
Steel and Composite Structures, Vol . 23, No. 5 (2017) 597-610 
DOI: https://doi.org/10.12989/scs.2017.23.5.597 

Copyright © 2017 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6                                      ISSN: 1229-9367 (Print), 1598-6233 (Online) 

 
1. Introduction 

 
Beams with haunches of “I-sections” found its 

application in buildings and bridges of various functions. In 
buildings, nonprismatic structural members with stepped 
haunches, straight or parabolic, which is applied commonly 
in engineering design to reduce weight and optimize the 
strength and stability or to meet architectural requirements 
and specifics functional. On the bridges the live load 
corresponds to concentrated loads transmitted by the 
vehicles through their wheels to the road surface on the 
board. 

In structural engineering there are circumstances, where 
the beams are non-uniform, in the sense of the geometry 
and/or material properties varying along length. One of the 
main problems in the analysis of structures with moment of 
inertia variable along its length is obtain the fixed-end 
moments, stiffness, and carry-over factors. 

To middle of last century were developed several design 
aids, as those presented by Guldan (1956), and most know 
tables published by the Portland Cement Association 
(PCA), where stiffness constants and fixed-end moments of 
variable section members are presented (Portland Cement 
Association 1958). Hypotheses used to simplify the 
problem are: (1) the variation of the stiffness (linear or 
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parabolic, according the case of geometry) in function of 
main moment of inertia in bending; (2) the shear 
deformations and the ratio of length-height of beam are 
neglected in the definition of several stiffness factors (Tena-
Colunga 1996). 

After the publication of the PCA tables, the following 
works deserve special mention based on beams theory. Just 
(1977) was the first to propose the formulation to bending, 
and the axial stiffness matrix for beams of tapering box and 
I-section. Schreyer (1978) developed, with the use of a 
generalized Kirchhoff hypothesis in which the transverse 
shear strain in cylindrical coordinates is assumed to be zero; 
a beam theory is developed for linearly tapered members. 
Medwadowski (1984) presented a solution of the problem 
of bending of nonprismatic beams, including the effect of 
shear deformations. Brown (1984) proposed a method to 
find a modified bending stiffness matrix for tapered beams. 
Matrix of elastic stiffness for two-dimensional and three-
dimensional members of variable section based on classical 
theory of beam by Euler-Bernoulli and flexibilities method 
taking into account the axial and shear deformations, and 
the cross section shape is found in Tena-Colunga and Zaldo 
(1994) and in the appendix B (Tena-Colunga 2007). But the 
tables are limited to certain relationships, and also the 
heights of the haunches are the same at both ends. 

Recently published papers are: Yuksel (2009) this study 
aimed to investigate the modeling, analysis and behavior of 
the non-prismatic members subjected to temperature 
changes. Shooshtari and Khajavi (2010) proposed to find 
the shape functions and stiffness matrices of nonprismatic 
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beam elements. Yuksel (2012) realized a study aimed to 
investigate the behavior of non-prismatic beams with 
symmetrical parabolic haunches (NBSPH) having the 
constant haunch length ratio of 0.5. Fiore et al. (2012) show 
a viscoelastic behaviour of non-homogeneous variable-
section beams with post-poned restraints. Won et al. (2012) 
presented the forced vibration analysis of damped beam 
structures with composite cross-section using Timoshenko 
beam element. Cristutiu et al. (2012) show an experimental 
study on laterally restrained steel columns with variable I 
cross sections. Saffari et al. (2012) presented a free 
vibration analysis of non-prismatic beams under variable 
axial forces. Luévanos-Rojas (2013c) proposed a 
mathematical model for rectangular beams of variable cross 
section of symmetrical parabolic shape for uniformly 
distributed load. Luévanos-Rojas and Montoya-Ramirez 
(2014) presented a mathematical model for rectangular 
beams of variable cross section of symmetrical linear shape 
for uniformly distributed load. Huang et al. (2014) 
presented the power spectra of wind forces on a high-rise 
building with section varying along height. Luévanos-Rojas 
et al. (2014) proposed a mathematical model for rectangular 
beams of variable cross section of symmetrical linear shape 
for concentrated load. Luévanos-Rojas (2014) presented a 
mathematical model for fixed-end moments for two types of 
loads for a parabolic shaped variable rectangular cross 
section. Albegmprli et al. (2015) show the reliability 
analysis of reinforced concrete haunched beams shear 
capacity based on stochastic nonlinear FE analysis. 
Luévanos-Rojas (2015) proposed a modeling for beams of 
“I” cross-section subjected to a uniformly distributed load 
with straight haunches taking into account the bending 
deformations and shear to obtain the fixed-end moments, 
carry-over factors and stiffness factors. 

Traditional methods used for the variable cross section 
members, the deflections are obtained by Simpson's rule or 
some other technique to perform numerical integration, and 
tables presenting some books are limited to certain 
relationships, and also shear deformations are not 
considered (Hibbeler 2006, Vaidyanathan and Perumal 
2006, Williams 2008). 

