
 
 
 
 
 
 
 
Steel and Composite Structures, Vol. 22, No. 5 (2016) 1163-1192 
DOI: http://dx.doi.org/10.12989/scs.2016.22.5.1163 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

MINLP optimization of a composite I beam floor system 
 

Tomaž Žula a, Stojan Kravanja ∗

 
 
1. Introduction 
 

Composite concrete-steel floor systems represent cost-effective types of structures. The good 
technical and design characteristics of composite floors, particularly the compatible composition 
between two different materials with the concrete efficient in compression and the steel in tension 
have made their rational usages in building design exceedingly widespread. Consequently, the 
optimization of composite floors has developed into an attractive area of research and industrial 
application, frequently addressed nowadays in many published works. 
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Abstract.  This paper presents the cost optimization of a composite I beam floor system, designed to be made from 
a reinforced concrete slab and steel I sections. The optimization was performed by the mixed-integer non-linear 
programming (MINLP) approach. For this purpose, a number of different optimization models were developed that 
enable different design possibilities such as welded or standard steel I sections, plastic or elastic cross-section 
resistances, and different positions of the neutral axes. An accurate economic objective function of the self-
manufacturing costs was developed and subjected to design, resistance and deflection (in)equality constraints. 
Dimensioning constraints were defined in accordance with Eurocode 4. The Modified Outer-Approximation/ 
Equality-Relaxation (OA/ER) algorithm was applied together with a two-phase MINLP strategy. A numerical 
example of the optimization of a composite I beam floor system, as presented at the end of this paper, demonstrates 
the applicability of the proposed approach. The optimal result includes the minimal produced costs of the structure, 
the optimal concrete and steel strengths, and dimensions. 
 

Keywords:  composite structures; cost optimization; structural optimization; mixed-integer non-linear 
programming; MINLP 

The optimizations of composite structures can be, in general, performed under different criteria. 
However, as such building systems are built from different construction materials, the majority of 
researchers have focused on the cost optimizations of structures, where various cost parameters 
have been employed within the objective function rather than weights. In regard to specific types 
of composite structures, one can find a wide variety of different proposals in literature for the 
mathematical formulations of cost objective functions. As a result of significant progress regarding 
                                          
∗Corresponding author, Professor, Ph.D., E-mail: stojan.kravanja@um.si 
a Assistant Professor, Ph.D., E-mail: tomaz.zula@um.si 
b Associate Professor, Ph.D., E-mail: uros.klansek@um.si 

1163



 
 
 
 
 
 

Tomaž Žula, Stojan Kravanja and Uroš Klanšek 

computing and computer hardware, a number of different search techniques and efficient solution 
algorithms have been developed and successfully applied. For instance, Adeli and Kim (2001) 
proposed a neural dynamics approach for the optimizations of composite floors and developed a 
cost-objective function, which included the costs of concrete, steel beams, and shear studs. 
Kassapoglou and Dobyns (2001) simultaneously minimized the costs and weights of post-buckled 
stiffened composite panels using a gradient-based optimization method and created the Pareto set 
of optimum designs. Kravanja and Šilih (2003), as well as Klanšek and Kravanja (2006a, b), 
conducted research work in which the competition between different composite concrete-steel 
floor systems was investigated on the basis of cost optimization using non-linear programming. 
Also Klanšek et al. (2006) presented the cost optimization of composite floor trusses composed 
from steel trusses consisting of hot rolled channel sections, performed by the non-linear 
programming approach. Kovacs et al. (2004) optimized a carbon-fibre-reinforced plastic 
sandwich-like structure with aluminium webs using a multi-algorithm approach for minimum cost 
and maximum stiffness. During the optimization process they used the particle swarm optimization 
algorithm, a dynamic search technique, and a continuous-discrete optimization technique. Omkar 
et al. (2008, 2011) introduced a design optimization of composite structures based on an objective 
switching clonal selection algorithm and on a vector evaluated artificial bee colony algorithm. In 
the mentioned two works, the optimization problems included multiple objectives for minimizing 
weights and the total costs of composite components. Cheng and Chan (2009) calculated the 
optimal lateral stiffness designs of composite steel and concrete tall frameworks using an efficient 
numerical approach developed based on the optimality criteria method. The contribution of 
Senouci and Al-Ansari (2009) demonstrated the suitability of a genetic algorithm for the cost 
optimization of a composite structure under the load and resistance factor design. A cost-effective 
structural composition was introduced by Poitras et al. (2011), where the optimizations of 
composite and non-composite concrete-steel floor systems were performed using the particle 
swarm algorithm. Luo et al. (2012) developed a three-phase topology optimization model and an 
effective solution procedure for generating optimal material distributions for steel-concrete 
composite structures. The objective was to minimize the total material cost (or mass), whilst the 
optimal topology was obtained through a standard gradient-based search. For the purpose of 
obtaining the cost optimal design of a composite floor structure, Kaveh and Abadi (2010) utilised 
an improved harmony search algorithm, Kaveh and Behnam (2012) applied meta-heuristic 
algorithms: the charged system search and the enhanced charged system search, Kaveh and 
Ahangaran (2012) used a social harmony search, Kaveh and Massoudi (2012) introduced an ant 
colony algorithm, and Kaveh and Ghafari (2016) demonstrated the application of an enhanced 
colliding body optimization algorithm. 

Finding an optimal discrete design of a concrete-steel composite structure still represents a 
challenging task because this optimization problem is discrete, non-convex, and highly non-linear. 
A state of the art literature review revealed that the discrete sizing and material optimizations of 
composite structures were mainly handled by different heuristic methods. The aim of this paper is 
to demonstrate discrete-continuous optimization, as performed by a mixed-integer non-linear 
programming (MINLP) approach. The treated composite floor system consisted of a reinforced 
concrete slab and doubly-symmetrical steel I beams. The optimization was proposed towards the 
direction of minimizing the structure’s cost objective function, which was subjected to the design, 
resistance and deflection constraints as formulated in accordance with Eurocode standards 
(Eurocode 1 2002, Eurocode 2 2004, Eurocode 3 2005, Eurocode 4 2004) for satisfying the 
requirements of both the ultimate and serviceability limit states. 
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The MINLP is a combined discrete-continuous optimization method. It handles using 
continuous and discrete binary 0-1 variables simultaneously. The continuous variables are defined 
for the continuous optimization of parameters (costs, masses, dimensions, stresses, strains, etc.) 
and the discrete variables are used for the discrete optimization of standard/discrete sizes and 
materials (plate thicknesses, steel sections, the concrete and steel strengths). The MINLP performs 
the continuous and the discrete optimizations simultaneously through three steps: the first one 
includes the generation of a mechanical superstructure of different discrete alternatives, the second 
one involves the development of an MINLP model formulation and the last one consists of a 
solution for the defined MINLP optimization problem. The Modified Outer-Approximation/ 
Equality-Relaxation (OA/ER) algorithm is used for attaining the solution, see Kravanja and 
Grossmann (1994) and Kravanja et al. (1998a, b, c). Two-phase MINLP optimization is proposed 
to accelerate the convergence of the mentioned algorithm. The optimizations are carried out by an 
MINLP computer package MIPSYN (see Kravanja et al. (2003) and Kravanja (2010)). 

This research represents a natural continuation of the past work presented by Kravanja et al. 
(2005), where the cost, material and standard dimension optimization was introduced for a 
composite floor system with welded steel I beams; the calculations based on the plastic cross-
section resistance, the neutral and the centre of gravity axes lied in the concrete; a simple objective 
function was defined. 

