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Abstract.   Rectangular concrete-filled steel tubular columns with unequal wall thickness were investigated in the 
paper. The physical centroid, the centroidal principal axes of inertia, and the section core were given. The generalized 
bending formula and the generalized eccentric compression formula were deduced, and the equation of the neutral 
axis was also provided. The two rectangular concrete-filled steel tubular stub specimens subjected to the compression 
load on the physical centroid and the geometric centroid respectively were tested to verify the theoretical formulas. 
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1. Introduction 
 

Concrete-filled steel tubular (CFST) columns have been widely used in the constructions 
nowadays, which have a lot of advantages, such as high load capacity, high ductility, and large 
energy-absorption capacity (Han 2002, Xiao et al. 2012, Abdalla et al. 2013, Ren et al. 2014a, b, 
Uenaka 2014, Hou et al. 2013). There are many types of cross sections of CFST columns, such as 
circle, square, rectangle, and octagon. Square and rectangular CFST columns are easier to 
construct nodes, and have better bending performance than others. In general, the wall thickness of 
steel tubes is uniform, which is beneficial to the processing of steel tubes. 

Research into CFST columns has been carried out throughout the world for many years, and a 
lot of research achievements have been obtained (Giakoumelis and Lam 2004, Gupta et al. 2007, 
Jiang et al. 2010, Chen et al. 2011, Chung et al. 2013, Dai and Lam 2010, Kvedaras et al. 2015). 
Abed et al. (2013) experimentally investigated the effect of diameter-to-thickness ratio, and 
concrete compressive strength on the bearing capacity of circular CFST columns under axial 
compression. They concluded that diameter-to-thickness ratio was the main factor on the 
compressive performance of circular CFST columns. Evirgen et al. (2014) experimentally studied 
CFST columns subjected to axial loading and focused on the effect of width-to-thickness ratio, 
concrete compressive strength and cross-sectional shape on the ultimate capacity, axial stress, 
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ductility and buckling behavior. Four cross-sectional shapes of circle, hexagon, rectangle and 
square, four width-to-thickness ratios ranging between 18.75 and 100.00 and three concrete 
compressive strengths of 13, 26 and 35 MPa were investigated. The results showed that circular 
cross-section was most effective according to both axial stress and ductility. 

However, the existing studies mainly focus on CFST columns with uniform wall thickness, and 
there is little research concerning CFST columns with unequal wall thickness. The uniform wall 
thickness is not conducive to make full use of materials, and the unequal wall thickness is a good 
choice for the cross section optimization. So it is very necessary to investigate the CFST columns 
with unequal wall thickness and provide the general formulas which can be degenerated into 
special cases. The objective of this investigation is fourfold: first, to investigate the section 
properties of rectangular CFST columns with unequal wall thickness; second, to deduce the 
generalized bending formula; third, to deduce the generalized eccentric compression formula and 
determine the cross section core; fourth, to verify these theoretical formulas through experiments. 
 
 
2. General formulas of rectangular CFST columns with unequal wall thickness 
 

2.1 Physical centroid 
 
The rectangular steel tube is welded with 4 steel plates with different wall thickness t1, t2, t3 and 

t4. As shown in Fig. 1, the cross section is with a breadth of B and a height of H. The Young’s 
modulus of different steel plates is assumed to be the same. The coordinate system is located in the 
geometric centroid (C) of the cross section. 

The cross section shown in Fig. 1 is asymmetric, and when the axial load acts on the physical 
centroid (Cp) of the cross section the whole section will deform uniformly. In the elastic stage, the 
axial load can be expressed as follows 

 

s s c cN E A E A    (1)
 

where ε is the axial strain, As is the cross-sectional area of the steel hollow section, Ac is the cross-
sectional area of the concrete core, Es is the Young’s modulus of steel, and Ec is the Young’s 
modulus of concrete. Based on the theorem of the resultant moment, the physical centroid of the 
cross section is determined as follows 

 

pC p yy k e ,  pC p zz k e (2)
 

where kp, ey and ez are calculated as below 
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where mE is the Young’s modulus ratio, i.e., Ec/Es, and αsc is the steel ratio, i.e., As/Ac. 

