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1. Introduction 
 

Composite structures are widely used in engineering fields such as aerospace, submarine, 
automotive, and other applications, due to their light weight, excellent mechanical properties, high 
energy absorption, high stiffness to weight, and high strength to weight ratio. Because of 
mentioned mechanical properties of the composite structures several studies are presented at this 
field. (Madhukar and Singha 2013, Mantari et al. 2012, Varadan and Bhaskar 1991, Kapoor et al. 
2013). 
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Abstract.  In this paper, the 3D stress state and inter-laminar stresses in a rotating thin laminated cylinder shell are 
studied. The thickness of the cylinder is supposed to be thin and it is made of laminated composite material and can 
have general layer stacking. The governing equations of the cylindrical shell are obtained by employing the 
Layerwise theory (LWT). The effect of rotation is considered as rotational body force which is induced due to the 
rotation of the cylinder about its axis. The Layerwise theory (LWT), is used to discrete the partial differential 
equations of the problem to ordinary ones, in terms of the displacements of the mathematical layers. By applying the 
Free boundary conditions the solution of the governing equations is completed and the stress state, the inter-laminar 
stresses, and the edge effect in the rotating cylindrical shells are investigated in the numerical results. To verify the 
results, LWT solution is compared with the results of the FEM solution and good agreements are achieved. The inter-
laminar normal and shear stresses in rotating cylinder are studied and effects of layer stacking and angular velocity is 
investigated in the numerical results. 
 
Keywords:  rotating cylindrical shell; inter-laminar stresses; layerwise theory; laminated composite 

Beside the advantageous of composite materials, delamination is one of the most important 
problems in the application of the composite structures that is caused by three dimensional stress 
states, especially the inter-laminar stresses in the vicinity of the edges. So, Inter-laminar stresses 
are particularly important in causing failure of structural components, which are made of 
composite materials. The reason is that they are significantly contributed to various damages such 
as delamination phenomenon as stated. According to mentioned facts, inter-laminar stresses at the 
                                          
∗Corresponding author, Assistant Professor, E-mail: i_ahmadi@znu.ac.ir 
a Ph.D. Student, E-mail: MahsaNajafi@znu.ac.ir 

1193



 
 
 
 
 
 

Isa Ahmadi and Mahsa Najafi 

free edges (where the Classical Laminated Theory (CLT) is invalid) are considered in various 
researches. 

Hayashi (1967) and Puppo and Evensen (1970) studied inter-laminar shear stresses near the 
free edge of laminated composite structures. Because of the plane stress, their model refused the 
existence of the normal inter-laminar stress. Whitney (1973) presented a review of free edge effect 
in laminated plates. Byron Pipes and Pagano (1974) used an elasticity solution to calculate inter-
laminar stresses in symmetric layers. Pagano (1974) also used a higher order theory to study inter-
laminar stresses. An analytical boundary layer theory was used by Levy and Tang (1975) to predict 
inter-laminar stresses at the vicinity of the free edge of asymmetric laminated composite under 
non-axial tension. 

Waltz and Vinson (1976) studied inter-laminar stresses in circular laminated cylindrical shells 
subjected to internal pressure by using elastic shell theory. They have shown that the amount of 
inter-laminar stresses are maximum at the edges and claimed that in the case of high inter-laminar 
stresses delamination can happen at this region. Various investigations are conducted to composite 
structures, by using numerous theories and approaches like the CLT and the first order shear 
deformation theory. It should be mentioned that, as there are differences in the material properties 
of lamina in the laminates, a theory which considers independent degrees of freedom, is required 
to study the inter-laminar stresses. So, to study the inter-laminar stresses Reddy (1992) presented 
LWST (Layerwise shell theory) which is widely used to this respect. Kassapoglou and Lagace 
(1986) analyzed inter-laminar stresses in symmetric laminated composites under non-axial tension. 
They (Kassapoglou and Lagace 1986) also used equilibrium of forces to study inter-laminar 
stresses in symmetric composites under torsion. Wu and Chi (1999) used a refined asymptotic 
theory to study inter-laminar stresses in the laminated composite shallow shells. Inter-laminar 
stresses analysis of a cylindrical shell under pressure is presented by Wang et al. (2002) using the 
elasticity solution. Başar et al. (2000) developed a multi-layer shell elements approach to analyze 
the inter-laminar stresses in the composite laminates. First, they presented a multi-director shell 
theory which was on the basis of quadratic approximation of the displacement field. Then they 
used Euler-angles and the single layer theory, which the latter was coupled with multi-layer 
concept that could accurately predict the complex-through thickness stress distribution. A higher-
order Layerwise theory is used by Plagianakos and Saravanos (2009) for determination of inter-
laminar stresses in thick laminated composite and sandwich plates. Asgari and Akhlaghi (2011) 
analyzed thick hollow cylinder using three dimensional elasticity solution. Layerwise theory also 
was used to study functionally graded (FG) cylindrical shell under dynamic load by Yas et al. 
(2011), thermal and mechanical loadings by Matsunaga (2009). Hosseini Kordkheili and 
Naghdabadi (2007) analyzed stresses and displacements of FGM cylindrical shells under thermal 
and mechanical loading. Afshin et al. (2010) studied inter-laminar stresses in laminated composite 
sheets and cylindrical sandwich panels with flexible core by using Layerwise theory (LWT). Miri 
and Nosier (2011) studied edge effect in cross-ply laminated circular shell panels by two solutions: 
Reddy’s Layerwise theory and the stress-function approach along with Fourier series. Vijayakumar 
(2011) studied inter-laminar stresses in symmetric laminated composite plates with isotropic plies 
under bending load. Yang et al. (2013) presented a combination of the first shear theory and 
Layerwise theory to compute inter-laminar stresses in a laminated composite plate subjected to 
uniform load. They studied the effect of the ply angle on the shapes of stresses. Ealias et al. (2013) 
studied the edge effect in composite structures. Maturi et al. (2014) presented a LWT (using 
collocation and radial basis functions) to analyze inter-laminar stresses within the interfaces of 
sandwich plates. Khandelwal and Chakrabarti (2015) used a refined higher order theory to 
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determine the inter-laminar stresses in the laminated shallow shells. Edfawy (2016) studied the 
transient thermal stresses in a non-homogeneous orthotropic infinite cylinder. Alankaya and Oktem 
(2016) presented an analytical solution based on a third order shear deformation theory for the 
problem of static analysis of cross-ply doubly-curved shells and compared the results with the 
results of FE method. Javed et al. (2016) studied the free vibration behavior of non-uniform 
cylindrical shells using spline approximation under first order shear deformation theory. Four and 
two layered cylindrical shells and two different boundary conditions are analyzed. Ahmadi (2016) 
studied the edge interlaminar stresses in laminated panel which is subjected to extension force 
using LWT. Goswami and Becker (2016) studied inter-laminar stresses in sandwich plates 
considering three layers including a compressible core at the middle using LWT. 