This paper presents a mathematical model for fixed-end 
moments of I-sections with straight haunches for the 
general case (symmetrical and/or non-symmetrical) 
subjected to a concentrated load localized anywhere on 

 
 

beam taking into account the bending deformations and 
shear, which is the novelty of this research. The properties 
of the cross section of the beam vary along its axis “x”, i.e., 
the flange width “b”, the flange thickness “t”, the web 
thickness “e” are constant and the height “d” varies along 
the beam, this variation is linear type. The compatibility 
equations and equilibrium are used to solve such problems, 
and the deformations anywhere of beam are found by 
means of the virtual work principle through exact 
integrations using the software “Derive” to obtain some 
results. The traditional model takes into account only 
bending deformations, and others authors present tables 
considering the bending deformations and shear, but are 
restricted. A comparison between the traditional model and 
the proposed model is made to observe differences, and an 
example of structural analysis of a continuous highway 
bridge under live load is resolved. 

 
 

2. Formulation the mathematical model 
 
2.1 Properties of the “I” cross-section  
 
Fig. 1 shows a beam in elevation and also presents its 

“I” cross-section taking into account the flange width “b”, 
the flange thickness “t”, the web thickness “e” are constant, 
and the height “d” varies along the beam, this variation is 
linear type in three different parts. 

Equations of the web height “dy” shear area “Asx” and 
the moment of inertia around the axis Z “Iz” to a distance 
“x” for each segment are (Luévanos-Rojas 2015) 

 

To 0 ≤ x ≤ a 
 

𝑑𝑑𝑦𝑦1 =
𝑎𝑎𝑑𝑑 + 𝑢𝑢(𝑎𝑎 − 𝑥𝑥)

𝑎𝑎
 (1) 

 

𝐴𝐴𝑠𝑠𝑥𝑥1 = 𝑒𝑒 �
𝑎𝑎𝑑𝑑 + 𝑢𝑢(𝑎𝑎 − 𝑥𝑥) + 2𝑎𝑎𝑎𝑎

𝑎𝑎
� (2) 

 

𝐼𝐼𝑧𝑧1 =

𝑏𝑏[𝑎𝑎𝑑𝑑 + 𝑢𝑢(𝑎𝑎 − 𝑥𝑥) + 2𝑎𝑎𝑎𝑎]3

−(𝑏𝑏 − 𝑒𝑒)[𝑎𝑎𝑑𝑑 + 𝑢𝑢(𝑎𝑎 − 𝑥𝑥)]3

12𝑎𝑎3  
(3) 

 

To a ≤ x ≤ L – c 
 

𝑑𝑑𝑦𝑦2 = 𝑑𝑑 (4) 
 
 

 
Fig. 1 I-section with straight haunches 
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𝐴𝐴𝑠𝑠𝑥𝑥2 = 𝑒𝑒(𝑑𝑑 + 2𝑎𝑎) (5) 
 

𝐼𝐼𝑧𝑧2 =
𝑏𝑏(𝑑𝑑 + 2𝑎𝑎)3 − (𝑏𝑏 − 𝑒𝑒)𝑑𝑑3

12
 (6) 

 
To L – c ≤ x ≤ L 
 

𝑑𝑑𝑦𝑦3 =
𝑐𝑐𝑑𝑑 + 𝑓𝑓(𝑥𝑥 − 𝐿𝐿 + 𝑐𝑐)

𝑐𝑐
 (7) 

 

𝐴𝐴𝑠𝑠𝑥𝑥3 = 𝑒𝑒 �
𝑐𝑐𝑑𝑑 + 𝑓𝑓(𝑥𝑥 − 𝐿𝐿 + 𝑐𝑐) + 2𝑐𝑐𝑎𝑎

𝑐𝑐
� (8) 

 

𝐼𝐼𝑧𝑧3 =

𝑏𝑏[𝑐𝑐𝑑𝑑 + 𝑓𝑓(𝑥𝑥 − 𝐿𝐿 + 𝑐𝑐) + 2𝑐𝑐𝑎𝑎]3

−(𝑏𝑏 − 𝑒𝑒)[𝑐𝑐𝑑𝑑 + 𝑓𝑓(𝑥𝑥 − 𝐿𝐿 + 𝑐𝑐)]3

12𝑐𝑐3  
(9) 

 
2.2 Fixed-end moments for concentrated load 
 
Fig. 2(a) shows the beam “AB” subjected to a 

concentrated load localized anywhere on beam and its fixed 
ends. The fixed-end moments are found by the sum of the 
effects. The moments are considered positive in counter-
clockwise, and negative in clockwise. Fig. 2(b) presents the 
same simply supported beam at their ends under the load 
applied to find the rotations “ƟAi” and “ƟBi”, where “i” 
takes the values of 1, 2 and 3. The rotations “ϴA1” and 
“ϴB1” are when the concentrated load is placed on 0 ≤ x ≤ a. 
The rotations “ϴA2” and “ϴB2” are when the concentrated 
load is located in a ≤ x ≤ L – c. The rotations “ϴA3” and 
“ϴB3” are when the concentrated load is found of L – c ≤ x ≤ 
L. Now, the rotations “f11” and “f21” are caused by the 
unitary moment applied in the support “A”, according to 

 
 

Fig. 2(c), and in terms of “f12” and “f22” are caused by the 
unitary moment applied in the support “B”, seen in Fig. 2(d) 
(Luévanos-Rojas 2012, 2013a, b). 