Standard steel sections are now explicitly used for the components of the composite floors. Two 
accurate cost objective functions of the material, power and labour costs are defined for those 
structures with welded and standard steel sections. Since there exist various different design 
possibilities, various optimization models are thus developed as the combination between: three 
different cross-section alternatives (with welded, HEA and IPE steel sections), two different 
composite cross-section resistances (the plastic and elastic resistances), three different positions of 
the composite cross-section’s neutral axis (within the concrete slab, the upper steel flange and the 
steel web), and two different positions of the centre of gravity axis of the transformed (all-steel) 
section (within the concrete slab and the steel section). Rounding the depth of the concrete slab by 
a whole cm is also explicitly added into the optimization. Last but not least, sets of logical and 
design conditions are formulated with regard to the latest Eurocode 4 (2004). 
 
 
2. Composite floor system 
 

The structural system, represents a composite floor that consisted of a reinforced concrete slab 
and symmetrical steel I sections, see Fig. 1. The steel sections and the slab were connected 
together by headed shear studs, welded to the upper steel flanges and embedded within the 
concrete. A full shear connection between the concrete slab and the steel sections was considered. 

From the resistance point of view, the composite floor system is considered as a multitude of 
equal composite I beams arranged in parallel at equal intermediate distances e, see Fig. 2. Each 
composite I beam is additionally composed of the effective part of the concrete slab beff and a 
single steel section. The composite I beams are treated as simply supported beams. The concrete 
slab is considered as being designed separately as a continuous one way spanning slab of constant 
depth over the steel sections. It is assumed that a fresh concrete is placed to its final position by 
means of concrete pumps. A fully prefabricated formwork system is used in order to bear the wet 
concrete and steel I beams in the phase of concreting. The composite beams have to be designed 
according to Eurocode 4 (2004) standards. In addition, the reinforced concrete slab has to satisfy 
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Fig. 1 Composite floor system 

 
 

 
Fig. 2 Vertical cross-section of the composite floor system 

 
 

the requirements of Eurocode 2 (2004), whilst the structural steel members should fulfil the 
conditions of Eurocode 3 (2005). 

The structure should support the combined effect of its own weight and the uniformly 
distributed variable imposed load. As soon as the design load is set, the composite floor structure 
is checked for the conditions of both the ultimate and serviceability limit states. When the ultimate 
limit state has been addressed, the floor system should be checked for the resistance to the bending 
moment of the effective composite cross-section, for the shear resistance and shear buckling 
resistance of the steel section, the bearing/shear resistance of the headed shear stud connectors, and 
for resistance to the bending moment of the concrete slab. When the serviceability limit state has 
been considered, vertical deflections of the composite floor structure are checked by taking into 
account the second moment of the transformed (all-steel) cross-section area and the influence of 
creep/shrinkage of the concrete. The verification conditions are established for the total deflection 
of composite I beam due to the overall load, for the deflection caused by the variable imposed load, 
and for total deflection of the reinforced concrete slab which occurs due to the overall load over 
the span between the steel beams. 
 
 
3. Optimization models COMBOPT 
 

As the optimization problem of the composite floor system is discrete, non-convex and highly 
non-linear, the mixed-integer non-linear programming (MINLP) is selected for this application. 
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3.1 General MINLP problem formulation 
 
The non-convex, non-linear and combined discrete-continuous optimization problem can be 

formulated as a general MINLP problem in the following form 
 

min   ( )xyc fT +=z  

 s.t.   ( ) 0xh =  

( ) 0xg ≤                        (MINLP) 

            bCxBy ≤+  

   x ∈ X = {x ∈ Rn:  xLO ≤ x ≤ xUP} 

      y ∈ Y ={0,1}m 
 

where x is a vector of the continuous variables specified in the compact set X and y is a vector of 
the discrete binary 0-1 variables. Functions f(x), h(x) and g(x) are non-linear functions involved in 
the objective function z, the equality and inequality constraints, respectively. All functions f(x), h(x) 
and g(x) have to be continuous and differentiable. The expression By + Cx ≤  b represents a subset 
of mixed linear equality/inequality constraints, which must be fulfilled for discrete decisions and 
structure configurations. The objective function z contains fixed costs caused by discrete decisions 
in the term cTy while the dimension dependant costs are included in the function f(x). 

Continuous variables including costs, masses, dimensions, cross-section characteristics, 
loadings, internal forces, deflections, etc., and binary 0-1 variables are used here for the choices of 
discrete/standard cross-sections and materials. Equality and inequality constraints and the bounds 
of the variables represent a rigorous system of the design, loading, resistance, deflection, etc. 
constraints known from structural analysis and dimensioning. The mixed linear equality/inequality 
constraints are used for defining the relationships between the binary variables and determining the 
standard sizes and discrete materials. The optimizations of the structures may include various 
objectives worth considering. This paper proposes an objective function for minimizing the 
structure’s self-manufacturing costs. 

 
3.2 Optimization models 
 
According to the above general MINLP problem formulation, 36 different MINLP optimization 

models COMBOPT (COMposite Beam OPTimization) were developed for the optimizations of 
the composite I beams. They included different design possibilities, defined as the combinations 
between: 

 

● 3 various composite cross-section alternatives, with: 
o welded steel I sections, 
o standard HEA sections, 
o standard IPE sections, 

● 2 different composite cross-section resistances: 
o plastic resistance, 
o elastic resistance, 
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● 3 different positions of the composite cross-section’s neutral axis, within: 
o the concrete slab, 
o the upper steel flange, 
o the web of the steel section, 

● 2 different positions of the centre of gravity axis of the transformed (all-steel) section, 
within: 
o the concrete slab and 
o the steel section. 

 

As an interface for mathematical modelling and data inputs/outputs, GAMS (General Algebraic 
Modelling System), a high level language, was used (Brooke et al. 1988). 

Each model contained input data, continuous variables, discrete variables, and the cost 
objective function which was subjected to structural analysis constraints, dimensioning constraints 
and logical constraints, see Fig. 3. The structural analysis and dimensioning constraints were 
comprised of ultimate limit state (ULS) constraints such as the plastic or elastic bending 
resistances of the composite cross-section, the shear resistance, the resistances of the connectors 
and the cross-section resistance of the concrete slab, as well as the serviceability limit state (SLS) 
constraints for checking the vertical deflections of the composite beam and the concrete slab. 
Whilst the ULS constraints were defined for three different positions of the cross-section’s neutral 
axis, the SLS constraints were determined for two different positions of the centre of gravity axis 
regarding the transformed section. Whilst the paper presents the objective functions and their cost 
items for composite I beams with welded and standard steel sections, only the main input data, 
variables and the main constraints are shown in Table 1. 

 
3.3 Cost objective functions 
 
In this paper, two objective functions of self-manufacturing (direct) costs for the optimization 

of a composite floor system with welded sections, as well as for those with standard hot rolled 
sections, were developed on the basis of cost items, as proposed in our previous work, see Klanšek 
and Kravanja (2006a, b). 

