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1. Introduction 

 
Steel plate shear wall (SPSW) system has been 

increasingly used in North America and Asia as the lateral 
load resisting system in recent years (Chatterjee et al. 
2015). A SPSW is composed of a steel structural frame 
infilled with web plates, as shown in Fig. 1. SPSWs offer 
excellent structural and architectural merits over traditional 
reinforced concrete shear walls, especially in terms of 
acceptable wall thickness, reduced entire weight, and 
aesthetic appearance. Furthermore, the applications of 
SPSW facilitate construction and increases usable floor 
area. 

A number of researches have been undertaken on the 
structural performance of SPSWs. Previous studies on the 
experimental behavior of SPSW have included that of 
Lubell et al. (2000), Guo et al. (2011), Clayton et al. 
(2013), Guo and Yuan (2015), He et al. (2015), and 
Sabouri-Ghomi and Mamazizi (2015). Lubell et al. (2000) 
tested two single- and one four-story SPSWs under repeated 
loadings. The results indicated that SPSWs exhibited good 
energy dissipation capacity and ductility. Guo et al. (2011) 
experimentally studied the SPSWs connected to boundary 
beams only to prevent the premature failure of boundary 
columns. Clayton et al. (2013) proposed the self-centering 
SPSWs and the results of a series of quasi-static cyclic tests 
indicated that the specimens were capable of resisting 
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lateral loads while reducing the structural repair costs and 
loss of building functionality. Guo and Yuan (2015) 
conducted cyclic testing on six novel SPSW specimens 
trilaterally constrained with an elastic restraint side. He et 
al. (2015) tested SPSWs with double-tapered links and in-
plane reference. Sabouri-Ghomi and Mamazizi (2015) 
studied experimentally the effects of openings on the 
structural behavior of SPSWs. 

Previous studies on the analytical response of SPSW 
have been conducted by Berman and Bruneau (2003), 
Sahoo et al. (2015), Vatansever and Berman (2015), 
Zirakian and Zhang (2015), Dhar and Bhowmick (2016), 
Bahrebar et al. (2016), and Rahmzadeh et al. (2016). 
Berman and Bruneau (2003) proposed a procedure for 
design of SPSWs using plastic analysis of the strip model. 
Sahoo et al. (2015) used finite element analysis to assessed 
the impact of different typed of HBE-to-VBE connections 
on the overall behavior of SPSW under cyclic loadings. 
Vatansever and Berman (2015) developed a behavior model 
for screw connections to represent the nonlinear response of 
thin SPSWs. Zirakian and Zhang (2015) evaluated the 
structural performance of SPSWs with unstiffened low 
yield point steel web panels according to AISC 341. Dhar 
and Bhowmick (2016) investigated the seismic demands of 
ductile unstiffened SPSWs by multi-mode pushover 
analysis and modal pushover analysis methods. Bahrebar et 
al. (2016) investigated the buckling stability, strength, 
stiffness, and ductility of SPSWs using finite element 
models. Rahmzadeh et al. (2016) applied finite element 
analysis to assess the impact of rigidity and arrangement of 
stiffeners on the buckling response of SPSWs. 