The compatibility equations and equilibrium of the 
beam are (Luévanos-Rojas 2012, 2013a, b, Ghali et al. 
2003, González Cuevas 2007, McCormac 2007) 

 

To 0 ≤ x ≤ a 
 

−𝑓𝑓11𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓12𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴1 (10) 
 

−𝑓𝑓21𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓22𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴1 (11) 
 

To a ≤ x ≤ L – c 
 

−𝑓𝑓11𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓12𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴2 (12) 
 

−𝑓𝑓21𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓22𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴2 (13) 
 

To L – c ≤ x ≤ L 
 

−𝑓𝑓11𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓12𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴3 (14) 
 

−𝑓𝑓21𝑀𝑀𝐴𝐴𝐴𝐴 + 𝑓𝑓22𝑀𝑀𝐴𝐴𝐴𝐴 = 𝛳𝛳𝐴𝐴3 (15) 
 
Beam Fig. 2(b) is analyzed to find “ƟAi” and “ƟBi”, the 

virtual work principle and taking into account the bending 
deformations and shear used to obtain the rotations. 

Now, the values of “ƟAi” and “ƟBi” for non-prismatic 
members are found by the following equations 

 

Ɵ𝐴𝐴𝐴𝐴 = �
𝑉𝑉𝑥𝑥𝑉𝑉1

𝐺𝐺𝐴𝐴𝑠𝑠𝑥𝑥(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 + �

𝑀𝑀𝑥𝑥𝑀𝑀1

𝐸𝐸𝐼𝐼𝑧𝑧(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐿𝐿

0
 (16) 

 

Ɵ𝐴𝐴𝐴𝐴 = �
𝑉𝑉𝑥𝑥𝑉𝑉2

𝐺𝐺𝐴𝐴𝑠𝑠𝑥𝑥(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 + �

𝑀𝑀𝑥𝑥𝑀𝑀2

𝐸𝐸𝐼𝐼𝑧𝑧(𝑥𝑥)𝑑𝑑𝑥𝑥
𝐿𝐿

0
 (17) 

 

 

 
Fig. 2 Beam fixed at its ends 
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where: E is the modulus of elasticity, G is shear modulus, Vx 
and Mx is shear force and the bending moment of the real 
concentrated load, V1 and M1 is shear force and the bending 
moment due the unitary moment applied in the support “A”, 
V2 and M2 is shear force and the bending moment due the 
unitary moment applied in the support “B” to a distance “x”. 

The shear modulus is 
 

𝐺𝐺 =
𝐸𝐸

2(1 + 𝜈𝜈) (18) 
 

where ν is Poisson’s ratio. 
Table 1 presents the equations of the shear forces and 

bending moments anywhere of the beam on the axis “x” 
(Gere and Goodno 2009). 

Using Eqs. (16)-(17) to obtain the values of “ƟA1”, 
“ƟB1”, “ƟA2”, “ƟB2”, “ƟA3” and “ƟB3” 

 

Ɵ𝐴𝐴1 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑠𝑠

0

� 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

𝑠𝑠
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�−𝑠𝑠 � �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(19) 

 

Ɵ𝐴𝐴1 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑠𝑠

0

� 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

𝑠𝑠
 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(20) 

 

Ɵ𝐴𝐴2 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

(21) 

 
 
 

�−𝑠𝑠 � �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� (21) 

 

Ɵ𝐴𝐴2 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(22) 

 

Ɵ𝐴𝐴3 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠 � �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

(23) 

 

Ɵ𝐴𝐴3 =
2𝑃𝑃
𝐸𝐸𝐿𝐿2 �(𝐿𝐿 − 𝑠𝑠)� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

(24) 

 
The coefficients of flexibilities through the virtual work 

principle are obtained 
 

𝑓𝑓11 = �
𝑉𝑉1𝑉𝑉1

𝐺𝐺𝐴𝐴𝑠𝑠𝑥𝑥(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 + �

𝑀𝑀1𝑀𝑀1

𝐸𝐸𝐼𝐼𝑧𝑧(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 (25) 

 

𝑓𝑓22 = �
𝑉𝑉2𝑉𝑉2

𝐺𝐺𝐴𝐴𝑠𝑠𝑥𝑥(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 + �

𝑀𝑀2𝑀𝑀2

𝐸𝐸𝐼𝐼𝑧𝑧(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 (26) 

 

𝑓𝑓12 = 𝑓𝑓21 = �
𝑉𝑉1𝑉𝑉2

𝐺𝐺𝐴𝐴𝑠𝑠𝑥𝑥(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 + �

𝑀𝑀1𝑀𝑀2

𝐸𝐸𝐼𝐼𝑧𝑧(𝑥𝑥)

𝐿𝐿

0
𝑑𝑑𝑥𝑥 (27) 

 
Eqs. (25)-(26)-(27) are used to obtain the values of “f11”, 

“f22” y “f12” (Luévanos-Rojas 2015) 
 

𝑓𝑓11 =
2
𝐸𝐸𝐿𝐿2 �� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(28) 