The direct costs were determined as a sum of the material costs, the power consumption costs 
and the labour costs necessary for the production. In this way, the objective function for cost 
optimization of the composite I beam with welded sections was defined in the following form: 

 
min: COST = {CM,s + CM,c + CM,r + CM,sc + CM,e + CM,ac,fp,tc + CM,f 

+ CM,c,ng + CM,c,oxy + CP,c,gm + CP,w + CP,sw 
+ CP,v + CL,c,oxy-ng + CL,g + CL,p,a,t + CL,w + CL,sw 
+ CL,spp + CL,f + CL,r + CL,c + CL,v + CL,cc}/(e · L) 

(1) 

 
where COST represents the direct costs per m2 of the useable surface of the structural system; L 
stands for the span of the composite beam and e denotes the intermediate distance between the 
steel I-sections. Notations CM,..., CP,... and CL,..., represent the material, power and labour cost 
items that were included in the objective function. Here, the material costs were comprised of: 
structural steel CM,s, concrete CM,c, reinforcement CM,r, headed shear studs CM,sc, electrode 
consumption CM,e, anti-corrosion, fire protection and top coat painting CM,ac,fp,tc, floor-slab panels 
CM,f, natural gas consumption CM,c,ng, and oxygen consumption CM,c,oxy. Furthermore, the power 
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Fig. 3 Scheme of the optimization models COMBOPT 

 
 

consumption cost contained: edge grinding CP,c,gm, shielded metal arc welding CP,w, stud arc 
welding CP,sw and concrete consolidation CP,v. Finally, the labour costs consisted of: steel-sheet 
cutting CL,c,oxy-ng, edge grinding CL,g, preparation, assembly and tacking CL,p,a,t, shielded metal arc 
welding CL,w, stud arc welding CL,sw, steel surface preparation and protection CL,spp, formwork 
treatment CL,f, reinforcing steel treatment CL,r, concreting the slab CL,c, concrete consolidation CL,v 
and curing the concrete CL,cc. Note that detailed formulations for all the mentioned cost items can 
be found in Klanšek and Kravanja (2006a, b). 

Compared to the above cost objective function for the composite structure with welded steel 
sections, the design with standard hot rolled sections needed a decreased amount of cost 
expressions to be covered, mainly due to the smaller amounts of welding processes and plate 
cuttings. More precisely, the contents of cost items CM,e, CM,c,ng, CM,c,oxy, CP,c,gm, CP,w, CL,c,oxy-ng, CL,g 
and CL,w were reduced on account of the absence of longitudinal welds and sheet metal cutting 
(except for vertical stiffeners), whilst the complete cost item CL,p,a,t was not incorporated for the 
same reason. 

Although the above objective function presentation seems very similar to those presented in our 
previous work (Klanšek and Kravanja 2006a, b), there is an important new feature included within 
the objective. Namely, on the local markets, unit prices of structural steel sheets and sections often 
depend on their sizes and material grades. Regarding standard sizes, the thickness of a structural 
steel sheet and the height of standard I-section are typically those dimensions that have the greatest 
impact on the unit price cM,s. Generally, thicker sheet thicknesses t, higher steel sections h and 
stronger steel strengths fy show higher unit prices of steel cM,s than lower ones. The unit prices of 
structural steel sheets cM,s = f(t, fy) and of standard I-sections cM,s = f(h, fy) were thus included 
within the cost objective functions by applying approximation functions. The approximation 
functions were formulated by executing multiple regression using MS Excel software with Data 

OPTIMIZATION MODELS COMBOPT 
 

Cost objective function 
s.t. 

Structural analysis and dimensioning constraints 
-Ultimate limit state constraints 

-Plastic bending resistance or 
Elastic bending resistance 

-Shear resistance 
-Resistance of connectors 

-Resistance of the concrete slab 
-Serviceability limit state constraints 

-Deflection of the composite beam 
-Deflection of the concrete slab 

Logical constraints for 
-Discrete materials 

-Standard dimensions 
-Rounded dimensions 

Variables x, y and input data 
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Table 1 Input data, continuous and discrete variables 
Input data:  

bcu unit width of the concrete slab beff effective width of the concrete slab 
cL labour prices per unit bf flange width 

cP power prices per unit COST self-manufacturing costs of the structure 
per m2 

cM all the material prices per unit d concrete slab depth 

dsc shear stud diameter e the intermediate distance between 
the steel I-sections 

Ea elastic modulus of structural steel Ecm secant elastic modulus of normal 
weight concrete 

Ec,eff effective elastic modulus of concrete fck characteristic cylinder strength of concrete 

fya yield strength of the reinforcing steel fctm axial tensile strength of concrete 

fu ultimate tensile strength of the shear studs fy yield strength of structural steel 

L structure span g self-weight of the composite beam 

q variable imposed load per m2 h height of the steel section 

qm discrete alternatives for standard materials (concrete 
and steel strengths) Ic 

second moment of the unit cross-section area of a 
cracked concrete slab about the y-y axis 

qr 
discrete alternative values of rounded dimensions 
(depth of the concrete slab was proposed as being 
rounded up to a whole centimetre) 

Icr 
second moment of area of the transformed cross-section 
related to the creep of 
the concrete about the y-y axis 

qs 
discrete values of alternatives for standard dimensions 
(thicknesses of steel sheets for welded sections and 
sizes of IPE and HEA standard sections) 

Ii 
second moment of area of the transformed cross-section 
about the y-y axis 

α coefficient related to the slenderness of 
the headed shear stud connector Ish 

second moment of area of the transformed cross-section 
regarding shrinkage of the concrete about the y-y axis 

γa 
resistance partial safety factor for 
structural steel (1.0) Iu 

second moment of the unit cross-section area of a non-
cracked concrete slab about the y-y axis 

γc 
resistance partial safety factor for 
concrete (1.5) n modular ratio 

γg 
partial safety factor for the permanent 
load (1.35) nsc number of headed shear studs 

γs 
partial safety factor for the reinforcing 
steel (1.15) tf flange thickness 

γM1 partial safety factor for element instability (1.0) tw web thickness 

γv 
resistance partial safety factors for 
the headed shear studs (1.25) xp, xe 

vertical position of the plastic and elastic neutral axes of 
the composite beam from the top edge 

γq partial safety factor for variable load (1.5) xpc 
vertical position of the plastic neutral axis 
of the concrete slab from the top edge 

ρc density of concrete xg 
vertical position of the centre of gravity axis of the 
transformed (all-steel) section from the top edge 

ρs density of steel χv shear buckling factor 

Continuous variables x ∈ X: Discrete binary variables y = {ymat, yst, yrd}, y ∈ Y: 

Aa cross-section area of the steel beam ymat the sub-vector of the binary variables 
for standard materials 

As 
cross-section area of the concrete slab reinforcement 
per m yst the sub-vector for standard dimensions 

be half of the effective width of the concrete slab yrd the sub-vector for rounded dimensions 
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Analysis Add-in. Bivariate quadratic functions, i.e., functions of a form K(x, y) = a1x2 + a2y2 + a3xy 
+ a4x + a5y + a6, were employed to achieve suitable approximations and to keep the non-
convexities of the optimization models as low as possible. In this way, the unit prices for structural 
steel sheets and standard steel sections were gained by expressions cM,s, see Eqs. (1a)-(1c) 

 
Structural steel sheets:      cM,s = cs (a1 fy

2 + a2 t2 + a3 fy t + a4 fy + a5 t + a6) (1a) 
 

Structural steel I-sections:   cM,s = cs (a1 fy
2 + a2 h2 + a3 fy h + a4 fy + a5 h + a6) (1b) 

 
Concrete:                cM,c = cc (a1 fck

2 + a2 fck + a3) (1c) 
 

*Notes: Material grades fy and fck are defined in [kN/cm2], whilst dimensions h and t in [cm]. 
 