To the knowledge of the authors, analysis of the inter-laminar stresses and edge effect in the 
rotating composite cylinders is not found in the open literature. In this study, a laminated cylinder 
with finite length and general layer stacking which is subjected to rotational body force is 
investigated. It is well established that the single layer theories such as classical and first order 
shear deformation theory of plates and shells cannot relied on to predict the out of plane stress and 
local three dimensional stresses in the laminates. In this study, in order to study the inter-laminar 
stresses and local phenomena such as the edge effect in the rotating laminated cylinder, the LWT is 
employed. The LWT is used to discrete the partial differential equations to ordinary ones in terms 
of the displacement of mathematical layers. The ordinary differential equations are solved 
analytically and the inter-laminar stresses and the edge effect are studied in the current study. In 
order to study the accuracy of the results, the results of LWT solution and FEM solution for the 
rotating composite cylinder are compared. The convergence of the results with increasing the 
number of mathematical layers is studied. Various numerical results are presented to study the 
inter-laminar stresses distribution in cylinders with various layers stacking. 
 
 
2. Governing equation 
 

A laminated cylinder with general (arbitrary) layer stacking which is rotating with angular 
velocity of ω is considered. Based on the LWT, it is supposed that each physical layer in the 
laminated cylinder in the thickness consists of several imagined layers which are called numerical 
layers. N is the total number of numerical layers and N + 1 is the total number of numerical surfaces 

 
 

 
Fig. 1 The geometry of rotating laminated cylindrical shell 
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surfaces which includes interfaces of numerical layers, inner surface and outer surface of the 
cylinder. The cylindrical shell has a length of 2L, thickness h, mean radius of R and angular 
velocity of ω, which is shown in Fig. 1. 

Due to the axisymmetric nature of the problem, it can be concluded that the displacement field 
(and stress field) in the cylinder does not depend on the angular coordinate 𝜃𝜃 of the cylinder and 
is a function of the length, x, and thickness, z-coordinate. So, according to the LWT of Reddy, the 
displacement components of a general point in the laminate can be assumed as 

 

𝑈𝑈(𝑥𝑥, 𝑧𝑧) = �𝑢𝑢𝑖𝑖(𝑥𝑥)Φ𝑖𝑖(𝑧𝑧)
𝑁𝑁+1

𝑖𝑖=1

 

𝑉𝑉(𝑥𝑥, 𝑧𝑧) = �𝑣𝑣𝑖𝑖(𝑥𝑥)Φ𝑖𝑖(𝑧𝑧)
𝑁𝑁+1

𝑖𝑖=1

 

𝑊𝑊(𝑥𝑥, 𝑧𝑧) = �𝑤𝑤𝑖𝑖(𝑥𝑥)Φ𝑖𝑖(𝑧𝑧)
𝑁𝑁+1

𝑖𝑖=1

 

(1) 

 
Where, 𝑢𝑢𝑖𝑖(𝑥𝑥), 𝑣𝑣𝑖𝑖(𝑥𝑥) and 𝑤𝑤𝑖𝑖(x) are the displacements of i-th numerical surface in x, y and z 

directions. The 𝛷𝛷𝑖𝑖  is a linear Lagrangian interpolation function, which has the unity value at the 
i-th interface and is equal to zero in the other ones. The linear Lagrangian interpolation function is 
defined as follows 

Φ𝑖𝑖 =

⎩
⎪
⎨

⎪
⎧

0 𝑧𝑧 ≤ 𝑧𝑧𝑖𝑖−1

𝜓𝜓𝑖𝑖−1
2 =

𝑧𝑧 − 𝑧𝑧𝑖𝑖−1

𝑡𝑡𝑖𝑖−1
𝑧𝑧𝑖𝑖−1 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑖𝑖

𝜓𝜓𝑖𝑖1 =
𝑧𝑧𝑖𝑖+1 − 𝑧𝑧

𝑡𝑡𝑖𝑖
0

𝑧𝑧𝑖𝑖 ≤ 𝑧𝑧 ≤ 𝑧𝑧𝑖𝑖+1
𝑧𝑧 ≥ 𝑧𝑧𝑖𝑖+1 ⎭

⎪
⎬

⎪
⎫

,               𝑖𝑖 =  1, 2, . . . ,𝑁𝑁 (2) 

 

Where 𝜓𝜓𝑖𝑖
1,2  (1 and 2 are superscript) are the Lagrange interpolation layer function or 

Lagrange interpolation local function of i-th layer (Kassegne and Reddy 1998) and ti is the 
thickness of the i-th numerical layer. The repeated indexes represent the summation of indexes 
from 1 to N + 1. By substituting Eq. (1) into the strain-displacement relations, the strain 
components obtain as 

𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑥𝑥

=
𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥

Φ𝑖𝑖  

𝜀𝜀𝜃𝜃𝜃𝜃 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜃𝜃

+
𝑊𝑊
𝑅𝑅

=
𝑤𝑤𝑗𝑗
𝑅𝑅
Φ𝑖𝑖  

𝜀𝜀𝑧𝑧𝑧𝑧 =
𝜕𝜕𝑊𝑊
𝜕𝜕𝑧𝑧

=
𝜕𝜕Φ𝑖𝑖

𝜕𝜕𝑧𝑧
𝑤𝑤𝑖𝑖  

𝛾𝛾𝜃𝜃𝑥𝑥 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝜃𝜃

+
𝜕𝜕𝑉𝑉
𝜕𝜕𝑥𝑥

= �
𝜕𝜕𝑣𝑣𝑖𝑖
𝜕𝜕𝑥𝑥

�Φ𝑖𝑖  

(3) 
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𝛾𝛾𝑥𝑥𝑧𝑧 =
𝜕𝜕𝑈𝑈
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑊𝑊
𝜕𝜕𝑥𝑥

= 𝑢𝑢𝑖𝑖
𝜕𝜕Φ𝑖𝑖

𝜕𝜕𝑧𝑧
+
𝜕𝜕𝑤𝑤𝑖𝑖
𝜕𝜕𝑥𝑥

Φ𝑖𝑖  

𝛾𝛾𝜃𝜃𝑧𝑧 =
𝜕𝜕𝑉𝑉
𝜕𝜕𝑧𝑧

+
𝜕𝜕𝑊𝑊
𝜕𝜕𝜃𝜃

−
𝑉𝑉
𝑅𝑅

= �−
𝑣𝑣𝑖𝑖
𝑅𝑅
�Φ𝑖𝑖 + 𝑣𝑣𝑖𝑖

𝜕𝜕Φ𝑖𝑖

𝜕𝜕𝑧𝑧
 

(3) 

 
Where 𝜓𝜓𝑖𝑖

1,2  (1 and 2 are superscript) are the Lagrange interpolation layer function or Lagrange 
interpolation local function of i-th layer (Kassegne and Reddy 1998) and ti is the thickness of the i-
th numerical layer. The repeated indexes represent the summation of indexes from 1 to N + 1. By 
substituting Eq. (1) into the strain-displacement relations, the strain components obtain as 

 
𝜋𝜋 = 𝜋𝑈𝑈 + 𝜋𝑉𝑉 = 0 (4) 