 

Table 1 Shear force and the bending moment 

Concept Equations 

Shear 
force 

To the left 
of P 𝑉𝑉𝑥𝑥 =

𝑃𝑃(𝐿𝐿 − 𝑠𝑠)
𝐿𝐿

 

𝑉𝑉1 =
1
𝐿𝐿

 𝑉𝑉2 =
1
𝐿𝐿

 
To the right 

of P 𝑉𝑉𝑥𝑥 = −
𝑃𝑃𝑠𝑠
𝐿𝐿

 

Bending 
moment 

To the left 
of P 𝑀𝑀𝑥𝑥 =

𝑃𝑃(𝐿𝐿 − 𝑠𝑠)𝑥𝑥
𝐿𝐿

 

𝑀𝑀1 = −
(𝐿𝐿 − 𝑥𝑥)

𝐿𝐿
 𝑀𝑀2 =

𝑥𝑥
𝐿𝐿

 
To the right 

of P 𝑀𝑀𝑥𝑥 =
𝑃𝑃𝑠𝑠(𝐿𝐿 − 𝑥𝑥)

𝐿𝐿
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Modeling for fixed-end moments of I-sections with straight haunches under concentrated load 

𝑓𝑓22 =
2
𝐸𝐸𝐿𝐿2 �� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(29) 

  

𝑓𝑓12 = 𝑓𝑓21 =
2
𝐸𝐸𝐿𝐿2 �� �

1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

(30) 

 
First condition: The concentrated load “P” is found 0 ≤ x 

≤ a. Eqs. (19)-(28)-(30) corresponding to the support “A” 
are substituted into Eq. (10), and Eqs. (20)-(29)-(30) 
corresponding to the support “B” are substituted into Eq. 
(11). Subsequently, the generated equations are solved to 
obtain the values of “MAB” and “MBA”; these are shown in 
Eqs. (31)-(32). 

Second condition: The concentrated load “P” is 
localized a ≤ x ≤ L – c. Eqs. (21)-(28)-(30) corresponding to 
the support “A” are substituted into Eq. (10), and Eqs. (22)-
(29)-(30) corresponding to the support “B” are substituted 
into Eq. (11). Subsequently, the generated equations are 
solved to find the values of “MAB” and “MBA”; these are 
presented in Eqs. (33)-(34). 

Third condition: The concentrated load “P” is placed L – 
c ≤ x ≤ L. Eqs. (23)-(28)-(30) corresponding to the support 
“A” are substituted into Eq. (10), and Eqs. (24)-(29)-(30) 
corresponding to the support “B” are substituted into Eq. 
(11). Subsequently, the generated equations are solved to 
obtain the values of “MAB” and “MBA”; these appear in Eqs. 
(35)-(36). 

Eqs. (31)-(32)-(33)-(34)-(35)-(36) are shown in the 
appendix. 

 
 

3. Validating the proposed model 
 
Tables 2-3 show the results of the two models for the 

fixed-end moments factors (mAB and mBA) for a beam 
subjected to a concentrated load located anywhere on the 

 
 

beam. The proposed model (PM) is the mathematical model 
presented in this paper, the bending deformations and shear 
are considered, and the traditional model (TM) takes into 
account only the bending deformations. Table 2 for L = 20 d 
→ d = 0.05 L. Table 3 for L = 10 d → d = 0.10 L. These 
comparisons were made for ν = 0.30 (structural steel), b = 
13.02 t → t = 0.0768 b, d = 26.91 e → e = 0.0372 d, b = 
0.813 d, u = f, because these values are presented in Tables 
Appendix B (Tena-Colunga 2007). The results appearing in 
Table 2 (proposed model) mentioned above are identical to 
the Tables shown in Appendix B (Tena-Colunga 2007). 

Other way to validate the proposed model is as follows: 
To the first condition is substituted “u = 0 h and f = 0 h” or 
“a = L, c = 0 L and u = 0 h” into Eqs. (31)-(32). To the 
second condition is substituted “a = 0 L and c = 0 L” or “u = 
0h and f = 0h” into Eqs. (33)-(34). To the third condition is 
substituted “u = 0 h and f = 0 h” or “a = 0 L, c = L and f = 
0h” into Eqs. (35)-(36). To all the conditions are neglected 
the shear deformations. The results obtained for the three 
conditions, the fixed-end moments are: “MAB = Ps(L ‒ 
s)2/L2” and “MBA = Ps2(L ‒ s)/L2”. The values presented 
above are for a constant cross section. 

A way to validate the continuity of the cross section is 
as follows: when the slope of the beam in the lower face 
varies, i.e., when the positive slope changes to the 
horizontal slopffae of the straight line in “a”, and the 
horizontal slope changes to the negative slope in “L ‒ c”, 
the concentrated load is placed on these points, and the 
fixed-end moments are the same results. For example, 
substituting “s = a” into Eqs. (31)-(33) to obtain “MAB” and 
also into Eqs. (32)-(34) to found “MBA”, and now 
substituting “s = L ‒ c” into Eqs. (33)-(35) to found “MAB” 
and also into Eqs. (34)-(36) to obtain “MBA”. 