The coefficients of the approximation functions for steel sheets, IPE and HEA sections are 

presented in Table 2, which also includes a function of the unit price for concrete. Whilst a1, a2,.., 
a6 represent the coefficients of the approximation functions, cs denotes the basic unit price of the 

 
 

Table 2 Unit prices for structural steel and concrete 

Material Basic unit 
price 

Coefficients of approximation function for unit price 
a1 a2 a3 a4 a5 a6 

Steel sheet cs = 1.25 €/kg ‒3.7313 
×10-4 

‒1.7170 
×10-2 

‒4.9858 
×10-4 

2.8962 
×10-2 

1.2934 
×10-1 

4.4147 
×10-1 

IPE section cs = 1.25 €/kg 1.8783 
×10-4 

3.0707 
×10-4 

1.6530 
×10-5 

‒3.3288 
×10-3 

‒1.3915 
×10-2 

1.0630 
×100 

HEA section cs = 1.25 €/kg 2.1982 
×10-4 

6.2266 
×10-5 

4.1031 
×10-5 

‒5.3682 
×10-3 

4.9888 
×10-4 

9.8361 
×10-1 

Concrete cc = 85.00 €/m3 ‒3.2220 
×10-2 

4.0571 
×10-1 

1.8829 
×10-1 ‒ ‒ ‒ 

Notes: Basic unit prices cs are set for the standard 8 mm thick steel sheet, standard IPE 80 and HEA 100 
sections, all made from steel S 235. The unit price cc is defined for concrete C 25/30. 

 
 

   
Fig. 4 Diagrammes of the unit prices for structural steel depending on the sheet thickness t and the height of 

the IPE and HEA sections h 
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Table 3 Other material, power and labour cost parameters 
cM,r Price of the steel-wire mesh reinforcement S 400 0.70 €/kg 
cM,sc Price of the headed shear stud connectors 0.50 €/stud 
cM,e Price of the electrodes 1.70 €/kg 
cM,ac Price of the anti-corrosion paint 0.85 €/m2 
cM,fp Price of the fire protection paint R 30 9.00 €/m2 
cM,tc Price of the top coat paint 0.65 €/m2 
cM,f Price of the prefabricated floor-slab panels 30.00 €/m2 
cM,ng Price of the natural gas 0.50 €/m3 
cM,oxy Price of the oxygen 1.60 €/m3 

cP Electric power price 0.10 €/kWh 
cL Labour costs 20.00 €/h 

 
 

steel sheet/I-section with the lowest standard thickness/height and steel grade. A coefficient cc 
stands for the basic unit price of the concrete with the lowest concrete strength. Fig. 4 shows 
diagrammes of the unit prices for structural steel depending on the sheet thickness t and the IPE 
and HEA section heights h for three different structural steel grades: S 235, S 275 and S 355. Other 
material unit prices and hourly labour costs are shown in Table 3. 

 
3.4 Structural analysis and dimensioning constraints 
 
In order to achieve optimal design of the composite floor structure, the objective functions 

should be subjected to various design conditions. Here, (in)equality constraints and the bounds on 
decision variables represent a rigorous system of design, load, resistance and deflection functions 
in order to satisfy the requirements of Eurocode 4 for the conditions of the ultimate and 
serviceability limit states, see Eqs. (2)-(20), Eqs. (21)-(37) and Appendixes A and B, respectively. 
As many of these functions are well-known from Eurocode and literature, they are presented in 
this paper in brief forms. For better understanding please see the input data - scalars and the 
variables in Section 3.2. 

 
3.5 Ultimate limit state constraints 
 
3.5.1 Plastic bending resistance of the composite beam cross-section 
Eqs. (2)-(4) represent the basic condition for the plastic moment resistance of the composite I 

beam cross-section. Whilst MEd,cb stands for the design bending moment, Mpl,Rd,cb denotes the 
design plastic moment resistance of the composite section. Equations Mpl,Rd,cb are shown in 
Appendix A.The design uniformly distributed load on the composite beam qEd,cb is calculated by 
Eq. (4). Whilst the variable imposed load q is determined as an input constant, the dead-weight of 
the structure g is automatically calculated through the optimization process depending on the 
obtained composite cross-section area’s dimensions. 

 
MEd,cb ≤ Mpl,Rd,cb (2) 

 

where 
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MEd,cb = qEd,cb · L2 8⁄  (3) 
 

qEd,cb = �γg · g + γq · q · e� (4) 
 
3.5.2 Elastic bending resistance of the composite beam cross-section 
In the case when the elastic resistance of the composite structure is considered, the basic 

condition for the elastic moment resistance of the composite cross-section is given by Eq. (5). The 
design bending moment MEd,cb is defined by Eq. (3), whilst the design elastic bending moment 
resistance Mel,Rd,cb is presented in Appendix B. 

 
MEd,cb ≤ Mel,Rd,cb (5) 

 
3.5.3 Shear resistance of the composite beam cross-section 
Shear resistance is here assured by the shear resistance of the web of the steel section. Eqs. (6)-

(8) introduce the condition for the shear resistance, where VEd,cb in Eq. (7) represents the design 
shear force and Vb,Rd,cb shown in Eq. (8) denotes the shear buckling resistance of the steel web. 
Note that at the end of the beams, the web stiffeners are added to prevent local buckling of the web. 

 
VEd,cb ≤ Vb,Rd,cb (6) 

 

where 
 

VEd,cb =
qEd,cb · L

2
 (7) 

 

Vb,Rd,cb =
χv · fy · �h − 2 · tf� · tw

√3 · γM1
 (8) 

 
3.5.4 Resistance of shear connectors 
The proper transfer of the design longitudinal shear force Vl between the concrete slab and the 

steel section is ensured using a sufficient number of welded stud connectors nsc and the design 
resistances of the connectors PRd, see Eqs. (9)-(11). 

 
Vl = 1 2⁄  · nsc · PRd (9) 

 

where 
 

Vl = min �
Aa · fy
γa

;
2 · be · d · 0.85 · fck

γc
� (10) 

 

PRd = min �
0.29 · α · dsc 

2 · �fck · Ecm

γv
;  

0.8 · fu · π · dsc
2

4 · γv
� (11) 

 
3.5.5 Resistance of the concrete slab 
The condition for the bending moment resistance of the concrete slab is introduced by Eqs. 

(12)-(15). For both the plastic or elastic design cases, the plastic and the elastic design bending 
moments MEd,cs,pl and MEd,cs,el, are defined by Eqs. (13) and (14), whilst the design uniformly 
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distributed load on the concrete slab qEd,cs is calculated by Eq (15). The design ultimate moment 
capacity of the concrete slab Mult,cs is given by Eq. (16). The area of reinforcing steel is calculated 
by Eqs. (17)-(20). The requirements for the minimum area of reinforcing steel As,min and the 
maximum area of reinforcing steel As,max are handled by the constraints in Eqs. (17)-(20), where kc 
is the coefficient which takes account of the stress distribution within the section immediately 
prior to cracking and of the change of the lever arm and k1 is the coefficient which allows for the 
effect of non-uniform self-equilibrating stresses, which lead to a reduction of restraint forces. 