 
Where 𝜓𝜓𝑖𝑖

1,2  (1 and 2 are superscript) are the Lagrange interpolation layer function or 
Lagrange interpolation local function of i-th layer (Kassegne and Reddy 1998) and ti is the 
thickness of the i-th numerical layer. The repeated indexes represent the summation of indexes 
from 1 to N + 1. By substituting Eq. (1) into the strain-displacement relations, the strain 
components obtain as 

𝜕𝜕𝑀𝑀𝑥𝑥
𝑖𝑖

𝜕𝜕𝑥𝑥
− 𝑄𝑄𝑥𝑥𝑖𝑖 = 0 

𝜕𝜕𝑀𝑀𝑥𝑥𝜃𝜃
𝑖𝑖

𝜕𝜕𝑥𝑥
− 𝑄𝑄𝜃𝜃

𝑖𝑖 +
1
𝑅𝑅
𝑅𝑅𝜃𝜃
𝑖𝑖 = 0 

𝜕𝜕𝑅𝑅𝑥𝑥𝑖𝑖

𝜕𝜕𝑥𝑥
− 𝑁𝑁𝑍𝑍𝑖𝑖 −

1
𝑅𝑅
𝑀𝑀𝜃𝜃
𝑖𝑖 + ρ𝑅𝑅ω𝑖𝑖 = 0 

(5) 

 
Where in the above equations, the stress results are defined as 
 

(𝑀𝑀𝑥𝑥
𝑖𝑖 ,𝑅𝑅𝜃𝜃

𝑖𝑖 ,𝑀𝑀𝑥𝑥𝜃𝜃
𝑖𝑖 ) = � (𝜎𝜎𝑥𝑥𝑥𝑥 ,𝜎𝜎𝑥𝑥𝑧𝑧 ,𝜎𝜎𝑥𝑥𝜃𝜃 )Φ𝑖𝑖

ℎ
2

−ℎ
2

𝑑𝑑𝑍𝑍 

(𝑀𝑀𝜃𝜃
𝑖𝑖 ,𝑅𝑅𝜃𝜃

𝑖𝑖 ) = � (𝜎𝜎𝜃𝜃𝜃𝜃 ,𝜎𝜎𝜃𝜃𝑧𝑧 )Φ𝑖𝑖

ℎ
2

−ℎ
2

𝑑𝑑𝑍𝑍 

(𝑁𝑁𝑧𝑧𝑖𝑖 ,𝑄𝑄𝜃𝜃
𝑖𝑖 ,𝑄𝑄𝑥𝑥𝑖𝑖 ) = � (𝜎𝜎𝑧𝑧𝑧𝑧 ,𝜎𝜎𝜃𝜃𝑧𝑧 ,𝜎𝜎𝑥𝑥𝑧𝑧 )

𝑑𝑑Φ𝑖𝑖

𝑑𝑑𝑧𝑧

ℎ
2

−ℎ
2

𝑑𝑑𝑍𝑍 

(6) 

 
And 𝜔𝜔𝑖𝑖

 is defined as 
 

𝜔𝜔𝑖𝑖 = 𝜔𝜔2 � Φ𝑖𝑖  𝑑𝑑𝑧𝑧
ℎ
2

−ℎ
2

 (7) 
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𝜔𝜔𝑖𝑖 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝜔𝜔2𝑡𝑡1

2
𝑖𝑖 = 1

𝜔𝜔2𝑡𝑡𝑖𝑖−1

2
+
𝜔𝜔2𝑡𝑡𝑖𝑖

2
1 < 𝑖𝑖 < 𝑁𝑁 + 1

𝜔𝜔2𝑡𝑡𝑁𝑁
2

𝑖𝑖 = 𝑁𝑁 + 1

� (8) 

 
The strain-stress relation for the i-th numerical layer can be written as 
 

�

𝜎𝜎𝑥𝑥𝑥𝑥
𝜎𝜎𝜃𝜃𝜃𝜃
𝜎𝜎𝑧𝑧𝑧𝑧
𝜎𝜎𝑥𝑥𝜃𝜃

�

𝑖𝑖

= �

𝑐𝑐1̅1 𝑐𝑐1̅2  𝑐𝑐1̅3  𝑐𝑐1̅6
𝑐𝑐1̅2  𝑐𝑐2̅2  𝑐𝑐2̅3  𝑐𝑐2̅6
𝑐𝑐1̅3  𝑐𝑐2̅3  𝑐𝑐3̅3  𝑐𝑐3̅6
𝑐𝑐1̅6 𝑐𝑐2̅6  𝑐𝑐3̅6  𝑐𝑐6̅6

�

𝑖𝑖

�

𝜀𝜀𝑥𝑥𝑥𝑥
𝜀𝜀𝜃𝜃𝜃𝜃
𝜀𝜀𝑧𝑧𝑧𝑧
𝜀𝜀𝑥𝑥𝜃𝜃

�

𝑖𝑖

       �
𝜎𝜎𝜃𝜃𝑧𝑧
𝜎𝜎𝑥𝑥𝑧𝑧 �

𝑖𝑖
=  �𝑐𝑐4̅4𝑐𝑐4̅5

𝑐𝑐4̅5𝑐𝑐5̅5
�
𝑖𝑖
�
𝜀𝜀𝜃𝜃𝑧𝑧
𝜀𝜀𝑥𝑥𝑧𝑧 �

𝑖𝑖
 (9) 

 
Where, {𝜎𝜎} is the stress vector, {𝜀𝜀} is the strain vector and [𝐶𝐶̅] is the reduced mechanical 

stiffness matrix. Substituting aforementioned relations into Eq. (6), the stress resultants in terms of 
the displacements are obtained as 

 

𝑀𝑀𝑥𝑥
𝑖𝑖 = 𝐷𝐷11

𝑖𝑖𝑗𝑗 �́�𝑢𝑗𝑗 +
1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐷𝐷16

𝑖𝑖𝑗𝑗 �́�𝑣𝑗𝑗 + 𝐵𝐵13
𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗  

𝑅𝑅𝑥𝑥𝑖𝑖 = 𝐵𝐵45
𝑖𝑖𝑗𝑗 𝑣𝑣𝑗𝑗 −

1
𝑅𝑅
𝐷𝐷45
𝑖𝑖𝑗𝑗 𝑣𝑣𝑗𝑗 + 𝐷𝐷55

𝑖𝑖𝑗𝑗 �́�𝑤𝑗𝑗 + 𝐵𝐵55
𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗  

𝑀𝑀𝑥𝑥𝜃𝜃
𝑖𝑖 = 𝐷𝐷16

𝑖𝑖𝑗𝑗 �́�𝑢𝑗𝑗 +
1
𝑅𝑅
𝐷𝐷26
𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐵𝐵36

𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐷𝐷66
𝑖𝑖𝑗𝑗 �́�𝑣𝑗𝑗  

𝑀𝑀𝜃𝜃
𝑖𝑖 = 𝐷𝐷12

𝑖𝑖𝑗𝑗 �́�𝑢𝑗𝑗 +
1
𝑅𝑅
𝐷𝐷22
𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐵𝐵23

𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐷𝐷26
𝑖𝑖𝑗𝑗 �́�𝑣𝑗𝑗  

𝑅𝑅𝜃𝜃
𝑖𝑖 = 𝐵𝐵44

𝑖𝑖𝑗𝑗 𝑣𝑣𝑗𝑗 −
1
𝑅𝑅
𝐷𝐷44
𝑖𝑖𝑗𝑗 𝑣𝑣𝑗𝑗 + 𝐷𝐷45

𝑖𝑖𝑗𝑗 �́�𝑤𝑗𝑗 + 𝐵𝐵45
𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗  

𝑁𝑁𝑧𝑧𝑖𝑖 = 𝐵𝐵13
𝑗𝑗𝑖𝑖 �́�𝑢𝑗𝑗 +

1
𝑅𝑅
𝐵𝐵23
𝑗𝑗𝑖𝑖 𝑤𝑤𝑗𝑗 + 𝐴𝐴33

𝑖𝑖𝑗𝑗 𝑤𝑤𝑗𝑗 + 𝐵𝐵36
𝑗𝑗𝑖𝑖 �́�𝑣𝑗𝑗  

𝑄𝑄𝜃𝜃
𝑖𝑖 = �𝐴𝐴44

𝑖𝑖𝑗𝑗 −
1
𝑅𝑅
𝐵𝐵44
𝑗𝑗𝑖𝑖 � 𝑣𝑣𝑗𝑗 + 𝐵𝐵45

𝑗𝑗𝑖𝑖 �́�𝑤𝑗𝑗 + 𝐴𝐴45
𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗  

𝑄𝑄𝑥𝑥𝑖𝑖 = �𝐴𝐴45
𝑖𝑖𝑗𝑗 −

1
𝑅𝑅
𝐵𝐵45
𝑗𝑗𝑖𝑖 � 𝑣𝑣𝑗𝑗 + 𝐵𝐵55

𝑗𝑗𝑖𝑖 �́�𝑤𝑗𝑗 + 𝐴𝐴55
𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗  

(10) 

 
By substituting stress resultants into Eq. (5), the equations of motion are derived in terms of the 

displacements as 
 

𝐷𝐷11
𝑖𝑖𝑗𝑗 𝑑𝑑2𝑢𝑢𝑗𝑗
𝑑𝑑𝑥𝑥2 + �

1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 + 𝐵𝐵13

𝑖𝑖𝑗𝑗 −𝐵𝐵55
𝑗𝑗𝑖𝑖 �

𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥

+ 𝐷𝐷16
𝑖𝑖𝑗𝑗 𝑑𝑑2𝑣𝑣𝑗𝑗
𝑑𝑑𝑥𝑥2 − �𝐴𝐴45

𝑖𝑖𝑗𝑗 −
1
𝑅𝑅
𝐵𝐵45
𝑗𝑗𝑖𝑖 � 𝑣𝑣𝑗𝑗 − 𝐴𝐴55

𝑖𝑖𝑗𝑗 𝑢𝑢𝑗𝑗 = 0 (11) 
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𝐷𝐷16
𝑖𝑖𝑗𝑗 𝑑𝑑2𝑢𝑢𝑗𝑗
𝑑𝑑𝑥𝑥2 − �𝐵𝐵45

𝑗𝑗𝑖𝑖 − 𝐵𝐵45
𝑗𝑗𝑖𝑖 −

1
𝑅𝑅

(𝐷𝐷26
𝑖𝑖𝑗𝑗 + 𝐷𝐷45

𝑖𝑖𝑗𝑗 )�
𝑑𝑑𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥

+ 𝐷𝐷66
𝑖𝑖𝑗𝑗 𝑑𝑑2𝑣𝑣𝑗𝑗
𝑑𝑑𝑥𝑥2  

−�𝐴𝐴44
𝑖𝑖𝑗𝑗 +

1
𝑅𝑅2 𝐷𝐷44

𝑖𝑖𝑗𝑗 −
1
𝑅𝑅

(𝐵𝐵44
𝑖𝑖𝑗𝑗 + 𝐵𝐵44

𝑗𝑗𝑖𝑖 )� 𝑣𝑣𝑗𝑗 = 0 

𝐷𝐷55
𝑖𝑖𝑗𝑗 𝑑𝑑2𝑤𝑤𝑗𝑗
𝑑𝑑𝑥𝑥2 − �𝐵𝐵13

𝑗𝑗𝑖𝑖 − 𝐵𝐵55
𝑖𝑖𝑗𝑗 +

1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 �

𝑑𝑑𝑢𝑢𝑗𝑗
𝑑𝑑𝑥𝑥

− �𝐵𝐵36
𝑗𝑗𝑖𝑖 +

1
𝑅𝑅

(𝐷𝐷26
𝑖𝑖𝑗𝑗 + 𝐷𝐷45

𝑖𝑖𝑗𝑗 ) − 𝐵𝐵45
𝑗𝑗𝑖𝑖 �

𝑑𝑑𝑣𝑣𝑗𝑗
𝑑𝑑𝑥𝑥

 

−�𝐴𝐴33
𝑖𝑖𝑗𝑗 +

1
𝑅𝑅2 𝐷𝐷22

𝑖𝑖𝑗𝑗 +
1
𝑅𝑅

(𝐵𝐵23
𝑖𝑖𝑗𝑗 + 𝐵𝐵23

𝑗𝑗𝑖𝑖 )�𝑤𝑤𝑗𝑗 + 𝜌𝜌𝑅𝑅𝜔𝜔𝑖𝑖 = 0 

(11) 

 
Where the stiffness coefficients of laminates are defined as follows 
 

𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖 = �� 𝐶𝐶�̅�𝑝𝑝𝑝
(𝑘𝑘) 𝑑𝑑Φ𝑖𝑖

𝑑𝑑𝑧𝑧
𝑑𝑑𝑧𝑧

𝑧𝑧𝑘𝑘+1

𝑧𝑧𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

𝐵𝐵𝑝𝑝𝑝𝑝𝑖𝑖 = �� 𝐶𝐶�̅�𝑝𝑝𝑝
(𝑘𝑘)Φ𝑖𝑖𝑑𝑑𝑧𝑧

𝑧𝑧𝑘𝑘+1

𝑧𝑧𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

𝐴𝐴𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗 = �� 𝐶𝐶�̅�𝑝𝑝𝑝

(𝑘𝑘) 𝑑𝑑Φ𝑖𝑖

𝑑𝑑𝑧𝑧
𝑑𝑑Φ𝑗𝑗
𝑑𝑑𝑧𝑧

𝑑𝑑𝑧𝑧
𝑧𝑧𝑘𝑘+1

𝑧𝑧𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

𝐵𝐵𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗 = �� 𝐶𝐶�̅�𝑝𝑝𝑝

(𝑘𝑘)Φ𝑖𝑖
𝑑𝑑Φ𝑗𝑗
𝑑𝑑𝑧𝑧

𝑑𝑑𝑧𝑧
𝑧𝑧𝑘𝑘+1

𝑧𝑧𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

𝐷𝐷𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗 = �� 𝐶𝐶�̅�𝑝𝑝𝑝

(𝑘𝑘)Φ𝑖𝑖Φ𝑗𝑗𝑑𝑑𝑧𝑧
𝑧𝑧𝑘𝑘+1

𝑧𝑧𝑘𝑘

𝑁𝑁

𝑘𝑘=1

 