On the other hand, there is a dearth of information on 
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Abstract.  Steel plate shear wall (SPSW) system has been increasingly used for lateral loads resisting system since 1980s when 
the utilization of post-buckling strength of SPSW was realized. The structural response of SPSWs largely depends on the 
behavior of the surrounded beams. The beams are normally required to behave in the elastic region when the SPSW fully 
buckled and formed the tension field action. However, most modern design codes do not specify how this requirement can be 
achieved. This paper presents theoretical investigation and design procedures of manually calculating the plastic flexural 
capacity of the beams of SPSWs and can be considered as an extension to the previous work by Qu and Bruneau (2011). The 
reduction in the plastic flexural capacity of beam was considered to account for the presence of shear stress that was altered 
towards flanges at the boundary region, which can be explained by Saint-Venant’s principle. The reduction in beam web was 
introduced and modified based on the research by Qu and Bruneau (2011), while the shear stress in the web in this research is 
excluded due to the boundary effect. The plastic flexural capacity of the beams is given by the superposition of the contributions 
from the flanges and the web. The developed equations are capable of predicting the plastic moment of the beams subjected to 
combined shear force, axial force, bending moment, and tension fields induced by yielded infill panels. Good agreement was 
found between the theoretical results and the data from previous research for flexural capacity of beams. 
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the structural behavior of boundary element members (i.e., 
boundary beams and columns). Some preliminary research 
on design of boundary columns has included that of Park et 
al. (2007), and Berman and Bruneau (2008). Park et al. 
(2007) presented a simplified approach for predicting the 
axial and flexural demands on the columns. Berman and 
Bruneau (2008) used free body diagrams to determine the 
ultimate moment, axial and shear force demands for 
columns in SPSWs. For the research on boundary beams in 
SPSWs, Qu and Bruneau (2010) proposed an analytical 
model, which combined the assumed plastic mechanism 
with a linear beam model of intermediate beams 
considering fully yielded web plates, for approximating the 
capacity demands of intermediate beam with reduced beam 
section. In their study, the analytical procedure proposed by 
Qu and Bruneau (2011), which considered the reduced axial 
yield strength due to the presence of vertical component of 
tension field on the beams, was adopted to predict the 
plastic flexural capacity of the beams. However, the 
boundary effects, as will be described later in this paper, 
were not considered to account for the possible reduction in 
flexural capacity of the flanges, which overestimates the 
plastic moment of the beam and leads to the design on the 
unconservative side. Recently, Moghimi and Driver (2014) 
presented an analysis method, which was based on the 
principle of capacity design and nonlinear finite element 
simulations, for evaluating the axial force demands in the 
beam. 

The Chinese technical specification for steel plate shear 
walls JGJ/T380-2015 (2015) offers the shear capacity of 
SPSWs for walls connected to either boundary frame or 
boundary beams only. Meanwhile, the requirement for the 
moment of inertia of boundary column is specified. 

However, there is a lack of information on the requirement 
for the boundary beam. 

Meanwhile, the widely-acknowledged opinion, which 
considers that the fully restrained beam-to-column 
connection in steel moment resisting frames can be 
designed based on the assumption that the classical beam 
theory holds, is largely challenged during the 1994 
Northridge and 1995 Kobe earthquakes. Fully-restrained 
steel moment frames were once regarded as being among 
the most ductile systems and essentially invulnerable to 
earthquake-induced structural damage. However, a number 
of steel moment resisting frames were found to have 
experienced obvious damages at the connections during 
these two earthquakes. The observation of damages can be 
attributed to a number of different factors, among which 
one of the most important issues is the boundary effects as 
mentioned by Lee (2006). Due to the restraint of column 
face to the beam cross section, the stress distribution in the 
beam near the connection does not follow the Euler-
Bernoulli hypothesis of plane sections. The shear stress, 
which is assumed to be carried largely by the beam web, 
tends towards beam flanges. This causes the flanges 
suffering from overloading while leaves large parts of the 
beam web devoid of shear stress. Therefore, it is necessary 
to develop analytical procedures to account for this effect, 
to correctly predict the flexural capacity, and in addition to 
guarantee the elastic response of beams. 

The work presented in this paper attempts to address this 
issue by developing a simple manual calculation procedure 
for the flexural capacity of beam in SPSWs subjected to 
combined forces based on traditional plastic theory and free 
body diagrams. In this research, the yield mechanism of 
SPSWs was introduced according to the research by 
Berman and Bruneau (2003), and the boundary effect on the 
force transfer mechanism was comprehensively discussed, 
which is the main originality of this research. The axial 
yield strength of the flanges were reduced to account for the 
presence of shear stress due to the restraint of column face. 
Furthermore, the influence of vertical component of tension 
field on beams induced by web plates was introduced. The 
method and idea was based on the research by Qu and 
Bruneau (2011), while the shear stress in the web was 
absent in this research due to the boundary effect. The 
calculated flexural capacity of beams was then obtained 
from the summation of the contributions from the web and 
flanges. Validity of the proposed methodology was 
demonstrated through comparisons against previous 
research results. The work in this paper provides basis for 
further development of capacity design model of beams of 
SPSWs. 