Based on Eq. (1), the combined Young’s modulus (Esc) of CFST specimens can be defined as 
follows 
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E A E A
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Fig. 1 Cross section of rectangular CFST columns with unequal wall thickness 
 
 

Fig. 2 Cross section of rectangular CFST beams with unequal wall thickness subjected to pure bending 
 
 

where A is the cross-sectional area of the whole section. 
 
2.2 Generalized bending formula 
 
The rectangular CFST beam with unequal wall thickness is assumed to be subjected to pure 

bending. As shown in Fig. 2, the coordinate system is located in the physical centroid, and the 
bending moment of M forms an angle of θ with the y axis. The centroidal principal axes of inertia 
are assumed to be the axes of y′ and z′ as shown in Fig. 2, which are obtained by rotating the 
coordinate system of yz an angle of β around the origin counterclockwise. The transformation 
relationship between the two sets of the coordinate systems is expressed as below 

 

' cos siny y z   ,  ' sin cosz y z    (5)
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Fig. 3 Positive curvature 
 
 
The following assumptions are used: 
 

(1) Planar cross section assumption, i.e., the cross section remains plane after deformation. 
(2) Tensile stress is assumed to be positive, and compressive stress is assumed to be negative. 
(3) Bending moment pointing to the positive direction of the coordinate axis is assumed to be 

positive; conversely, negative. 
(4) Curvature is assumed to be positive if the deflection curve protrudes to the positive 

direction of the coordinate axis; conversely, negative. The positive curvature is illustrated 
in Fig. 3. 

 

In the elastic stage, the bending stress of the cross section can be expressed as follows 
 

' '' 's y s z sE y E z    ,  ' '' 'c y c z cE y E z    (6)
 

where σs is the bending stress of the steel tube, σc is the bending stress of the concrete core, κy′ is 
the curvature of y′ direction, and κz′ is the curvature of z′ direction. The equilibrium equations of 
the cross section can be established as below 

 

0
s c

s cA A
dA dA     (7)

 

s c
s c yA A
zdA zdA M     (8)

 

s c
s c zA A
ydA ydA M      (9)

 
where My and Mz are the components of the bending moment and calculated as follows 

 
cosyM M  ,  sinzM M  (10)

 
The static moments of Sy and Sz, the inertia moments of Iy and Iz, and the inertia product of Iyz of 

the CFST cross section are generally defined as follows 
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(1 )
c

yz EA A
I yzdA m yzdA     (13)

 
The static moments are equal to zero, which is due to the coordinate axes passing through the 

physical centroid. The inertia moments and the inertia product of the cross section of the 
rectangular CFST beam with unequal wall thickness are calculated as below 

 
3 3

2(1 )
12 12y E p z
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,  

3 3
2(1 )
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(14)

 

yz p y zI k BHe e  (15)

 
Based on the axial conversion formula, the inertia product of Iy′z′, which is equal to zero, can be 

calculated as follows 

' ' cos 2 sin 2
2

y z
y z yz

I I
I I  


   (16)

 
The angle of β, which represents the orientation of the centroidal principal axes of inertia, can 

be determined as below 
21

arctan( )
2

yz

y z

I

I I
  


 (17)

 
By introducing Eqs. (5)-(6) into Eqs. (7)-(9), the following equations are obtained 
 

' ' ' ' 0y z z yS S    (18)

 

' '( sin cos ) ( cos sin )y s y yz z s y yz yE I I E I I M          (19)

 

' '( cos sin ) ( sin cos )y s z yz z s z yz zE I I E I I M            (20)

 
Eq. (18) is naturally satisfied due to the static moments of Sy’ and Sz’ being equal to zero. The 

curvatures of κy’ and κz’ can be obtained by solving Eqs. (19)-(20) as follows 
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By introducing the Eqs. (5), (10) and (21) into Eq. (6), the generalized bending formula is 

obtained and expressed as follows 
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The stress at the neutral axis is zero, so the equation of the neutral axis of mn is expressed as 

below 
( cos sin ) ( sin cos ) 0z yz y yzI I z I I y        (23)