(12) 

 
where i, j = 1, 2, … N + 1 and p, q can take values of 1, 2,…, 6. 𝐴𝐴𝑝𝑝𝑝𝑝

𝑖𝑖𝑗𝑗
 and 𝐷𝐷𝑝𝑝𝑝𝑝

𝑖𝑖𝑗𝑗
 are the symmetric 

matrices and 𝐵𝐵𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗  is not a symmetric matrix. By the integration of the above equations, the 

stiffness coefficients of laminates are derived as follows 
 

(𝐴𝐴𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗 ,  𝐵𝐵𝑝𝑝𝑝𝑝

𝑖𝑖𝑗𝑗 ,𝐷𝐷𝑝𝑝𝑝𝑝
𝑖𝑖𝑗𝑗 ) = 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ �−

𝐶𝐶�̅�𝑝𝑝𝑝
(𝑖𝑖−1)

𝑡𝑡𝑖𝑖−1
,−

𝐶𝐶�̅�𝑝𝑝𝑝
(𝑖𝑖−1)

2
,
𝑡𝑡𝑖𝑖−1𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖−1)

6
� 𝑗𝑗 = 𝑖𝑖 − 1

�
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖−1)

𝑡𝑡𝑖𝑖−1
+
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

𝑡𝑡𝑖𝑖
,
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖−1)

2
−
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

2
,
𝑡𝑡𝑖𝑖−1𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖−1)

3
+
𝑡𝑡𝑖𝑖𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

3
� 𝑗𝑗 = 𝑖𝑖

(−
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

𝑡𝑡𝑖𝑖
,
𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

2
,
𝑡𝑡𝑖𝑖𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

6
) 𝑗𝑗 = 𝑖𝑖 + 1

(0, 0, 0)  𝑗𝑗 > 𝑖𝑖 + 1

� 
(13) 
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(𝐴𝐴𝑝𝑝𝑝𝑝𝑖𝑖 ,𝐵𝐵𝑝𝑝𝑝𝑝𝑖𝑖 ) = 

⎩
⎪⎪
⎨

⎪⎪
⎧ (−𝐶𝐶�̅�𝑝𝑝𝑝

(1),
𝑡𝑡1𝐶𝐶�̅�𝑝𝑝𝑝

(1)

2
) 𝑖𝑖 = 1

(𝐶𝐶�̅�𝑝𝑝𝑝
(𝑖𝑖−1) − 𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖),
𝑡𝑡𝑖𝑖−1𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖−1)

2
+
𝑡𝑡𝑖𝑖𝐶𝐶�̅�𝑝𝑝𝑝

(𝑖𝑖)

2
) 1 < 𝑖𝑖 < 𝑁𝑁 + 1

(𝐶𝐶�̅�𝑝𝑝𝑝
(𝑁𝑁),

𝑡𝑡𝑁𝑁𝐶𝐶�̅�𝑝𝑝𝑝
(𝑁𝑁)

2
) 𝑖𝑖 = 𝑁𝑁 + 1

� 
(14) 

 
Due to the symmetry of the composite structure, the state-space variables are defined as follows 
 

{𝜂𝜂} = �
{𝑈𝑈(𝑥𝑥)}
{𝑉𝑉(𝑥𝑥)}

{𝑊𝑊′(𝑥𝑥)}
�,     {𝜉𝜉} = �

{𝑈𝑈′(𝑥𝑥)}
{𝑉𝑉′(𝑥𝑥)}
{𝑊𝑊(𝑥𝑥)}

� (15) 

 
In which for example {U} is a column matrix and defined as 
 

{𝑈𝑈}𝑇𝑇 = [𝑈𝑈1,𝑈𝑈2, … ,𝑈𝑈𝑁𝑁+1] (16) 
 
By substituting the conditional constrains into the equations of motion, following equations are 

obtained 
{𝜉𝜉′} = [𝐴𝐴]{𝜂𝜂},     {𝜂𝜂′ } = [𝐵𝐵]{𝜉𝜉} + {𝑓𝑓} (17) 

 
Where[𝐴𝐴], [𝐵𝐵] and {𝑓𝑓} are defined by the equations of motion as follows 
 

[𝐴𝐴] = [𝐴𝐴1]−1[𝐴𝐴2] (18) 
 

[𝐵𝐵] = [𝐵𝐵1]−1[𝐵𝐵2] (19) 
 

{𝑓𝑓} = [𝐵𝐵1]−1 �
0
0

−𝜌𝜌𝑅𝑅𝜔𝜔𝑖𝑖
� (20) 

 
In which 
 

[𝐴𝐴1] = �
𝐷𝐷11
𝑖𝑖𝑗𝑗 𝐷𝐷16

𝑖𝑖𝑗𝑗 0
𝐷𝐷16
𝑖𝑖𝑗𝑗 𝐷𝐷66

𝑖𝑖𝑗𝑗 0
0 0 𝐼𝐼

� (21) 

 

[𝐴𝐴2] =

⎣
⎢
⎢
⎢
⎡ 𝐴𝐴55

𝑖𝑖𝑗𝑗 𝐴𝐴45
𝑖𝑖𝑗𝑗 −

1
𝑅𝑅
𝐵𝐵45
𝑗𝑗𝑖𝑖 𝐵𝐵55

𝑗𝑗𝑖𝑖 −
1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 − 𝐵𝐵13

𝑖𝑖𝑗𝑗

𝐴𝐴45
𝑖𝑖𝑗𝑗 −

1
𝑅𝑅
𝐵𝐵45
𝑖𝑖𝑗𝑗 𝐴𝐴44

𝑖𝑖𝑗𝑗 +
1
𝑅𝑅2 𝐷𝐷44

𝑖𝑖𝑗𝑗 −
1
𝑅𝑅

(𝐵𝐵44
𝑖𝑖𝑗𝑗 + 𝐵𝐵44

𝑗𝑗𝑖𝑖 ) 𝐵𝐵45
𝑗𝑗𝑖𝑖 − 𝐵𝐵45

𝑗𝑗𝑖𝑖 −
1
𝑅𝑅

(𝐷𝐷26
𝑖𝑖𝑗𝑗 + 𝐷𝐷45

𝑖𝑖𝑗𝑗 )
0 0 𝐼𝐼 ⎦

⎥
⎥
⎥
⎤
 (22) 
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And 

[𝐵𝐵1] = �
0 0 𝐷𝐷55

𝑖𝑖𝑗𝑗

𝐼𝐼 0 0
0 𝐼𝐼 0

� (23) 

 