 
 

2. Expected yielding mechanism of SPSW 
 
For multistory SPSWs with rigid beam-to-column 

connections subjected to lateral loads, two main plastic 
mechanisms were identified by Berman and Bruneau (2003) 
that should be considered in predicting the flexural behavior 
of beams, i.e., soft-story plastic mechanism and uniform 
yielding mechanism. In soft-story plastic mechanism, the 
plastic hinges would form in columns at a single story. Most 

Fig. 1 Configuration of SPSW 

Web Plate

Web Plate

Beam

Column

474



 
Flexural behavior of beams in steel plate shear walls 

of the earthquake energy is absorbed by the stories above 
the soft-story. In contrast, the possible collapse mechanism 
of multistory SPSWs involving uniform yielding of web 
plates over each story is more preferable, since in this case 
the earthquake energy is distributed over entire structure 
height. 

It has been pointed out by Berman and Bruneau (2003) 
that the actual yielding mechanism is normally somewhere 
between a soft-story mechanism and uniform yielding 
mechanism. However, for the purpose of evaluating the 
flexural capacity of beams in SPSW in this paper, there is 
no need to exactly figure out the most adequate yielding 
mechanism. It is always conservative to use the uniform 
yielding mechanism as the web plates undergo larger 
inelastic deformation in this case, which eventually results 
in greater force demands in the beam. Therefore, the 
uniform yielding mechanism will be selected in this 
research for prediction of plastic flexural capacity of beams 
in SPSWs. 

The web plates form the inclined tension field action 
when the SPSW develops the desired yielding mechanism. 
The tension field on the beam can be decomposed into the 
vertical (ωybi) and horizontal components (ωxbi), 
respectively, as can be calculated based on Eqs. (1)-(2) 
(Berman and Bruneau 2008). Furthermore, axial 
compressive force (P) is generated in the beam due to the 
boundary moment frame sway, horizontal components of 
tension field on columns, and vertical and horizontal 
components of tension fields on beams (Qu and Bruneau 
2010). Together with the bending moment (M) and shear 
force (V) acting on the beam, the forces applied to the beam 
is schematically shown in Fig. 2. 

 

 2
cosybi yp wif t   (1)

 
1

sin 2
2xbi yp wif t   (2)

 
 

3. Boundary effects 
 
It has been well-recognized that Euler-Bernoulli beam 

theory can be applied to design a typical structural H- 
shaped beam in engineering applications. The derivation is 

 
 

based upon the assumption that the cross section of the 
beam is always perpendicular to the bending line. The 
mathematical expression can be given by Eq. (3). In 
practical design, the contribution of the flanges to the shear 
force is generally neglected and the maximum shear stress 
in the beam can therefore be estimated by assuming that the 
shear force is totally and uniformly carried by the beam 
web, as shown in Eq. (4). 

 

b bw

VS

I t
   (3)

 

w bw

V

h t
   (4)

 
However, severe damages were observed in many 

moment resisting frame buildings during the Northridge and 
Kobe earthquakes. Causes of the observed damage had been 
the subject of considerable discussion and had been 
classified into three classes in general (Chen and 
Yamaguchi 1995): welding-related factors, design-related 
factors, and material-related factors. Among them the 
presence of triaxial tensile stress state and high strain rate 
was an essential factor that contributed to the brittle fracture 
at the beam-to-column connections. Furthermore, it was 
understood that the connection failures during the 
Northridge earthquake were to some extent, due to the 
three-dimensional restraint in the connection region. The 
restraint provided by the column flange does not allow the 
expected ductile yielding of the beam flanges (Miller 1998). 

To clearly describe the unexpected failure in the beam-
to-column connections, it should be noted firstly that the 
assumption that the shear force is transferred through the 
beam web to the column face only holds where the Euler-
Bernoulli hypothesis is still valid. As a matter of fact, beam-
to-column connection region is under boundary condition 
and the cross section of a beam will not remain plane under 
external forces, where Saint-Venant Principle follows: 

“If the forces acting on a small portion of the surface of 
an elastic body are replaced by another statically 
equivalent system of forces acting on the same portion of 
the surface, this redistribution of loading produces 
substantial changes in the stresses locally but has a 
negligible effect on the stresses at distances which are large 
in comparison with the linear dimensions of the surface on 
which the forces are changed.” 