 
The angle of φ, which represents the orientation of the neutral axis as shown in Fig. 2, is 

expressed as below 
sin cos

arctan( )
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

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2.3 Generalized eccentric compression formula and section core 
 
The rectangular CFST stub column with unequal wall thickness is assumed to be subjected to 

the eccentric load of N with the eccentricity of e. When the eccentric load acts in the region of the 
section core, there is only compressive stress distributing on the cross section. In the elastic stage, 
the stress of the cross section can be calculated as follows 
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(25)

 
Eq. (25) is the generalized eccentric compression formula. The orientation of the neutral axis of 

mn is determined using Eq. (24). The equation of the neutral axis is expressed as below 
 

2sin cos
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In order to determine the section core, the following four cases are considered: 
 

(1) The eccentric load acts on the critical point (P1) located on the positive part of the 
centroidal principal axis of inertia of y’. e1 represents the distance between Cp and P1. In 
this case, the upper left corner of the cross section is the key point, where the stress should 
be equal to zero. Based on Eq. (25), e1 is calculated as below 

 

2
1 ( ) / (( (1 ) )(( sin cos )( )

2

      ( cos sin )( )))
2

y z yz E z yz p z

y yz p y

B
e I I I BH m bh I I k e

H
I I k e

 

 

     

  

 (27)

 

(2) The eccentric load acts on the critical point (P2) located on the negative part of the y’ axis. 
e2 represents the distance between Cp and P2. In this case, the lower right corner of the 
cross section is the key point, where the stress should be equal to zero. Based on Eq. (25), 
e2 is calculated as below 

 

2
2 ( ) / (( (1 ) )(( sin cos )( )

2

      ( cos sin )( )))
2

y z yz E z yz p z

y yz p y

B
e I I I BH m bh I I k e

H
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 

 

     
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(3) The eccentric load acts on the critical point (P3) located on the positive part of the 
centroidal principal axis of inertia of z’. e3 represents the distance between Cp and P3. In 
this case, the lower left corner of the cross section is the key point, where the stress should 
be equal to zero. Based on Eq. (25), e3 is calculated as below 

 

2
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 (29)

 
 

Fig. 4 Section core of rectangular CFST stub columns with unequal wall thickness 
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(4) The eccentric load acts on the critical point (P4) located on the negative part of the z’ axis. 
e4 represents the distance between Cp and P4. In this case, the upper right corner of the 
cross section is the key point, where the stress should be equal to zero. Based on Eq. (25), 
e4 is calculated as below 

 

2
4 ( ) / (( (1 ) )(( cos sin )( )

2

      ( sin cos )( )))
2

y z yz E z yz p z

y yz p y

B
e I I I BH m bh I I k e
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 

     

  

 (30)

 

The section core is determined by connecting these critical points of P1, P2, P3 and P4 with 
straight lines as shown in Fig. 4. 
 
 
3. Test verification 
 

3.1 Experimental details 
 
The two rectangular CFST stub specimens with unequal wall thickness were tested on a 

compression testing machine of 2000 kN capacity to verify the formulas. The details of the 
specimens are shown in Table 1. The compression load was exerted to specimen 1 and specimen 2 
on the physical centroid and the geometric centroid respectively. The pace rate of about 0.5 kN/s 
was fed to the machine. There were 28 strain gauges evenly distributed around the middle cross  

 
 

Table 1 Details of specimens 

Specimen 
L 

(mm) 
B 

(mm) 
H 

(mm) 
t1 

(mm) 
t2 

(mm) 
t3 

(mm) 
t4 

(mm) 
Es 

(GPa) 
Ec 

(GPa) 

1 400 110.0 148.3 2.73 9.79 2.73 9.79 206 36.5 

2 400 110.3 148.3 2.73 9.79 2.73 9.79 206 36.5 

Note: L—Length of the CFST specimen; B—Width of the cross section of the CFST specimen; 
H— Height of the cross section of the CFST specimen; t1, t2, t3, t4—Wall thickness of the rectangular 
steel tube; Es, Ec—Modulus of elasticity of steel and concrete respectively 

 
 

 

(a) Test arrangement of Specimen 1 (b) End of Specimen 1 (c) End of Specimen 2 

Fig. 5 Test photos 
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Fig. 6 A schematic view of the test setup 
 
 

section of each specimen for measuring the longitudinal deformation of the steel tube. The test 
pictures are shown in Fig. 5. Fig. 6 gives a schematic view of the test arrangements. 