Then the model proposed in this paper is valid and is not 
limited to certain dimensions or proportions as some 
authors show, and also the bending and shear deformations 
are considered. 

 
 

4. Application 
 
A continuous road bridge of three stretches for a beam 

of variable I-section with straight haunches is illustrated in 
Fig. 3. The first and third light (A-B and C-D) are of 12.00 
m, and contains antisymmetric haunches and deferential 
depths in its ends. The second light (B-C) is 15.00 m, but 
the haunches are perfectly symmetrical. Fig. 4 shows the 

 
Fig. 3 Highway bridge of structural steel beams with straight haunches 
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critical position of the live loads for each stretch of the 
highway bridge and taking into account the live loads that 
provide specifications for the design of bridges (AASHTO 
2014). Constant data over all the cross section are: b = 0.75 
m, t = 0.05 m, e = 0.032 m. To obtain the final moments 
using the proposed model by means of matrix methods. 

For the beam A-B: a = 3.00 m; c = 4.00 m; d = 0.90 m; u 
= 0.50 m; f = 1.00 m; L = 12.00 m. To the load P = 35 kN, s 
= 0.97 m, and is localized of 0 ≤ x ≤ a, the fixed-end 
moments are: MAB1 = 28.3928 kN-m and MBA1 = 4.7250 kN-
m. To the load P = 145 kN, s = 5.27 m, and is found of a ≤ x 
≤ L  ̶  c, the fixed-end moments are: MAB2 = 249.7065 kN-
m and MBA2 = 267.1544 kN-m. To the load P = 145 kN, s = 
9.57 m, and is located of L ‒ c ≤ x ≤ L, the fixed-end 
moments are: MAB3 = 48.8118 kN-m and MBA3 = 265.9288 
kN-m. The total fixed-end moments are: MABT = 326.9111 
kN-m and MBAT = 537.8082 kN-m. The carry-over factors 
are (Luévanos-Rojas 2015): CAB = 0.6412 and CBA = 0.4996. 
The stiffness factors are (Luévanos-Rojas 2015): kAB = 
5.5904 and kBA = 7.1748. The absolute stiffnesses are: KAB = 
5.5904 EI/L and KBA = 7.1748 EI/L. 

For the beam B-C: a = 4.00 m; c = 4.00 m; d = 0.90 m; u 
= 1.00 m; f = 1.00 m; L = 15.00 m. To the load P = 35 kN, s 
= 2.47 m, and is localized of 0 ≤ x ≤ a, the fixed-end 
moments are: MBC1 = 69.5804 kN-m and MCB1 = 11.3585 
kN-m. To the load P = 145 kN, s = 6.77 m, and is found of a 
≤ x ≤ L ‒ c, the fixed-end moments are: MBC2 = 370.9744 
kN-m and MCB2 = 292.3753 kN-m. To the load P = 145 kN, s 
= 11.07 m, and is located of L ‒ c ≤ x ≤ L, the fixed-end 
moments are: MBC3 = 111.3617 kN-m and MCB3 = 386.8492 

 
 
kN-m. The total fixed-end moments are: MBCT = 551.9165 
kN-m and MCBT = 690.5830 kN-m. The carry-over factors 
are (Luévanos-Rojas 2015): CBC = 0.6121 and CCB = 
0.6121. The stiffness factors are (Luévanos-Rojas 2015): 
kBC = 7.2120 and kCB = 7.2120. The absolute stiffnesses are: 
KBC = 7.2120 EI/L and KCB = 7.2120 EI/L. 

For the beam C-D: a = 4.00 m; c = 3.00 m; d = 0.90 m; u 
= 1.00 m; f = 0.50 m; L = 12.00 m. To the load P = 35 kN, s 
= 0.97 m, and is localized of 0 ≤ x ≤ a, the fixed-end 
moments are: MCD1 = 29.6864 kN-m and MDC1 = 2.8285 kN-
m. To the load P = 145 kN, s = 5.27 m, and is found of a ≤ x 
≤ L ‒ c, the fixed-end moments are: MCD2 = 335.0357 kN-m 
and MDC2 = 183.8729 kN-m. To the load P = 145 kN, s = 
9.57 m, and is located of L ‒ c ≤ x ≤ L, the fixed-end 
moments are: MCD3 = 81.6770 kN-m and MDC3 = 236.7392 
kN-m. The total fixed-end moments are: MCDT = 446.3991 
kN-m and MDCT = 423.4406 kN-m. The carry-over factors 
are (Luévanos-Rojas 2015): CCD = 0.4996 and CDC = 
0.6412. The stiffness factors are (Luévanos-Rojas 2015): 
kCD = 7.1748 and kDC = 5.5904. The absolute stiffnesses are: 
KCD = 7.1748 EI/L and KDC = 5.5904 EI/L. 