In other words, the force transfer path and stress 
distribution mechanism at the beam-to-column connections 
at distances which are comparable to the cross-sectional 
dimension of the beam differ dramatically from the 
traditional knowledge and are much more complicated due 
to the complex geometrical configuration and strong 
restraint. 

Considering two randomly-selected elements A and B in 
the beam as illustrated in Fig. 3, element A is located at a 
distance considerably far away from the column face, and 
element B is adjacent to the connection boundary region. 
The relations between the normal strains (εx, εy, εz) and 
normal stresses (σx, σy, σz) for these two elements can be 
determined according to Hooke’s Law as 

 

Fig. 2 Forces acting on the beam 
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 1
x x y zE

          (5a)

 

 1
y y z xE

          (5b)

 

 1
z z x yE

          (5c)

 

For element A, as the beam can deform freely in any 
directions and no force is applied in the z-direction, i.e., σz = 
0, the plane stress condition is satisfied and Eqs. 5(a)-(c) 
can be reduced as 

 

 1
x x yE
     (6a)

 

 1
y y xE

     (6b)

 

 z x yE

      (6c)

 

Note that the normal stress σx in the x-direction is 
resulted from bending moment M and axial force P, while 
the normal stress σy in the y-direction is caused by the 
vertical component of inclined tension field on the beam. 
Also note that axial force P generates negative normal 
stress in the cross-section of beam, while bending moment 
M generates positive and negative normal stresses in the 
upper half and lower half of beam depth, respectively, 
where negative stress denotes compression and positive 
stress denotes tension. 

It can be found from Eq. (6b) that a positive value of σx 
(tension) leads to the reduction in εy while the negative σx 
(compression) results in greater εy. Therefore, the depth of 
beam in the upper region, which is under tension along the 
x-direction, tends to be shorter along the y-direction, while 

 
 
the depth of beam in the lower part, subjected to 
compression in the x-direction, tends to be longer along the 
y-direction. The deforming trend in the z-direction can be 
obtained from Eq. (6c) the width of the beam tends to be 
narrower in the upper part while tends to be wider in the 
lower part. 

Things become more complicated when the stress 
condition of element B is explored. Element B is close to 
the beam-to-column boundary and the deformation of the 
beam is likely fix-restrained by the column face. Thus, the 
normal strains εx, εy, and εz in Eqs. 5(a)-(c) should be zero 
along the restraining line. Under this condition, additional 
normal stresses in the y and z directions, σy,a and σz,a, 
respectively, should be generated to balance the normal 
strain induced by σx and σy. For the upper part of the beam, 
σy,a should be positive to alleviate the “depressed” trend of 
beam depth, while σz,a should be positive to prevent the 
beam from getting narrower. In contrast, σy,a should be 
negative in the lower part of beam to alleviate the 
“extruded” trend, while σz,a should be negative to restrain 
the beam from becoming wider. Therefore, due to the 
boundary constraint, additional shear strains are induced 
near the connection, which additionally causes additional 
shear stress. The shear stress is in the same direction of the 
applied shear force at the top and bottom parts of the beam 
while in the opposite direction of the applied shear force in 
the middle part of the beam to remain force equilibrium. In 
other words, the shear force moves towards the beam 
flanges at the connection. 

 
 

4. Plastic flexural capacity of beam in SPSW 
 
4.1 Reduced plastic flexural capacity in the flange 
 
For the beam cross section adjacent to the column face, 

i.e., within the region of 0.5db (Arlekar and Murty 2004) 
away from the connection, the stress distribution is altered 
significantly due to the boundary effects (or Saint Venant 

 
 

 
 (A) (B)  

Fig. 3 stress conditions in the beam 

P

M

V

P

M

V

B A

σx

τxy

σy

τyx

dy

dx
dz

σz

σx

τxy

σ y

τxz

τyxτyz

dy

dx
dz

τzx

τzy

476



 
Flexural behavior of beams in steel plate shear walls 

 
 

effects), and the division of the role between the flanges and 
the web, as predicted by classical Euler-Bernoulli theory, 
cannot be achieved. The flanges carry both bending 
moment and shear force, while the beam web carries 
bending moment and axial force and is devoid of shear 
stress near the neutral axis. Fig. 4 shows the plastic flexural 
capacity of the beam flange considering boundary effects. 
Assuming the magnitude of shear force in the beam flange 
is equal to that previously carried by beam web, the devoid 
region of shear stress in the beam, yv, is given by Eq. (7). It 
should be noted that this assumption satisfy the condition 
that the shear force is carried by the beam flanges instead of 
beam web at the connection as described in detail in Section 
3. 