 
3.2 Experimental results and discussions 
 
The test results of specimen 1 are shown in Fig. 7. In the coordinate system shown in Fig. 1, the 

coordinate of the physical centroid of specimen 1 was obtained as (7.090, 7.090) using Eq. (2). Fig. 
7(a) shows all the strain measured by the 28 strain gauges at different load levels. It can be seen 
from Fig. 7(a) that the whole section deformed uniformly, which proved that the load acted on the 
physical centroid indeed. The theoretical combined Young’s modulus of specimen 1 was calculated 
as 68.473 GPa using Eq. (4). Fig. 7(b) shows the relationship between the average strain of all the 
28 sets of strain, and the average stress obtained through the load divided by the cross-sectional 
area, which was approximately linear. Through linear regression shown in Fig. 7(b), the 
experimental combined Young’s modulus of specimen 1 was 61.46 GPa, of which the relative 
error was 10.2%. 

The test results of specimen 2 are shown in Fig. 8. In the coordinate system shown in Fig. 2, the 
coordinate of the geometric centroid of specimen 2 was (-7.097, -7.097). The compression load 
was exerted to specimen 2 on the geometric centroid, so the orientation angle (θ) of the bending 
moment was 45.0°. As shown in Fig. 8(a), the orientation angle (β) of the centroidal principal axes 
of inertia of specimen 2 was -4.4° obtained through Eq. (17). The orientation angle (φ) of the 
neutral axis (mn) was -30.8° obtained by Eq. (24). The equation of the neutral axis was obtained 
by Eq. (26) as below 

187.374 0.597z y  (31)
 
The quantities of e1, e2, e3 and e4, which determined the section core, were 30.937, 37.335, 

24.045 and 32.830 respectively obtained through Eqs. (27)-(30). The section core and the neutral 
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(a) (b) 

Fig. 7 Test results of specimen 1 subjected to the compression load on the physical centroid 
 
 

 
(a) 

 
 

(b) (c) 

Fig. 8 Test results of specimen 2 subjected to the compression load on the geometric centroid 
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axis were illustrated in Fig. 8(a), and the geometric centroid was located within the core. So the 
full-section compression occurred, which can also be judged from the position of the neutral axis. 
Fig. 8(b) shows all the strain measured by the 28 strain gauges at different load levels. It can be 
seen from Fig. 8(b) that all the strain was negative, which indicated the full-section compression 
and verified the accuracy of the theoretical formulas. From Fig. 8(b), it can be easily found that the 
strain measured by strain gauge 6 was the minimum and the strain measured by strain gauge 20 
was the maximum, which can be proved by the distances between the strain gauges and the neutral 
axis as shown in Fig. 8(a). Fig. 8(c) shows the comparison of the strain measured by the strain 
gauges located at the similar distance from the neutral axis. It can be found from Fig. 8(c) that the 
strain in the similar positions was approximately equal. 
 
 

4. Conclusions 
 

In this paper, the section properties of the rectangular CFST columns with unequal wall 
thickness were focused on. The formulas of the physical centroid, the centroidal principal axes of 
inertia, and the section core were given. In the elastic stage, the generalized bending formula for 
calculating the stress of the rectangular CFST beams with unequal wall thickness subjected to pure 
bending, and the generalized eccentric compression formula for calculating the stress of the 
rectangular CFST stub columns with unequal wall thickness subjected to eccentric compression 
were derived. The equation of the neutral axis was also given. The two rectangular CFST stub 
specimens with unequal wall thickness were tested to verify the theoretical formulas. 
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