 

The stiffness matrix of the beam “AB” is 
 

𝐾𝐾𝐴𝐴𝐴𝐴 = �𝑘𝑘11
𝐴𝐴𝐴𝐴 𝑘𝑘12

𝐴𝐴𝐴𝐴

𝑘𝑘21
𝐴𝐴𝐴𝐴 𝑘𝑘22

𝐴𝐴𝐴𝐴� = �5.5904 3.5849
3.5849 7.1748�

𝐸𝐸𝐼𝐼
𝐿𝐿

 
 

where 
 

𝑘𝑘11
𝐴𝐴𝐴𝐴 = 𝐾𝐾𝐴𝐴𝐴𝐴 ;  𝑘𝑘22

𝐴𝐴𝐴𝐴 = 𝐾𝐾𝐴𝐴𝐴𝐴;  𝑘𝑘12
𝐴𝐴𝐴𝐴 = 𝐶𝐶𝐴𝐴𝐴𝐴𝐾𝐾𝐴𝐴𝐴𝐴 ; 

𝑘𝑘21
𝐴𝐴𝐴𝐴 = 𝐶𝐶𝐴𝐴𝐴𝐴𝐾𝐾𝐴𝐴𝐴𝐴;𝑘𝑘12

𝐴𝐴𝐴𝐴 = 𝑘𝑘21
𝐴𝐴𝐴𝐴 . 

 
(a) To first and third light (A-B and C-D) 

 

 
(b) To second light (B-C) 

Fig. 4 Critical position of the loads 
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The stiffness matrix of the beam “BC” is 
 

𝐾𝐾𝐴𝐴𝐶𝐶 = �𝑘𝑘11
𝐴𝐴𝐶𝐶 𝑘𝑘12

𝐴𝐴𝐶𝐶

𝑘𝑘21
𝐴𝐴𝐶𝐶 𝑘𝑘22

𝐴𝐴𝐶𝐶� = �7.2120 4.4142
4.4142 7.2120�

𝐸𝐸𝐼𝐼
𝐿𝐿

 

 
where 
 

𝑘𝑘11
𝐴𝐴𝐶𝐶 = 𝐾𝐾𝐴𝐴𝐶𝐶 ;  𝑘𝑘22

𝐴𝐴𝐶𝐶 = 𝐾𝐾𝐶𝐶𝐴𝐴 ;  𝑘𝑘12
𝐴𝐴𝐶𝐶 = 𝐶𝐶𝐴𝐴𝐶𝐶𝐾𝐾𝐴𝐴𝐶𝐶 ; 

𝑘𝑘21
𝐴𝐴𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐴𝐴𝐾𝐾𝐶𝐶𝐴𝐴 ;𝑘𝑘12

𝐴𝐴𝐶𝐶 = 𝑘𝑘21
𝐴𝐴𝐶𝐶 . 

 
The stiffness matrix of the beam “CD” is 
 

𝐾𝐾𝐶𝐶𝐶𝐶 = �𝑘𝑘11
𝐶𝐶𝐶𝐶 𝑘𝑘12

𝐶𝐶𝐶𝐶

𝑘𝑘21
𝐶𝐶𝐶𝐶 𝑘𝑘22

𝐶𝐶𝐶𝐶� = �7.1748 3.5849
3.5849 5.5904�

𝐸𝐸𝐼𝐼
𝐿𝐿

 

 
where 
 

𝑘𝑘11
𝐶𝐶𝐶𝐶 = 𝐾𝐾𝐶𝐶𝐶𝐶;  𝑘𝑘22

𝐶𝐶𝐶𝐶 = 𝐾𝐾𝐶𝐶𝐶𝐶 ;  𝑘𝑘12
𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾𝐶𝐶𝐶𝐶; 

𝑘𝑘21
𝐶𝐶𝐶𝐶 = 𝐶𝐶𝐶𝐶𝐶𝐶𝐾𝐾𝐶𝐶𝐶𝐶 ;𝑘𝑘12

𝐶𝐶𝐶𝐶 = 𝑘𝑘21
𝐶𝐶𝐶𝐶 . 

 
The overall stiffness matrix “KO” of the continuous 

beam is 

𝐾𝐾𝑂𝑂 =

⎣
⎢
⎢
⎢
⎡𝑘𝑘11

𝐴𝐴𝐴𝐴 𝑘𝑘12
𝐴𝐴𝐴𝐴 0 0

𝑘𝑘21
𝐴𝐴𝐴𝐴 𝑘𝑘22

𝐴𝐴𝐴𝐴 + 𝑘𝑘11
𝐴𝐴𝐶𝐶 𝑘𝑘12

𝐴𝐴𝐶𝐶 0
0 𝑘𝑘21

𝐴𝐴𝐶𝐶 𝑘𝑘22
𝐴𝐴𝐶𝐶 + 𝑘𝑘11

𝐶𝐶𝐶𝐶 𝑘𝑘12
𝐶𝐶𝐶𝐶

0 0 𝑘𝑘21
𝐶𝐶𝐶𝐶 𝑘𝑘22

𝐶𝐶𝐶𝐶⎦
⎥
⎥
⎥
⎤
 

= �

5.5904 3.5849 0 0
3.5849 14.3868 4.4142 0

0 4.4142 14.3868 3.5849
0 0 3.5849 5.5904

�
𝐸𝐸𝐼𝐼
𝐿𝐿

 