bw w
v

f

t h
y d

b
   (7)

 

According to von Mises criterion, both normal stress 
and shear stress participate in yielding the section. 
Consequently, the maximum x-direction normal stress (σf) 
that can be applied on the beam flanges is given as 

 

2 23f y xyf    (8)

 

τxy can be calculated from Eq. (4). Therefore, the yield 
strength of some region of flanges which carry both shear 
stress and normal stress is reduced to σf due to the shear 
concentration on the flanges resulted from the boundary 
effect. 

 
 

 
 
The contributions of the flanges )( ,VMB

flangeM 
 to plastic 

flexural capacity can be calculated based on the flexural 
stress diagrams as 

 

,

2 2
B M V w bw bw w
flange f

f

h t t h
M d

b


 
    

   

    
2 2

bw w bw w
f f f y

f

t h t h
t b d t f

b

          
 

(9)

 

Although it is possible to calculate the plastic flexural 
capacity of beam flange based on Eq. (9), it is still 
somewhat complicated for engineer use and thus, the design 
procedure is better to be further simplified. Therefore, in 
this research, proper assumptions and simplifications were 
made to reduce the formula’s complexity to a reasonable 
level. As a matter of fact, Eq. (7) normally results in yv ≥ hw 
for practical beam size that is used in design, which means 
the entire HBE web is inactive in carrying the shear force. 
Consequently, it can be assumed that the flanges are 
subjected to combined flexure and shear, while the web is 
under flexure and tension as shown in Fig. 5. It should be 
noted that the assumption offers slightly lower value of 
plastic flexural capacity of beam flanges and is on the 
conservative side. Therefore, the shear stress is assumed to 
be carried uniformly by the beam flange and is given as 

 

2xy
f f

V

b t
   (10)

 
 

 

Fig. 4 Plastic flexural capacity of beam flange considering boundary effects 

 

Fig. 5 Simplified flexural stress diagrams 
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In this case, Eq. (9) is reduced to 
 

 ,B M V
flange f f f fM t b d t     (11)

 
4.2 Reduced plastic flexural capacity in the web 
 
Due to the presence of vertical component of tension 

field on the beam, the plastic flexural capacity of the beam 
web should be reduced according to the research by Qu and 
Bruneau (2011). This section presents the design procedures 
for prediction of reduced plastic flexural capacity in the 
web according to the plane stress state, which resembles the 
method used by pervious researchers such as Qu and 
Bruneau (2011). However, in this research, the shear stress 
is absent in the web due to the boundary effect. The normal 
stress σy in the y-direction in the web under the condition of 
equal top and bottom tension fields can be calculated as (Qu 
and Bruneau 2011) 

ybi
y

bwt


   (12)

 

Considering an element randomly selected from the 
beam web, it is under plane stress state. Since no shear 
force exists in the web, the normal stresses σx and σy in the x 
and y directions, respectively, become the principal stresses. 

For steel under multi-axial plane-stress conditions and 
owning uniaxial elasto-perfectly plastic behavior, von Mises 
yield criterion can be used and expressed as 

 
2 2

y x x y yf        (13)

 
Eq. (13) can be regarded as a quadratic function in terms 

of σx and gives 
 

2 2
,

1 1
4 3

2 2x t y y yf      (14)

 

2 2
,

1 1
4 3

2 2x c y y yf      (15)

 
Fig. 6 shows the plastic flexural capacity of beam web. 