 
MEd,cs ≤ Mult,cs (12) 

 

where 
 

MEd,cs,pl = qEd,cs · e2 16⁄  (13) 
 

MEd,cs,el = qEd,cs · e2 11.67⁄  (14) 
 

qEd,cs = �γg · ρc · bcu · d + γq · q · bcu� (15) 
 

Mult,cs =
0.48 ∙ 0.85 · fck · bcu · xpc

2

γc
+

As · bcu · �d −  c − xpc� · fya

γs
 (16) 

 
As,min· σs =  kc ·k1 · fct,eff ·Act (17) 

 
As,min ≥ 0.26 · fctm fyk�  ·  bcu · (d −  c) (18) 

 
As,min ≥ 0.0013 · 𝑏𝑏𝑐𝑐𝑐𝑐  ·  (d −  c) (19) 

 
As,max ≤ 0.04 ·  bcu · d (20) 

 
3.6 Serviceability limit state constraints 
 
3.6.1 Vertical deflection of the composite beam 
The serviceability limit state constraints comprise Eqs. (21)-(37). The vertical deflections of the 

composite I beam are checked by the conditions handled in Eqs. (21)-(26), where δ2 is the 
deflection of the composite I beam subjected to a variable imposed load, δmax is the deflection of 
the composite I beam subjected to the overall load, δcr is the deflection of the composite I beam 
subjected to a permanent load and a creep of concrete, δsh is the deflection of the composite I beam 
subjected to shrinkage of concrete and Msh is the bending moment caused by the shrinkage of 
concrete. 

δ2 ≤ L 300⁄  (21) 
 

δ2 =
5 · q · e · L4

384 · Ea · Ii
 (22) 

 
δmax ≤ L 250⁄  (23) 

1174



 
 
 
 
 
 

MINLP optimization of a composite I beam floor system 

 

δmax = δ2 + δcr + δsh (24) 
 

δcr=
5· g · L4

384 · Ea · Icr
 (25) 

 

δsh =
Msh · L2

8 · Ea · Ish
 (26) 

 
As mentioned, two different possibilities exist for the positions of the centre of gravity axis of 

the transformed (all-steel) section Ai: namely within the concrete slab or within the steel section. 
When the centre of gravity axis lies within the concrete slab, see Fig. 5, the vertical distance xg 
from the top of the concrete slab to the centre of gravity axis is defined by Eqs. (27)-(28) and the 
second moment of area regarding the transformed section Ii is determined by Eq. (29). 

 
dxg ≤  (27) 

 
 

 
Fig. 5 Centre of gravity axis situated within the concrete slab 

 
 

 
Fig. 6 Centre of gravity axis situated within the steel section 
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xg =
̵ Aa + �Aa

2 + 2 · 
beff
n  · Aa · �d + h

2�
beff
n

 (28) 

 

Ii =
beff · xg

3

3 · n
 + Ia + Aa · �d + 

h
2
− xg�

2

 (29) 

 
Eqs. (30)-(32) represent the constraints for the centre of gravity axis of the transformed section 

xg positioned within the steel section, see Fig. 6. The moment of inertia of the transformed section 
Ii is calculated by Eq. (32). 

dxg ≥  (30) 
 

xg =

beff · d
2

2 · n  + Aa · �d + h
2�

beff · d
n  + Aa

 (31) 

 

Ii =
beff

n
 · �

d3

12
 + d · �xg −

d
2
�

2

� + Ia + Aa · �d +
h
2
− xg�

2

 (32) 

 
3.6.2 Vertical deflection of the concrete slab 
The condition for vertical deflections of the concrete slab is defined by Eqs. (33)-(37), where δ 

represents the total deflection of the reinforced concrete slab subjected to the overall load, δI 
stands for the deflection of a non-cracked reinforced concrete slab subjected to the overall load and 
δII denotes the deflection of a cracked reinforced concrete slab subjected to the overall load. Whilst 
ζ is the distribution coefficient, σsr is the stress in tension steel reinforcement calculated on the 
basis of a cracked concrete section under the loading which will just cause cracking, and k defines 
the coefficient which depends on the number of spans of the continuous concrete slab. 

 
δ ≤  L 250⁄  (33) 

 
δ = ζ · δII + (1 - ζ) · δI (34) 

 
ζ = 1 − 0.5 · 𝜎𝜎𝑠𝑠𝑠𝑠 σs⁄  (35) 

 

δI = k · �
ρc · bcu · d · e4

Ec,eff · Iu
 + 

q · bcu · e4

Ecm · Iu
� (36) 

 

δII = k · �
ρc · bcu · d · e4

Ec,eff · Ic
 + 

q · bcu · e4

Ecm · Ic
� (37) 

 
3.7 Logical constraints 

 
Logical constraints define discrete values for standard materials dmat, standard dimensions dst 
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and rounded dimensions drd, see Eqs. (38)-(43). The standard material dmat (steel or concrete 
strength) is determined as a scalar product between the vector of m, m∈M, discrete standard 
strength alternatives qm = {q1, q2, q3,…, qm} and the vector of m associated binary variables ym

mat = 
{y1

mat, y2
mat, y3

mat,…, ym
mat}, see Eq. (38). Only one discrete strength value is selected for the 

material as the sum of the binary variables ym
mat has to be equal to 1, see Eq. (39). 

 

∑
∈

=
Mm

mat
mm

mat yqd      m ∈ M (38) 

 
  1 =∑

∈Mm

mat
my       m ∈ M (39) 

 
The standard dimension dst (e.g., thickness of the steel sheet for the welded section, the cross-

section area of IPE or HEA standard section, steel wire mesh for concrete, etc.) is defined as a 
scalar product between the vector of s, s∈S, discrete standard dimension alternatives qs = {q1, q2, 
q3,…, qs} and the vector of s associated binary variables ys

st = {y1
st, y2

st, y3
st,…, ys

st}, see Eq. (40). 
Only one discrete value is selected to the standard dimension as the sum of the binary variables ys

st 
has to be equal to 1, see Eq. (41). 

 

∑
∈

=
Ss

st
ss

st yqd        s ∈ S (40) 

 
  1=∑

∈Ss

st
sy         s ∈ S (41) 

 
Similarly, the rounded dimension drd (depth of the concrete slab is rounded to a whole cm) is 

calculated as a scalar product between the vector of r, r ∈ R, discrete rounded dimension 
alternatives qr = {q1, q2, q3,…, qr} and the vector of r associated binary variables yr

rd = {y1
rd, y2

rd, 
y3

rd,…, yr
rd}, see Eq. (42). Only one discrete value is selected as the rounded dimension (to the 

depth of the concrete slab) as the sum of the binary variables yr
rd has to be equal to 1, see Eq. (43). 

 

∑
∈

=
Rr

rd
rr

rd yqd      r ∈ R (42) 

 
  1=∑

∈Rr

rd
ry       r ∈ R (43) 

 
 
4. MINLP solution 
 

The Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm by Kravanja and 
Grossmann (1994) was applied to execute the discrete optimization of the composite floor 
structure. The OA/ER optimization algorithm solves an alternative sequence of non-linear 
programming (NLP) sub-problems and mixed-integer linear programming (MILP) master 
problems, see Fig. 7. The NLP sub-problem corresponds to the continuous optimization of 
parameters for a composite structure with fixed materials and standard dimensions (with fixed 0-1 
variables, calculated in the previous MILP), and yields an upper bound to the MINLP objective to 
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Fig. 7 The considered composite floor system 

 
 
be minimized. The MILP master problem involves a global linear approximation to the 
superstructure of discrete alternatives in which new materials and standard sizes (new 0-1 
variables) are identified. The predicted lower bounds increase monotonically as the cycle of the 
major MINLP iterations (MILP plus NLP) proceeds. A global linear approximation includes the 
linearizations of the non-linear objective function, the linearizations of the non-linear equality and 
inequality constraints, derived at each NLP sub-problem solution, as well as the linear constraints 
from the original MINLP problem. NLP sub-problems and MILP master problems must 
sequentially be solved until the convergence is satisfied. The search is completed when the 
predicted lower bound (MILP) coincides with or exceeds the current upper bound (NLP). In cases 
of non-convex problems, the optimization process is terminated when the NLP solution can no 
longer be improved. The main feature of the OA/ER algorithm is that the convergence is usually 
achieved in a few MINLP iterations (from three to seven). Subsequently, each MINLP iteration 
provides increasingly better result. More details about the Modified OA/ER algorithm can be 
found in Kravanja et al. (1998a, b, c). 