[𝐵𝐵2] = �
𝐵𝐵13
𝑗𝑗𝑖𝑖 − 𝐵𝐵55

𝑖𝑖𝑗𝑗 +
1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 𝐵𝐵36

𝑗𝑗𝑖𝑖 +
1
𝑅𝑅

(𝐷𝐷26
𝑖𝑖𝑗𝑗 + 𝐷𝐷45

𝑖𝑖𝑗𝑗 ) − 𝐵𝐵45
𝑗𝑗𝑖𝑖 𝐴𝐴33

𝑖𝑖𝑗𝑗 +
1
𝑅𝑅2 𝐷𝐷22

𝑖𝑖𝑗𝑗 +
1
𝑅𝑅

(𝐵𝐵23
𝑖𝑖𝑗𝑗 + 𝐵𝐵23

𝑗𝑗𝑖𝑖 )
𝐼𝐼 0 0
0 𝐼𝐼 0

� (24) 

 
It can be shown that the solution of Eq. (10) can be obtained as 
 

{𝜉𝜉} = [𝑈𝑈][cosℎ(𝜆𝜆𝑥𝑥)]{𝐾𝐾1} + [𝑈𝑈][sinℎ(𝜆𝜆𝑥𝑥)]{𝐾𝐾2} − [𝐵𝐵]−1{𝐹𝐹} (25) 
 

{𝜂𝜂} = [𝐵𝐵][𝑈𝑈][Λ]−1[sinℎ(𝜆𝜆𝑥𝑥)]{𝐾𝐾1} + [𝐵𝐵][𝑈𝑈][Λ]−1[cosℎ(𝜆𝜆𝑥𝑥)]{𝐾𝐾2} (26) 
 
Where[Λ2] is the eigenvalue and [𝑈𝑈] is the eigenvector of [C] = [A] [B] as 
 

[𝐶𝐶][𝑈𝑈] = [𝑈𝑈][Λ2] (27) 
 
And {K1} and {K2} are column matrix with 3(N + 1) unknown terms which can be obtained by 

satisfying the boundary conditions in the edges. Deriving the values of {K1} and {K2} gives the 
displacement field of the cylinder. Thus the inter-laminar stresses are obtained. In this part the free 
boundary condition is analysed. 

For free edges at x = L or x = -L, the boundary conditions include satisfaction of following 3(N 
+ 1) equations as 

 

𝑀𝑀𝑥𝑥𝜃𝜃
𝑖𝑖 = 0
𝑅𝑅𝑥𝑥𝑖𝑖 = 0
𝑀𝑀𝑥𝑥
𝑖𝑖 = 0

       𝑖𝑖 = 1, … ,𝑁𝑁 + 1 (28) 

 
Imposing the boundary conditions at x = L and x = -L, include satisfaction of 6(N + 1) equation 

which will be used for obtaining 6(N + 1) unknown constants in {K1} and {K2}. If the boundary 
conditions in both edges at x = ±L be the same, it can be shown that {𝜂𝜂} would be an odd function 
and {𝜉𝜉} would be an even function of x, and so it can be concluded that {K2} = {0}. In this case 
the unknown constant of {K1} can be obtained by imposing the boundary conditions on one of the 
edges at x = L or x = -L. For example the free boundary condition at x = L can be imposed to the 
equations as 

 

[P1][𝑈𝑈][Cosℎ(𝜆𝜆𝜆𝜆)]{K1} = [𝑃𝑃1][𝐵𝐵]−1{𝐹𝐹} 

[P2][𝑈𝑈][Cosℎ(𝜆𝜆𝜆𝜆)]{K1} = [𝑃𝑃2][𝐵𝐵]−1{𝐹𝐹} 

[𝑃𝑃3][𝐵𝐵][𝑈𝑈][sinℎ(𝜆𝜆𝜆𝜆)]{K1} = {0} 

(29) 

 
In which 
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[𝑃𝑃1] = � 𝐷𝐷11
𝑖𝑖𝑗𝑗 𝐷𝐷16

𝑖𝑖𝑗𝑗 �𝐵𝐵13
𝑖𝑖𝑗𝑗 +

1
𝑅𝑅
𝐷𝐷12
𝑖𝑖𝑗𝑗 �    �  

[𝑃𝑃2] = �𝐷𝐷16
𝑖𝑖𝑗𝑗 𝐷𝐷66  

𝑖𝑖𝑗𝑗 �𝐵𝐵36
𝑖𝑖𝑗𝑗 +

1
𝑅𝑅
𝐷𝐷26
𝑖𝑖𝑗𝑗 �  � 

[𝑃𝑃3] = �𝐵𝐵55
𝑖𝑖𝑗𝑗 �𝐵𝐵45

𝑖𝑖𝑗𝑗 −
1
𝑅𝑅
𝐷𝐷45
𝑖𝑖𝑗𝑗 � 𝐷𝐷55

𝑖𝑖𝑗𝑗 � 

(30) 

 
 
3. Results and discussion 
 

To investigate the inter-laminar stresses in the rotating laminated cylindrical shells, in this part, 
the inter-laminar normal and shear stresses are presented for various laminated cylinders. The 
Layerwise theory formulation that discussed in the previous part is used to determine the inter-
laminar stresses. The laminated cylinder which is made of graphite-epoxy lamina is studied. The 
mechanical properties of graphite-epoxy lamina are given in Table 1. 

In a homogenous and isotropic thin rotating cylinder, the circumferential stress can be obtained 
as 𝜎𝜎𝜃𝜃 = 𝜌𝜌𝑅𝑅2𝜔𝜔2

 in which 𝜌𝜌 is the mass density and 𝜔𝜔 (rad/s) is the angular velocity of the 
rotation and R is the mean radius of cylinder. In this study, the dimensionless stresses 𝜎𝜎* are 
defined as 

𝜎𝜎∗ =
𝜎𝜎

𝜌𝜌𝑅𝑅2𝜔𝜔2 (31) 
 
The mean radius of the cylinder is taken as R = 30 mm, R/h = 30, L = 2h and 𝜔𝜔 = 200 Hz. The 

convergence of the inter-laminar normal stress 𝜎𝜎𝑧𝑧  at [90°/0°]s cylinder at the interface of physical 
layers at the free edge is studied in this Fig. 2. Each physical layer is divided in to np numerical 

 
 

Table 1 Mechanical properties laminated cylindrical shell (Byron Pipes and Pagano 1970) 

 E1 (Gpa) E2 (Gpa) E3 (Gpa) v12 v23 v13 G12(Gpa) G23(Gpa) G13(Gpa) 
Graphite-Epoxy 137.9 14.48 14.48 0.21 0.21 0.21 5.86 5.86 5.86 

 
 

 
Fig. 2 Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧  versus number of mathematical layers of 

each physical layer of [90°/0°]s cylindrical shell (at x = L) 
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layer and the total number of numerical layer is N = p × np where p is the number of physical 
layers. Fig. 2, shows normal stress 𝜎𝜎𝑧𝑧  versus number of numerical (mathematical) layers of each 
physical layer (np) of laminated composite in two interfaces of 0°/0° and 0°/90° at the edge x = L. 