The reader is referred to Qu and Bruneau (2011) for 
background and for the derivation of compression (yc) and 

 
 
tension (yt) portion of the web, which is given by Eqs. (16) 
and (17), respectively 

 

,

, ,

x t
w

y

c w

x t x c

y y

f
y h

f f




 

 
  

  
   

      
   

 (16)

 

t w cy h y   (17)
 

w
y w bw

P

f h t
    (18)

 

The contribution of the web to the plastic flexural 
capacity, ,,PM

webM  can then be determined according to the 
stress diagram in Fig. 6 as 

 

,
, ,2 2 2 2

M P w t w c
web x t bw t x c bw c

h y h y
M t y t y          

   
 (19)

 
4.3 Reduced plastic flexural capacity of beam 
 
Taking into account the boundary effects as detailed in 

Section 4.1 and using the reduced axial yield strength 
obtained from the von Mises yield criterion accounting for 
the vertical stress as presented in Section 4.2, the reduced 
plastic flexural capacity of the beam )( ,, PVM

bM  subjected to 
combined bending moment, shear force, and axial 
compression can be obtained based on the superposition of 
the reduced plastic flexural capacity of the flanges 

)( ,VMB
flangeM 

 and the contribution of the web ),( ,PM
webM  given 

as 
, , , ,M V P B M V M P

b flange webM M M   (20)
 
 

5. Validation for the proposed equation 
 
5.1 Comparison with Qu (2008) 
 
In order to validate the accuracy of the proposed 

formula, the theoretical results from the formula proposed 
above are firstly compared to the data in Qu’s study (2008). 

 

Fig. 6 Stress condition in the beam web 
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Qu (2008) developed a two-phase experimental program to 
test a full-scale two story SPSW specimen, as part of the 
MCEER/NCREE collaborative research program. However, 
the focus of the experiments is to address the replaceability 
of infill panels following an earthquake and thus, the beams 
did not fully exhibit their plastic capacities. Some extra 
numerical analyses have been conducted by Qu (2008) and 
the reasonability of the FE models has been well calibrated 
with a number of experiments. In this study, these FE 
models were selected to comprehensively calibrate the 
proposed formula. The reader is referred to Qu (2008) for 
detailed information of the numerical models. 

In the study of Qu (2008), a cross section plastic flexural 
capacity reduction factor, β, is defined to measure the loss 
in plastic flexural capacity. The value of β can be 
determined as 

 
, ,M V P

b

y

M

f Z
   (21)

 
The comparison is shown in Fig. 7. It can be found that, 

in general, the cross-section plastic moment reduction 
factors predicted by the formula proposed in the present 
study agrees well the FE analysis. The ratio of the predicted 

values to the numerical ones based on the proposed model 
range from 0.963 to 1.016 with a mean of 0.993 and a 
standard deviation of 0.014. These values closely 
corresponded. Meanwhile, it is obvious that an increase of 
the τxy values leads to a decrease in the beam cross section 
plastic moment. Fig. 7 also shows that for beams with τxy / fy 
= 0, the mean value of the ratio of the theoretical results to 
the FE ones equals to 1.001 while the corresponding 
standard deviation is 0.004, which means the proposed 
calculation method can well predict the flexure behavior of 
beams where the shear force is absent. On the other hand, 
for beams with τxy / fy = 0.3, the predicted values slightly 
underestimate the real plastic moment. This is because the 
assumption is made on the conservative side in Section 4.1 
that the entire cross-sectional areas of the flanges is under 
combined flexure and shear, in order to simplify Eq. (9) to 
Eq. (11) for easy hand calculation. This would slightly 
underestimate the flexural capacity of the flanges. It also 
should be noted that the boundary column was not included 
in Qu’s model. The lack of restraint of column face to the 
beam does not exactly reflect the boundary effect presented 
in this paper. Furthermore, for a given value of τxy and βw, 
when the tension field induced by infill panel increases 
from zero to around 0.3, the cross section plastic moment 
reduction factor gradually reduces from unity to a certain 
value. Beyond that, the cross section plastic moment 
reduction factor decreases quickly to a minimum. In 
addition, both the increase in the axial force and shear lead 
to a decrease of the developed plastic moment in the beam. 