The exact optimal solution of a complex, non-convex and non-linear MINLP problem with a 
high number of discrete decisions is, in general, very difficult to obtain. In this way, the MINLP 
optimization is proposed for being accomplished sequentially over two phases to accelerate the 
convergence of the Modified OA/ER algorithm, see also Kravanja et al. (2005): 

 
● The search for optimal solution is proposed by starting with continuous NLP optimization of 

the composite superstructure, where all design parameters are treated as continuous 
variables. During the first phase, all discrete materials, standard and rounded dimensions are 
thus relaxed within continuous parameters. The result obtained at the end of the phase 
represents a good starting point for the next discrete optimization. 

● When the optimal result of the continuous optimization is found, the search proceeds with 
the discrete optimization in the second phase. The discrete materials, standard and rounded 
sizes are re-established and the overall cost, material, standard and rounded dimension 
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optimization of the composite floor system will continue until the optimal solution is 
achieved. 

 

The two-phase MINLP strategy requires that the binary variables should be defined in one 
uniform set and do not need to be initialized. Whilst the binary variables of the discrete 
alternatives and logical constraints for discrete decisions are in the first phase temporarily 
excluded from the optimization (set at zero value), they are at the beginning of the second phase 
included and participate in the simultaneous overall optimization. The data and variables are 
initialized only once at the beginning of the optimization. Under the convexity condition, the two-
phase strategy guarantees a global optimality of the solution. 
 
 
5. Numerical example – the simultaneous cost, material, standard 

and rounded dimension optimization 
 

The numerical example presents the simultaneous cost, material, standard and rounded 
dimension optimization of a simply supported composite floor system with a span of 20 m, 
exposed to the combined effect of permanent uniform load (self-weight) and a uniformly 
distributed imposed load of 4 kN/m2, see Fig. 8. The considered composite floor system is built up 
from the reinforced concrete slab and steel I sections. Individual steel beams and the concrete slab 
are connected together by the headed shear studs. The base diameter of the studs is 19 mm. 

As there existed a number of different design possibilities for the composite floor structure, the 
MINLP optimization was performed 36 times for 36 different optimization models COMBOPT. 
This paper presents optimizations for plastic and elastic composite cross-section resistances for 
welded, standard HEA and IPE steel sections with three different positions of neutral axis: (a) 
within the concrete slab; (b) within the upper steel flange; and (c) within the steel web. Presented 
are only the results achieved in the case when the centre of gravity axis of the transformed section 
was positioned within the concrete slab because the results obtained in the case when the axis was 
situated in the steel section are worse. 

The task of the optimization was to find the minimum material and labour costs of the structure, 
the optimal concrete and steel strengths, standard sizes of the steel beams, the distance between the 
beams and the depth of the concrete slab. The latter should be rounded to a whole cm. 

 
5.1 Plastic cross-section resistance 
 
In the case of the welded steel section, a superstructure was generated in which all possible 

structures were embedded within a combination between: 
 
 

 
Fig. 8 The considered composite floor system 

L = 20.0 m

q = 4.0 kN/m2
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● 3 different (mfy) structural steel grades (S 235, S 275, S 355), mfy ∈ Mfy, Mfy = {1, 2, 3}; 
● 7 different (mck) concrete strengths (C20/25, C25/30, C30/37, C35/45, C40/50, C45/55, 

C50/60), mck ∈ Mck, Mck = {1, 2, 3,..., 7}; 
● 9 different (stf) standard steel thickness alternatives for flanges (from 8 to 40 mm), stf ∈ Stf, 

Stf = {1, 2, 3,..., 9}; 
● 9 different (stw) standard steel thickness alternatives for webs (from 8 to 40 mm), stw ∈ Stw, 

Stw = {1, 2, 3,..., 9}; 
● 25 different (smesh) discrete alternatives of steel wire meshes for reinforcing the concrete 

(from R188 to 5xR524), smesh ∈ Smesh, Smesh = {1, 2, 3,..., 25} and 
● 27 various (rd) discrete alternatives for rounding up the depth of the concrete slab to a whole 

cm (from 4 to 30 cm), rd ∈ Rd, Rd = {1, 2, 3,..., 27}. 
 
In this way, the number of defined discrete binary variables was mfy + mck + stf + stw + smesh + rd 

= 3 + 7 + 9 + 9 + 25 + 27 = 80, whilst the superstructure of alternatives was comprised of mfy · mck 
· stf · stw · smesh · rd = 3 · 7 · 9 · 9 · 25 · 27 = 1.1481 · 106 various solutions of discrete variables. 

The MINLP optimization model COMBOPT of the structure with welded steel I sections was 
used. The model included accurate cost objective function of the self-manufacturing material, 
power and labour costs, see Eq. (1). The optimization was carried out by the MINLP computer 
package MIPSYN, see Kravanja et al. (2003) and Kravanja (2010), the successor of PROSYN 
Kravanja and Grossmann (1994). The Modified OA/ER algorithm and the two-phased 
optimization were applied, where GAMS/CONOPT (generalised reduced-gradient method) by 
Drudd (1994) was used to solve NLP sub-problems, whilst GAMS/CPLEX (branch and bound 
method) was employed to find solutions to MILP master problems. 

The generalized reduced gradient method (GRG), developed by Abadie and Carpentier (1969), 
is a generalization of the reduced gradient method (RG) by allowing non-linear constraints and 
arbitrary bound on the variables. The RG method, introduced by Wolfe (1976), solves the non-
linear programming formulated problems and uses the equality constraints to eliminate a subset of 
the variables. The method reduces the original problem to a bound-constrained problem in the 
space of the remaining variables. The gradient methods handle with the search directions defined 
by the gradient of the function at the current point. 

CPLEX applies well-known principles of the branch and bound method (BB), proposed by 
Land and Doig (1960), in order to solve mixed-integer linear programming (MILP) master 
problems. The BB is an efficient enumeration procedure for examining all possible integer feasible 
solutions. It manages a search tree consisting of nodes. Every node represents a sub-problem to be 
processed: i.e., to be solved, to be checked for integrality and perhaps to be further analyzed. The 
BB algorithm continues to select nodes for branching in the search tree until it finds all final nodes 
at the end of branches and the optimal integer solution. 
The best result of the structure with welded steel sections was reached in the case when the neutral 
axis lay within the concrete slab, see the Welded case (a) in Table 4. The procedure began with 
continuous cost optimization of the relaxed material, standard and rounded dimensions. As all the 
variables were defined during this phase as being continuous, binary variables and their logical 
constraints were temporarily excluded from the optimization. An optimal cost of 79.19 € per m2 of 
the structure was obtained using the continuous steel and concrete strengths and dimensions (the 
1st NLP, Table 4). When the optimal result was reached, the procedure was resumed with the 
simultaneous cost, discrete material, standard and rounded dimension optimization at the second 
level. Binary variables and logical constraints for discrete decisions were added in the optimization 
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during this phase. The optimal result of 79.55 € per m2 of the composite floor system was obtained 
during the 6th MINLP iteration (the 6th NLP, Welded case (a), Table 4). Alongside the optimal 
structure costs, the solution also comprised steel and concrete grades S 355 and C20/25, 
respectively, all dimensions of welded steel sections and their intermediate distances, depth of the 
concrete slab 18 cm and the reinforcement R257, see Fig. 9. 