It can be seen that the inter-laminar normal stress 𝜎𝜎𝑧𝑧  at the interface of 0°/0° (z = 0) is 
converged for np > 7. The inter-laminar normal stress 𝜎𝜎𝑧𝑧  does not converge and increases by 
increasing the number of mathematical layers in interface of 0°/90° (z = hk). Because of the 
difference of stacking of laminates, singularity of inter-laminar stresses happen in vicinity of 
intersection of interfaces of laminates and stress is not converged. So, very large amount of Inter-
laminar stress occurs in free edges and intersection of interfaces of two laminate with different 
fiber orientations or different mechanical properties. Some researchers (Icardi and Bertetto 1995, 
Kassapoglou and Lagace 1986, Raju and Crews 1981, Kant and Swaminathan 2000 and Kim and 
Hong 1991) reported existence of singularity of inter-laminar normal stress at the free edge at the 
interface of 0°/90° layers in which the physical properties of adjacent layers are different. In this 
study, the number of numerical layers of each physical layer are assumed as np = 10. 

To validate the results, first, the Layerwise theory is used for a symmetric [90°/0°]s laminated 
cylindrical shell and compared with those obtained from finite-element solution. For modeling the 
laminated cylindrical shell in ANSYS, because of the axisymmetric conditions in loading and 
boundary conditions of the rotating cylindrical shell, the element type of axisymmetric solid 186 is 
used. The meshing of the model is mapped and fine. Number of elements at length and thickness 
of the laminated composite shell respectively are 200 and 240 elements.  Angular velocity is 
applied on composite shell. The mechanical properties of layers are as same as the properties used 
in LWT. The layer stacking of model is cross-ply [90°/0°]s. In the model of FEM with lower 
numbers of elements the results of inter-laminar stresses are not exact. It is obvious that the 
number of elements in FEM is much more than number of layers in LWT. 

All the obtained results show a good agreement between LWT and FEM. The results of the 
inter-laminar stress 𝜎𝜎𝑧𝑧∗  along 90°/0° interface (z = hk) of [90°/0°]s cylindrical shell with free 
edges are compared in Fig. 3. The comparison of Layerwise theory and finite element method 
shows a well agreement between the results. As it is expected, the inter-laminar stress 𝜎𝜎𝑧𝑧∗  
increases suddenly near the vicinity of the free edge. 

 
 

 
Fig. 3 The comparison of the results of LWT, FEM for 𝜎𝜎𝑧𝑧∗ along the interface of the 

[90°/0°]s laminated cylindrical shell (at 𝑧𝑧 = ℎ𝑘𝑘) 

1203



 
 
 
 
 
 

Isa Ahmadi and Mahsa Najafi 

 

 
Fig. 4 The comparison between results of LWT and FEM for 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interface 

of the [90°/0°]s laminated cylindrical shell (at 𝑧𝑧 = ℎ𝑘𝑘) 
 
 
It can be seen in Fig. 4 that the transverse shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  increases then decreases near the 

free edge. The accuracy of results of Layerwise theory is validated comparing with FEM results. 
Also Figs. 5 and 6 shows through the thickness stresses of 𝜎𝜎𝑧𝑧∗ and 𝜎𝜎𝑥𝑥𝑧𝑧∗  near the free edge of 
laminated cylindrical shell at x = 0.99L in symmetric laminated cylinder with layer stacking of 
[90°/0°]s. It is obvious that the results of LWT are in a good agreement with the results of FEM. As 
it was expected inter-laminar stress 𝜎𝜎𝑧𝑧∗ is equal to zero at bottom and top surfaces which are the 
free condition surfaces of laminated cylindrical shell. According to Fig. 6 the maximum inter-
laminar stress is not occur exactly at the interface of laminated cylindrical shell. The value of 𝜎𝜎𝑥𝑥𝑧𝑧∗  
changes in the interface of physical layers. 

The distribution of the inter-laminar normal stress 𝜎𝜎𝑧𝑧∗ at the interfaces of [90°/0°]s cylindrical 
shell (z = hk, z = -hk and z = 0) is shown in Fig. 7. It is observed that the normal inter-laminar stress 

 
 

 
Fig. 5 The comparison between results of LWT and FEM for 𝜎𝜎𝑧𝑧∗ through the thickness 

of the [90°/0°]s laminated cylindrical shell at x = 0.98L 
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Fig. 6 The comparison between results of LWT and FEM for 𝜎𝜎𝑥𝑥𝑧𝑧∗  through the thickness 

of the [90°/0°]s laminated cylindrical shell at x = 0.98L 
 
 

 
Fig. 7 Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ along the interfaces of the [90°/0°]s cylindrical 

shell (at z = hk, z = -hk and z = 0) 
 
 

𝜎𝜎𝑧𝑧∗ alters significantly at the vicinity of the free edge. 𝜎𝜎𝑧𝑧∗ is positive in both z = hk and z = -hk 
while it is negative at z = 0 near the free edge. 

The distribution of the inter-laminar shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interface of physical layers of 
[90°/0°]s cylindrical is shown in Fig. 8. It is observed that 𝜎𝜎𝑥𝑥𝑧𝑧∗  rises near the free edges because of 
the free edge effect. The amount of 𝜎𝜎𝑥𝑥𝑧𝑧∗  at z = hk and z = -hk are equal with opposite signs. It is 
shown that 𝜎𝜎𝑥𝑥𝑧𝑧∗  is equal to zero in the middle of cylindrical shell. 

The trend of change of inter-laminar stress 𝜎𝜎𝑧𝑧∗ across the thickness of cross-ply laminated 
cylindrical shell is shown in Fig. 9. It is seen that the distribution of the inter-laminar stress 𝜎𝜎𝑧𝑧∗ 
dependes on the orientation of ply. This stress varies suddenly at the interface of layers with 
different physical properties. The maximum amount of 𝜎𝜎𝑧𝑧∗ occurs near the free edge (x = 0.98L). 
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Fig. 8 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interfaces of [90°/0°]s cylindrical 

shell (at z = hk, z = -hk and z = 0) 
 
 

 
Fig. 9 Through the thickness distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ at the vicinity of 

edges of [90°/0°]s cylindrical shell 
 
 
The distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ along the physical interfaces z = -hk, z = 0 and z = 

hk in [90°/0°/90°/0°] cylindrical shell with free boundary conditions at both edges is shown in Fig. 
10. Comparing this Figure with Fig. 7 shows the difference between the distributions of inter-
laminar normal stress in [90°/0°/90°/0°] and [90°/0°]s cylinders. 

The distribution of inter-laminar shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  at the interface of physical layers of un-
symmetric [90°/0°/90°/0°] cylinder with free boundary condition is shown in Fig. 11. It shows that 
the amount of inter-laminar shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  at z = hk is higher than z = -hk. The layer stacking is 
also effective in amount of inter-laminar stresses, which is obvious by comparing Figs. 11 and 4. 