 
5.2 Comparison with Berman and Bruneau (2008) 
 

Berman and Bruneau (2008) used the MCEER 
demonstration hospital as the prototype structures for 
design of SPSW. The Specimen SPSW-C with equal 
thickness of web plates at each story was selected in this 
paper for discussion. The general information about the 
specimen is summarized herein. The reader is referred to 
Berman and Bruneau for detailed model information. 
Specimen SPSW-C had the boundary columns with cross 
sections of W40×593, anchor beams with cross sections of 
W40×331, intermediate beams with cross sections of 
W21×73, and web plate thickness of 4.7625 mm. ASTM 
A36 was used for web plates and ASTM A992 was for the 
beams. The applied shear force and axial compression on 
the beam are listed in Table 1. It should be noted that in 
Specimen SPSW-C, the axial compression P in the beams at 
2nd and 3rd stories results in the value of βw greater than 
1.0, which means that both the entire web cross section and 
some region of flanges are used to carry the axial 
compression. Therefore, only part of flanges are active in 
resisting the bending moment. The comparison is given in 

 
 

(a) For τxy / fy = 0.00 
 

(b) For τxy / fy = 0.30 

Fig. 7 Comparison of theoretical results and Qu (2008) 

Table 1 Comparison of theoretical results and Berman and 
Bruneau (2008) 

Specimen Story
P V M Mp

Mp / M
(kips) (kips) (kip-in.) (kip-in.)

SPSW-C
2 ‒622 28 4095 4555 1.11 

3 ‒537 33 4864 5399 1.11 
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Table 1. It can be observed that the ratio of the predicted 
plastic flexural capacity Mp to the design bending moment 
M is 1.11, which means that the boundary beam is able to 
sustain the applied loads on the structures and is consistent 
with the results by Berman and Bruneau (2008). 

 
 

6. Conclusions 
 
A methodology for the manual calculation procedure to 

predict the plastic flexural capacity of beams in SPSW is 
mainly discussed in this paper. The main contribution of 
this paper is to consider the boundary effect to actualize the 
force transfer mechanism in the beams. The reduction of 
strength in beam web was introduced and modified based 
on the study by Qu and Bruneau (2011), while the shear 
stress is absent in the web in this research due to the 
boundary effect. The following conclusions are based on the 
results and observations presented herein. 

 

(1) The proposed methodology for the beam plastic 
flexural capacity is based on the modified classical 
beam theory and plastic analysis, which assembles 
the methods by Qu and Bruneau (2011). The 
plastic flexural capacity of the beams is given by 
the superposition of the contribution from the web 
and the flanges. 

(2) The influence of boundary effect is compre-
hensively discussed. According to the Saint Venant 
effects, the shear stresses would be transferred to 
the beam flanges from the web near the column 
face, leaving most of the beam web devoid of 
shear. 

(3) Comparisons made with previous research show 
that the proposed equations provide remarkably 
accurate predictions of the beam behavior that are 
suitable for use. 

 

It should be mentioned that the research in this paper is 
based on the assumption that both web plate above and 
below the beam are with the same thickness and both 
yielded. In real practical cases it may happen that the plates 
with different thicknesses are used. This will cause the 
developed tension fields are different on two beam sides. 
The authors are currently working on establishing design 
method for flexural behavior of SPSW with unequal tension 
fields that will be presented in future publications. 
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Notation 
 
bf  width of beam flange 
d  beam depth 
E  elastic modulus of steel 
fy  yield strength of steel 
fyp  yield strength of web plates 
hw  depth of beam web 
M  bending moment acting on the beam 

VMB
flangeM ,  contribution of the flanges to plastic flexural 

capacity 
Mweb contribution of the web to the plastic flexural 

capacity 
P  axial compressive force acting on the beam 
S  statical moment of area 
tbw thickness of the beam web 
tf  thickness of beam flange 
twt  thickness of web plates at ith story 
V  shear force acting on the beam 
yc, yt compression and tension portion of the web, 

respectively 
yv  devoid region of shear stress in the beam 
Z  plastic section modulus of the beam 
α  angle of the tension field 
ωxbi, ωybi horizontal and vertical components of web plates 

tension fields on beams, respectively 
σf  maximum x-direction normal stress in the 

beam flange 
σx, σy normal stresses in the x and y directions, 

respectively 
σx,t, σx,c tension and compression normal stress in the 

x-directions, respectively 
τ  shear stress in the beam 
τxy  shear stress in the beam flange 
ν  Poisson’s ratio 
εx, εy, εz normal strains in the x, y, and z directions, 

 respectively 
σx, σy, σz normal stresses in the x, y, and z directions, 

respectively 
β  cross section plastic flexural capacity reduction 

factor 
βw  ratio of the applied axial compression force to the 

nominal axial strength of the beam web 
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