 
 

Table 4 Convergence of the Modified OA/ER algorithm for plastic resistance of the composite structure 
with welded, IPE and HEA sections; results - structure cost [€/m2] 

 Welded IPE HEA 
 (a) (b) (c) (a) (b) (c) (a) (b) (c) 

Continuous optimization 
1. NLP 79.19 87.08 100.86 194.05 179.71 176.67 128.27 140.61 172.61 

Discrete material, standard and rounded dimension optimization 
1. MILP 79.20 87.13 101.05 197.13 184.10 179.58 130.09 145.01 178.31 
2. NLP 82.09 87.13* 101.05* 197.20 184.10 179.68* 130.51 148.90 179.40 
2. MILP 80.10 87.28 101.33 198.67 185.20 180.23 130.23 146.39 181.36 
3. NLP 80.24 87.28* 101.33* 198.62 184.79 180.20 130.26 148.37 180.84 
3. MILP 80.54 87.33 101.56 - - 180.65 130.53 148.64 - 
4. NLP 79.81 87.33* 101.56* - - 181.52 130.68 150.07 - 
4. MILP 80.67 87.43 101.78 - - - - - - 
5. NLP 79.74 87.89 101.78* - - - - - - 
5. MILP 80.72 87.89 101.97 - - - - - - 
6. NLP 79.55 88.49 101.97* - - - - - - 
6. MILP 80.76 - 102.10 - - - - - - 
7. NLP 80.11 - 102.44 - - - - - - 
7. MILP - - 102.47 - - - - - - 
8. NLP - - 102.80 - - - - - - 

The neutral axis lies within: (a) concrete slab; (b) upper steel flange; (c) steel web 
* Locally infeasible solution (when a/some constraint(s) is/are not satisfied) 

 
 

 
Fig. 9 Optimal cross-section design of the composite floor system with welded steel sections 
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In the case when the standard IPE steel sections composed the composite floor structure, the 
generated superstructure was comprised of: 

 
● 3 different (mfy) structural steel grades (S 235, S 275, S 355), mfy ∈ Mfy, Mfy = {1, 2, 3}; 
● 7 different (mck) concrete strengths (C20/25, C25/30, C30/37, C35/45, C40/50, C45/55, 

C50/60), mck ∈ Mck, Mck = {1, 2, 3,..., 7}; 
● 18 different (sIPE) standard IPE steel section alternatives (from IPE 80 to IPE 600), sIPE ∈ 

SIPE, SIPE = {1, 2, 3,..., 18}; 
● 25 different (smesh) discrete alternatives of steel wire meshes for reinforcing the concrete 

(from R188 to 5xR524), smesh ∈ Smesh, Smesh = {1, 2, 3,..., 25} and 
● 27 various (rd) discrete alternatives for rounding up the depth of the concrete slab to a whole 

cm (from 4 to 30 cm), rd ∈ Rd, Rd = {1, 2, 3,..., 27}. 
 
In this case, the number of defined discrete binary variables was mfy + mck + sIPE + smesh + rd  = 

3 + 7 + 18 + 25 + 27 = 80, whilst the superstructure included mfy · mck · sIPE · smesh · rd = 3 · 7 · 18 · 25 
· 27 = 2.5515·105 various solutions of discrete variables. The MINLP optimization model 
COMBOPT of the structure with standard IPE sections was used. The model included the accurate 
cost objective function, see Eq. (1). 

The best result was obtained in the case when the neutral axis lay within the steel web, see the 
IPE case (c) in Table 4. Whilst the result with continuous parameters of 176.67 € per m2 of the 
structure was obtained at the 1st NLP, the real result yielded 180.20 € per m2 during the 3rd MINLP 
iteration (3rd NLP, IPE case (c), Table 4). The optimal solution was also comprised of steel and 
concrete grades S 235 and C35/45, respectively, standard IPE 600 steel sections and their 
intermediate distances, depth of the concrete slab 5 cm and the reinforcement R188, see Fig. 10. 
Note that this solution is more than twice the expense when compared to the solution with welded 
steel sections. The highest IPE sections - IPE 600 - are actually no longer appropriate for spans of 
20 m. Due to too small cross-sectional areas and other characteristics of the sections, the latter 
were condensed during the optimization process into carrying lower loads. Shorter intermediate 
distances between the sections were consequently calculated. 
When standard HEA steel sections built the composite floor structure, the generated superstructure 
was similar to the one with IPE sections. Instead of the before-mentioned IPE alternatives, the 
superstructure was comprised of 24 different (sHEA) standard HEA section alternatives (from HEA 
100 to HEA 1000), sHEA ∈ SHEA, SHEA = {1, 2, 3,..., 24}. Whilst the number of defined discrete 
binary variables was mfy + mck + sHEA + smesh + rd = 3 + 7 + 24 + 25 + 27 = 86, the superstructure 
included mfy · mck · sHEA · smesh · rd = 3 · 7 · 24 · 25 · 27 = 3.4020·105 various solutions. The MINLP 
optimization model COMBOPT of the composite structure with standard HEA sections was used. 
The accurate cost objective function is defined. 

 
 

 
Fig. 10 Optimal cross-section design of the composite floor system with standard IPE sections 
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Fig. 11 Optimal cross-section design of the composite floor system with standard HEA sections 

 
 
The best result was obtained in the case when the neutral axis lay within the concrete slab, see 

the HEA case (a) in Table 4. Whilst the result of 128.27 € per m2 of the structure was obtained at 
the 1st NLP to be the starting point for the discrete optimization, the real result yielded 130.26 € 
per m2 during the 3rd MINLP iteration (3rd NLP, HEA case (a), Table 4). The optimal solution was 
also comprised of steel and concrete grades S 235 and C50/60, respectively, standard HEA 800 
steel sections and their intermediate distances, depth of the concrete slab 17 cm and the 
reinforcement R524, see Fig. 11. This solution is 64 per cent more expensive when compared to 
the solution with welded steel sections, which was found to be the cheapest composite floor 
structure. 

 
5.2 Elastic cross-section resistance 
 
Similarly to the previous calculations, the composite floor structure was also optimized for the 

case when the elastic cross-section resistances were considered separately for the structure with the 
welded, IPE and HEA steel sections. The convergence of the algorithm is shown in Table 5. In all 
three cases, the superstructures and objective functions remained the same as in the calculation of 
plastic resistance. 
The best result for the composite structure with welded I sections was obtained in the case when 
the neutral axis lay within the steel web. The result yielded 87.04 € per m2 of the structure within 
the 2nd MINLP iteration (2nd NLP, Welded case (c), Table 5). When standard IPE steel sections 
composed the composite structure, the best result was gained in the case when the neutral axis was 
positioned in the steel web. The result reached 179.29 € per m2 of the structure within the 5th 
MINLP iteration (5th NLP, IPE case (c), Table 5). 

Finally, when standard HEA sections built up the composite structure, the best result was 
calculated in the case when the neutral axis was situated within the concrete slab. The result 
reached 145.23 € per m2 of the structure within the 2nd MINLP iteration (2nd NLP, HEA case (a), 
Table 5). 