Distribution of inter-laminar shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interfaces of physical layers of 
[0°/90°]s cylinder with free boundary condition is shown in Fig. 12. It is observed that 𝜎𝜎𝑥𝑥𝑧𝑧∗  rises 
near the free edges because of edge effect. Comparing Fig. 12 with Fig. 8, it is obvious that 𝜎𝜎𝑥𝑥𝑧𝑧∗  in 
[0/90]s is equal to [90/0]s with opposite signs in all physical interfaces. 
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Fig. 10 Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ of a [90°/0°/90°/0°] cylindrical shell 

 
 

 
Fig. 11 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interfaces of [90°/0°/90°/0°] 

cylindrical shell 
 
 

 
Fig. 12 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗   along the [0°/90°]s cylindrical shell 

(at z = hk, z = -hk and z = 0) 
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Fig. 13 The Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ versus thickness of the [±45°]s cylindrical shell 

 
 

 
Fig. 14 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  versus thickness of the [±45°]s cylindrical shell 

 
 

 
Fig. 15 Distribution of inter-laminar stress 𝜎𝜎𝜃𝜃𝑧𝑧∗  versus thickness of the [±45°]s cylindrical shell 
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Fig. 16 Distribution of inter-laminar stress 𝜎𝜎𝜃𝜃𝑧𝑧∗  along the interfaces of [±45°]s cylindrical shell 

 
 
The distribution of inter-laminar normal stress 𝜎𝜎𝑧𝑧∗ and shear stresses 𝜎𝜎𝑥𝑥𝑧𝑧∗  and 𝜎𝜎𝜃𝜃𝑧𝑧∗  through the 

thickness of [±45]s cylindrical shell at various lengths are respectively illustrated in Figs. 13-15. It 
is distinctively clear that, the amount of inter-laminar stresses differs suddenly at the interface. The 
maximum point of inter-laminar stress 𝜎𝜎𝑧𝑧∗ occurs near the free edge because of the edge effect. 

Fig. 16 indicates the distribution of inter-laminar stress 𝜎𝜎𝜃𝜃𝑧𝑧∗  at the top and bottom, physical 
interfaces (z = hk and z = -hk) of laminated composite. The amount of inter-laminar stress is equal 
at top and bottom interfaces with different signs and is equal to zero in middle surface of 
composite. 𝜎𝜎𝜃𝜃𝑧𝑧∗  is positive at z = hk at x = -L to x = 0 at x = 0 it is equal to zero then from x = 0 to 
x = L it becomes negative. 

Distribution of 𝜎𝜎𝑧𝑧∗ along the interface of [±45]𝑠𝑠 at z = ±hk and z = 0 is shown in Fig. 17. 
Inter-laminar stresses of 𝜎𝜎𝑧𝑧∗ alter in the vicinity of free edge. It is obvious that changing the layer 
stacking of the composite may control the amount of rise of inter-laminar stress at the free edge. 
𝜎𝜎𝑧𝑧∗ is zero at the middle of interfaces while, it rises near the free edge. Normal inter-laminar 
stress 𝜎𝜎𝑧𝑧∗ is positive at z = 0 while it is negative in both z = hk and z = -hk. 

 
 

 
Fig. 17 Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ along the interfaces of [±45°]s cylindrical shell 
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Fig. 18 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the interfaces of [-45°/45°/-45°/45°] 

cylindrical shell 
 
 

 
Fig. 19 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗   of [-45°/45°/-45°/45°] cylindrical shell 

across the thickness 
 
 

 
Fig. 20 Distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗  along the [-45°/45°/−45°/45°] cylindrical shell 
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Distribution of 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the length of the [-45°/45°/-45°/45°] cylinder at various interfaces 
and across the thickness of it is illustrated respectively in Figs. 18 and 19. As it is seen the inter-
laminar stress increases in anti-symmetric layups. 

The distribution of 𝜎𝜎𝑥𝑥𝑧𝑧∗  along the length of un-symmetric [-45°/45°/-45°/45°] cylindrical shell 
with free boundary condition is shown in Fig. 20. Interlaminar normal stress is compressive in the 
free edge at z = -hk and is tensile at z = 0 and z = hk. As seen the Interlaminar normal stress 
vanishes far from the edges. 

The inter-laminar shear stress 𝜎𝜎𝜃𝜃𝑧𝑧∗  along the [-45°/45°/-45°/45°] un-symmetric cylindrical is 
presented in Fig. 21. It is seen that 𝜎𝜎𝜃𝜃𝑧𝑧∗  at z= -hk is lower in comparison to 𝜎𝜎𝜃𝜃𝑧𝑧∗  at z= hk.. 

Fig. 22 shows the effect of speed of rotation of cylindrical shell on the distribution of inter-
laminar stress 𝜎𝜎𝑧𝑧∗. It is clear that higher speed of rotation of laminated composite causes higher 
changes of inter-laminar stress at the free edge. 

The effect of radius to thickness ratio of cylinder on the distribution of inter-laminar normal 
stress 𝜎𝜎𝑧𝑧∗ is analyzed in Fig. 24. The radius of the cylinder is considered as constant and the 

 
 

 
Fig. 21 Distribution of inter-laminar stress 𝜎𝜎𝜃𝜃𝑧𝑧∗  of the [-45°/45°/-45°/-45°] cylindrical shell 

 
 

 
Fig. 22 The effect of speed of rotation of laminated cylindrical shell on distribution of 

inter-laminar stress 𝜎𝜎𝑧𝑧∗ along the [0°/90°]𝑠𝑠  cylindrical shell (at z = -hk) 
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Fig. 23 The effect of radius to thickness ratio of [0°/90°]𝑠𝑠  cylindrical shell on the 

distribution of inter-laminar stress 𝜎𝜎𝑧𝑧∗ along the cylindrical shell(at z = -hk) 
 
 

 
Fig. 24 Distribution of inter-laminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  along [0°/90°]s and [90°/0°]s cylindrical shell (at z = -hk) 

 
 
thickness is changed. It is obvious that lower ratio of radius to thickness causes higher inter-
laminar stress at the vicinity of free edge. 

Fig. 25 compares inter-laminar shear stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  at z = hk in [90°/0°]s and [0°/90°]s cylinders. It 
is shown that 𝜎𝜎𝑥𝑥𝑧𝑧∗  alters near the free edge in both layer stacking. Interlaminar stress 𝜎𝜎𝑥𝑥𝑧𝑧∗  is equal 
with different signs in both cylindrical shells. 
 
 
4. Conclusions 
 

In this study the Layerwise theory formulation approach is presented for analysing the inter-
laminar and in-plane stresses in the laminated thin composite cylinder with arbitrary layer stacking 
which is subjected to rotational body force. Unlike the classical and first order shear deformation 
theories, the Layerwise theory of Reddy is capable to investigate three dimensional stresses. 
Therefore, it is used to formulate the problem. Considering the axisymmetric conditions of the 
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problem, a general displacement field is assumed which includes the circumferential displacement. 
The equations of motion are derived as a function of displacement field. To solve the governing 
equations, the state-space variables are defined and the solution of the governing equations is 
obtained for the free boundary condition and the displacement and stress fields are obtained. To 
validate the LWT, a comparison is done between the results of the FEM and the LWT. Although 
the number of equations used in LWT is significantly lower than the equations used in FEM, but 
the numerical results of LWT show an excellent agreement with the results of FEM. The numerical 
results for in-plane and inter-laminar stresses are presented for the free boundary condition and for 
various symmetric or anti-symmetric layer stacking. It is seen that the inter-laminar stresses varies 
suddenly in the vicinity of the edges and can cause delamination and local damage near the edges 
of rotating laminated cylinders. 
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