 
The fixed-end moments of the beams (phase 1) are 
 

�𝑀𝑀𝐴𝐴𝐴𝐴
𝑀𝑀𝐴𝐴𝐴𝐴

� = �+326.9111
 −537.8082� ; �𝑀𝑀𝐴𝐴𝐶𝐶

𝑀𝑀𝐶𝐶𝐴𝐴
� = �+ 551.9165

−690.5830 � ; 

�𝑀𝑀𝐶𝐶𝐶𝐶
𝑀𝑀𝐶𝐶𝐶𝐶

� = �+ 446.3991
−423.4406 � 

 
The vector of effective moments acting on the 

continuous beam is 
 

�

𝑀𝑀𝐴𝐴
𝑀𝑀𝐴𝐴
𝑀𝑀𝐶𝐶
𝑀𝑀𝐶𝐶

� = �

−326.9111
+537.8082 − 551.9165
+690.5830 − 446.3991 

+423.4406

� = �

−326.9111
−14.1083

+244.1839
+423.4406

� 

 
The force-displacement relationship is 
 

[𝑃𝑃] = [𝐾𝐾] = [𝑑𝑑] 

�

−326.9111
−14.1083

+244.1839
+423.4406

� 

= �

5.5904 3.5849 0 0
3.5849 14.3868 4.4142 0

0 4.4142 14.3868 3.5849
0 0 3.5849 5.5904

�
𝐸𝐸𝐼𝐼
𝐿𝐿
�

𝜃𝜃𝐴𝐴
𝜃𝜃𝐴𝐴
𝜃𝜃𝐶𝐶
𝜃𝜃𝐶𝐶

� 

 
The solution of the system is 

�

𝜃𝜃𝐴𝐴
𝜃𝜃𝐴𝐴
𝜃𝜃𝐶𝐶
𝜃𝜃𝐶𝐶

� = �
−71.05726558
+19.61768459
 −9.426580882
+81.78912954

�
𝐿𝐿
𝐸𝐸𝐼𝐼

 

 

The mechanical elements associated to the analysis 
moments (phase 2) are 

 

�𝑀𝑀𝐴𝐴𝐴𝐴
𝑀𝑀𝐴𝐴𝐴𝐴

� = �𝑘𝑘11
𝐴𝐴𝐴𝐴 𝑘𝑘12

𝐴𝐴𝐴𝐴

𝑘𝑘21
𝐴𝐴𝐴𝐴 𝑘𝑘22

𝐴𝐴𝐴𝐴� �
 𝜃𝜃𝐴𝐴
 𝜃𝜃𝐴𝐴

� 

= �5.5904 3.5849
3.5849 7.1748�

𝐸𝐸𝐼𝐼
𝐿𝐿
�−71.05726558
 +19.61768459�

𝐿𝐿
𝐸𝐸𝐼𝐼

 

= � −326.9111
 −113.9802� 

 

�𝑀𝑀𝐴𝐴𝐶𝐶
𝑀𝑀𝐶𝐶𝐴𝐴

� = �𝑘𝑘11
𝐴𝐴𝐶𝐶 𝑘𝑘12

𝐴𝐴𝐶𝐶

𝑘𝑘21
𝐴𝐴𝐶𝐶 𝑘𝑘22

𝐴𝐴𝐶𝐶� �
 𝜃𝜃𝐴𝐴
 𝜃𝜃𝐶𝐶

� 

= �7.2120 4.4142
4.4142 7.2120�

𝐸𝐸𝐼𝐼
𝐿𝐿
�+19.61768459
−9.426580882�

𝐿𝐿
𝐸𝐸𝐼𝐼

 

= �+ 99.8719
+18.6119 � 

 

�𝑀𝑀𝐶𝐶𝐶𝐶
𝑀𝑀𝐶𝐶𝐶𝐶

� = �𝑘𝑘11
𝐶𝐶𝐶𝐶 𝑘𝑘12

𝐶𝐶𝐶𝐶

𝑘𝑘21
𝐶𝐶𝐶𝐶 𝑘𝑘22

𝐶𝐶𝐶𝐶� �
 𝜃𝜃𝐶𝐶
 𝜃𝜃𝐶𝐶

� 

= �7.1748 3.5849
3.5849 5.5904�

𝐸𝐸𝐼𝐼
𝐿𝐿
�−9.426580882
+81.78912954�

𝐿𝐿
𝐸𝐸𝐼𝐼

 

= �+ 225.5720
+423.4406 � 

 

The moments resulting from the sum of phase 1 and 2 
(final moments) are 

 

�𝑀𝑀𝐴𝐴𝐴𝐴
𝑀𝑀𝐴𝐴𝐴𝐴

� = �+326.9111
 −537.8082� + � −326.9111

 −113.9802� = �  0
 −651.7884� 

�𝑀𝑀𝐴𝐴𝐶𝐶
𝑀𝑀𝐶𝐶𝐴𝐴

� = �+ 551.9165
−690.5830 � + �+ 99.8719

+18.6119 � = �+651.7884
−671.9711� 

�𝑀𝑀𝐶𝐶𝐶𝐶
𝑀𝑀𝐶𝐶𝐶𝐶

� = �+ 446.3991
−423.4406 � + �+ 225.5720

+423.4406 � = �+671.9711
 0 � 

 
 

