” of the continuous
beam is

kif ki 0 0
(|8 R Ko
0 M M k)
o 0 KPP
[5.5904 3.5849 0 0
_|3.5849 14.3868 4.4142 o |EI
B 0 44142 143868 3.5849| L
0 0 3.5849 5.5904

The fixed-end moments of the beams (phase 1) are

MAB] _ +326.9111]_[M3c] _ [+ 551.9165] .

Mp, —537.80821" [M¢p —690.58301"
[Mcp] _ +4~46.3991]
Mpc —423.4406

The vector of effective moments acting on the
continuous beam is

My —326.9111 —326.9111
Mp| |+537.8082 —551.9165| _ | —14.1083
M:| ™~ |+690.5830 — 446.3991 | ~ [+244.1839
M, +423.4406 +423.4406
The force-displacement relationship is
[P] = [K] = [d]

—326.9111

—14.1083
+244.1839
+423.4406

5.5904 3.5849 0 0 N
_|3.5849 14.3868 4.4142 0 |El6g

14.3868 3.5849| L |6,
3.5849 5.5904] 16,

0 4.4142
0 0

The solution of the system is

64 —71.05726558
Op| _ [+19.61768459 | L
0c| | —9.426580882 | E1

Op +81.78912954

The mechanical elements associated to the analysis
moments (phase 2) are
MAB]_ kit kf‘zBHHA]
Mg, k4B k4811 6p
=[5.5904 3.58491E11-71.057265587 L
3.5849 7.1748! L 1 +19.617684591 EI
_ [—326.9111
—113.9802

MBC]= kit ki [93]

Mcp k3¢ KBS L6
_[2120 4.4142]ﬂ[+19.61768459 L
44142 7.2120]1 L 1-9.426580882] E]

_ [+ 99.8719
+18.6119

Mcn]z kit k7 [96]

Mpc ksP kSP|LO)
_[7.1748 3.58491E11-9.426580882] L
3.5849 5.5904) L [4+81.78912954] EI

_ [+ 2255720
+423.4406

The moments resulting from the sum of phase 1 and 2
(final moments) are

[Myp] _ [+326.9111 +[—326.9111 =[ 0 ]
[Mpal — L —537.8082] " | -113.9802! ~ | -651.7884
[Mgc| _ [+ 551.9165]+[+ 99.8719] _ +651.7884]

[Mcp] — 1-690.5830] * 1+18.6119] ~ 1-671.9711

[Mcp] _ [+ 446.3991] 4 [+ 225.57201 _ [+671.9711]
[Mpc] — 1-423.44061 " 1+423.4406 0

5. Results

Just as shown in Tables 2-3, the factors in the fixed-end
moments were influenced by the web depth “d”. As the web
depth of the haunches increases in support “B” is seen an
increase in these factors for the same support and in the
support “A” occurs a decrease, this is for the two models.
Now, according to the comparison of both models, when the
web depth of the haunches is greater at one end is presented
a larger factor in the fixed-end moments of this support in
the traditional model and the opposite end is greater the
proposed model. Also, when the concentrated load is closer
to one of the supports, the difference between the two
models is larger. Also when the haunches and loads are
symmetrical the fixed-end moments for the two models are
not affected. The biggest difference exists for “d = 0.1 L”,
“a=0.3L",¢c=05L, “f/d=2"and “s = 0.9 L” in support
“A” of 2.33 times, and for “d = 0.1 L”, “a=0.3L",c=05
L, “f/d = 2” and “s = 0.1 L” in support “B” of 2.75 times,
being larger the proposed model for both cases with respect
to the traditional model.
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6. Conclusions

This paper presents a mathematical model for fixed-end
moments of I-sections with straight haunches for the
general case (symmetrical and/or non-symmetrical)
subjected to a concentrated load localized anywhere on
beam taking into account the bending deformations and
shear, which is the novelty of this research. The properties
of the cross section of the beam vary along its axis “x”, i.e.,
the flange width “b”, the flange thickness “t”, the web
thickness “e” are constant and the height “d” varies along
the beam, this variation is linear type. Traditional models
only consider bending deformations and other authors
present some tables considering bending and shear
deformations, but are limited, for example L=20d — d =
0.05 L, v = 0.30 (structural steel), b = 13.02t — t = 0.0768
b,d=2691e — e =0.0372d, b =0.813 d, u = f, this
relationship is presented in the appendix B (Tena-Colunga
2007).

Besides the effectiveness and accuracy of the developed
model in this paper, a significant advantage is that it can be
applied to any cross section of type “I” of structural steel
such as the profiles “W”, “M” and “HP” by adapting the
profile of the central section, and its main application is for
profiles consisting of three welded plates, also can be
applied to reinforced concrete beams or prestressed of I-
sections for the bridges of large clearings.

Now, the application of the fixed-end moments due to a
concentrated load located anywhere on the beam can be in
the bridges where the main live load corresponds to
concentrated loads transmitted by the vehicles through their
tires to the surface rolling board.

In any structure, the shear forces and bending moments
are present; therefore, the bending deformations and shear
appear. Then, the proposed model which considers the
bending deformations and shear is more appropriate for
structural analysis and is also more suited to the real
conditions compared to the traditional model that takes into
account only the bending deformations.
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Appendix
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Egs. (31)-(32) present the fixed-end moments, when the

concentrated load “P” is localized 0 <x <a

My = [{(L—s)f [”1”

f [1 +v
—S
sxl
fL ¢ [1 +v
—S
sx2
f [1+v
—S
L—c sx3
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21,

(L—x)?
T 205

X
le z1

fL ¢ [1 + v, X ] p
X
sx2 2122
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X
L—c L Asx3 2123
1+ v x?
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Modeling for fixed-end moments of I-sections with straight haunches under concentrated load

Egs. (33)-(34) show the fixed-end moments, when the
concentrated load “P” isfounda <x<L — ¢
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Egs. (35)-(36) present the fixed-end moments, when the
concentrated load “P” isplaced L — ¢ <x<L
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