5. Results 
 
Just as shown in Tables 2-3, the factors in the fixed-end 

moments were influenced by the web depth “d”. As the web 
depth of the haunches increases in support “B” is seen an 
increase in these factors for the same support and in the 
support “A” occurs a decrease, this is for the two models. 
Now, according to the comparison of both models, when the 
web depth of the haunches is greater at one end is presented 
a larger factor in the fixed-end moments of this support in 
the traditional model and the opposite end is greater the 
proposed model. Also, when the concentrated load is closer 
to one of the supports, the difference between the two 
models is larger. Also when the haunches and loads are 
symmetrical the fixed-end moments for the two models are 
not affected. The biggest difference exists for “d = 0.1 L”, 
“a = 0.3 L”, c = 0.5L, “f/d = 2” and “s = 0.9 L” in support 
“A” of 2.33 times, and for “d = 0.1 L”, “a = 0.3 L”, c = 0.5 
L, “f/d = 2” and “s = 0.1 L” in support “B” of 2.75 times, 
being larger the proposed model for both cases with respect 
to the traditional model. 
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6. Conclusions 
 
This paper presents a mathematical model for fixed-end 

moments of I-sections with straight haunches for the 
general case (symmetrical and/or non-symmetrical) 
subjected to a concentrated load localized anywhere on 
beam taking into account the bending deformations and 
shear, which is the novelty of this research. The properties 
of the cross section of the beam vary along its axis “x”, i.e., 
the flange width “b”, the flange thickness “t”, the web 
thickness “e” are constant and the height “d” varies along 
the beam, this variation is linear type. Traditional models 
only consider bending deformations and other authors 
present some tables considering bending and shear 
deformations, but are limited, for example L = 20 d → d = 
0.05 L, ν = 0.30 (structural steel), b = 13.02 t → t = 0.0768 
b, d = 26.91 e → e = 0.0372 d, b = 0.813 d, u = f, this 
relationship is presented in the appendix B (Tena-Colunga 
2007). 

Besides the effectiveness and accuracy of the developed 
model in this paper, a significant advantage is that it can be 
applied to any cross section of type “I” of structural steel 
such as the profiles “W”, “M” and “HP” by adapting the 
profile of the central section, and its main application is for 
profiles consisting of three welded plates, also can be 
applied to reinforced concrete beams or prestressed of I-
sections for the bridges of large clearings. 

Now, the application of the fixed-end moments due to a 
concentrated load located anywhere on the beam can be in 
the bridges where the main live load corresponds to 
concentrated loads transmitted by the vehicles through their 
tires to the surface rolling board. 

In any structure, the shear forces and bending moments 
are present; therefore, the bending deformations and shear 
appear. Then, the proposed model which considers the 
bending deformations and shear is more appropriate for 
structural analysis and is also more suited to the real 
conditions compared to the traditional model that takes into 
account only the bending deformations. 
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Appendix 
 

Eqs. (31)-(32) present the fixed-end moments, when the 
concentrated load “P” is localized 0 ≤ x ≤ a 
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𝑠𝑠
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 
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𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑃𝑃 ��(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑠𝑠

0

�� 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

𝑠𝑠
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

−�(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑠𝑠

0

� 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

𝑠𝑠
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 
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Modeling for fixed-end moments of I-sections with straight haunches under concentrated load 

Eqs. (33)-(34) show the fixed-end moments, when the 
concentrated load “P” is found a ≤ x ≤ L  ̶  c 

 

𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑃𝑃 ��(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

 −�(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 

(33) 

 

𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑃𝑃 ��(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

−�(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝑠𝑠

𝑎𝑎
 

−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑠𝑠
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 

(34) 
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Eqs. (35)-(36) present the fixed-end moments, when the 
concentrated load “P” is placed L  ̶  c ≤ x ≤ L 

 

𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑃𝑃 ��(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

 −�(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 

(35) 

 

𝑀𝑀𝐴𝐴𝐴𝐴 = 𝑃𝑃 ��(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

−�(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
� 𝑑𝑑𝑥𝑥

𝐿𝐿−𝑐𝑐

𝑎𝑎
 

−(𝐿𝐿 − 𝑠𝑠)� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
�

𝑠𝑠

𝐿𝐿−𝑐𝑐
𝑑𝑑𝑥𝑥 

�−𝑠𝑠� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝑠𝑠
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� / 

��� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

�� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

−
(𝐿𝐿 − 𝑥𝑥)𝑥𝑥

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�

2

 

−�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

�+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
(𝐿𝐿 − 𝑥𝑥)2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
� 

�� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥1

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧1
� 𝑑𝑑𝑥𝑥

𝑎𝑎

0

� 

+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥2

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧2
�

𝐿𝐿−𝑐𝑐

𝑎𝑎
𝑑𝑑𝑥𝑥 

��+� �
1 + 𝜈𝜈
𝐴𝐴𝑠𝑠𝑥𝑥3

+
𝑥𝑥2

2𝐼𝐼𝑧𝑧3
� 𝑑𝑑𝑥𝑥

𝐿𝐿

𝐿𝐿−𝑐𝑐
�� 

(36) 
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