Similarly to the calculations of the composite structure with plastic resistance, the result of the 
structure with welded steel sections was also found here to be much better that those with IPE and 
HEA sections, which indicates that standard IPE and HEA sections are inappropriate solutions for 
a span of 20 m. The results of the composite floor structure with composed welded and HEA 
sections were in the case of elastic cross-section resistance about 10 per cent worse when 
compared to the results obtained for the structures with plastic resistance. When IPE steel sections 
composed the structure, both the results for plastic and elastic resistances were nearly the same. As 
the solutions of the composite structure based on elastic resistance were in general worse, they are 
not presented in this paper in detail. 
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Table 5 Convergence of the Modified OA/ER algorithm for elastic resistance of the composite structure with 
welded, IPE and HEA sections; results - structure cost [€/m2] 

 Welded IPE HEA 
 (a) (b) (c) (a) (b) (c) (a) (b) (c) 

Continuous optimization 
1. NLP 89.26 88.78 86.65 220.66 217.14 174.69 135.94 133.33 135.77 

Discrete material, standard and rounded dimension optimization 
1. MILP 88.93 89.02 86.95 225.46 221.72 177.77 133.09 133.96 139.37 
2. NLP 98.22 88.99 87.04 225.51* 221.73 181.52 145.23 137.07* 145.37 
2. MILP 89.07 89.63 87.10 226.11 223.09 178.13 123.67 135.26 140.44 
3. NLP 99.28 89.71 87.15 225.99 222.73 180.20 159.87* 139.17* 146.37 
3. MILP - - - 227.02 - 181.25 123.83 135.45 - 
4. NLP - - - 226.25 - 179.70 162.15* 139.02* - 
4. MILP - - - - - 182.53 123.86 135.56 - 
5. NLP - - - - - 179.29 161.24* 138.51* - 
5. MILP - - - - - 183.37 123.94 135.69 - 
6. NLP - - - - - 186.50 162.13* 148.63 - 
6. MILP - - - - - - 123.97 140.03 - 
7. NLP - - - - - - 161.11* 150.01 - 

- - - - - - - - - - 
12. MILP - - - - - - 124.53 - - 
13. NLP - - - - - - 159.33 - - 

The neutral axis lies within (a) concrete slab; (b) upper steel flange; (c) steel web 
*Locally infeasible solution (when a/some constraint(s) is/are not satisfied) 

 
 

6. Conclusions 
 
This paper has presented the cost optimization of a composite floor system. The composite 

floor system was designed to be connected together from the reinforced concrete slab and steel I 
sections. The optimization was performed by the mixed-integer non-linear programming (MINLP) 
approach. 

In order to consider various design possibilities, a number of different MINLP optimization 
models COMBOPT were developed for the optimizations of composite structures with welded, 
standard HEA and IPE steel sections, with plastic and elastic resistances, at three different 
positions of the neutral axis (within the concrete slab, the upper steel flange, and the web of steel 
section) as well as with two different positions of the centre of gravity axis of the transformed (all-
steel) section (within the concrete slab and the steel section). 

An accurate economic objective function of the self-manufacturing cost was developed, for the 
structures with welded and standard steel I sections separately. The material, power and labour 
costs were accounted for within the objective function, subject to the given design, resistance and 
deflection (in)equality constraints, in order to satisfy the requirements of both the ultimate and 
serviceability limit states. Eurocode 4 standard was considered for the steel components. The 
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Modified OA/ER algorithm and the two-phased MINLP optimization were applied. 
A numerical example of the optimization of the composite floor system is presented at the end 

of the paper to enhance the steps and capabilities of the proposed MINLP optimization approach. 
The developed program tool, particularly different optimization models COMBOPT, enabled us to 
conduct an accurate study of the design and economic properties of the composite floor system, 
designed with welded or standard steel I sections, and treated with plastic or elastic cross-section 
resistances. 
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Appendix A 
The design plastic moment resistance of a composite I beam floor system 
 

The design plastic moment resistance Mpl,Rd,cb is defined for three different design possibilities, 
i.e., those cases when the plastic neutral axis xp is situated: within the concrete slab, within the 
upper flange of the steel section, and within the web of the steel section. Constraint (A1) defines 
the plastic neutral axis xp to be situated within the concrete slab, see Fig. A1. Mpl,Rd,cb and xp are in 
this case determined by Eqs. (A2) and (A3). 

 
Aa · fy · γc

0.85 · fck · γa
 ≤  2 · be · d (A1) 

 

Mpl,Rd,cb = �
h
2

 + d −
xp 
2
� ·

Aa · fy
γa

 (A2) 
 

where 
 

xp=
Aa · fy · γc

2 · 0.85 · fck · be · γa
 (A3) 

 
Eq. (A4) introduces the necessary condition for the plastic neutral axis xp located within the 

upper flange of the steel section, see Fig. A2. The design plastic moment resistance Mpl,Rd,cb and 
the vertical distance of the axis xp from the top edge are then calculated by Eqs. (A5) and (A6), 
respectively. 

2 · be · d < 
Aa · fy · γc

0.85 · fck · γa
 ≤  2 · be · d + 2 · 

fy · γc
0.85 · fck · γa

 · bf · tf (A4) 

 

Mpl,Rd,cb = �Aa · �
h
2

 + 
d
2
� − bf · xp· �xp − d�� ·

fy
γa

 (A5) 
 

where 
 

xp = d + 
Aa

2 · bf
−

0.85 · fck · γa · be · d
bf · fy · γc

 (A6) 

 
 

 
Fig. A1 Plastic neutral axis situated within the concrete slab 
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Fig. A2 Plastic neutral axis situated within the upper flange of the steel section 

 
 

 
Fig. A3 Plastic neutral axis situated within the web of the steel section 

 
 
The constraint Eq. (A7) denotes the necessary condition for the plastic neutral axis xp to be 

positioned within the web of the steel section, see Fig. A3. Mpl,Rd,cb and xp are in this case defined 
by Eqs. (A8) and (A9). 

fy · γc
0.85 · fck · γa

 · �Aa − 2 · bf · tf� > 2 · be · d (A7) 

 

Mpl,Rd,cb = �Aa · �
h
2

 + 
d
2
� − tf · bf · �d + tf� − tw · �xp − tf − d� · �xp + tf�� · 

fy
γa

 (A8) 
 

where 
 

xp = d + tf + 
Aa

2·tw
−

0.85 · fck · γa · be · d
tw · fy · γc

−
tf · bf

tw
 (A9) 
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Appendix B 
The design elastic moment resistance of a composite I beam floor system 

 
The design elastic bending moment resistance Mel,Rd,cb is proposed as being determined for three 

different design alternatives, i.e., for three various positions of the elastic neutral axis xe: within the 
concrete slab, within the upper flange of the steel section and within the steel web. Eqs. (B1)-(B10) 
introduce the constraints for the elastic neutral axis xe located within the concrete slab, see Fig. B1. 
The elastic moment resistance Mel,Rd,cb is given by Eq. (B2). Whilst the internal tension forces in 
steel Nt1, Nt2 and Nt3 are calculated by Eqs. (B3)-(B5), the internal compression force in concrete 
Nc is defined by Eq. (B6), where n is the modular ratio and σa is the maximal tension stress in steel 
beam. The intermediate distances between the internal forces and the neutral axis a1, a2, a3 and a4 
are proposed by Eqs. (B7)-(B10). 

dxe ≤  (B1) 
 

Mel,Rd,cb = Nt1  · a1 + Nt2  · a2 + Nt3  · a3 + Nc  · a4 (B2) 
 

where 
 

Nt1  =  
σa

2
· �1 + 

d + h − xe − tf
d + h − xe

� · tf · bf (B3) 

 

Nt2  =  
σa

2
· �

2 · d + h − 2 · xe 
d + h − xe

� · �h − 2 · tf�· tw (B4) 

 

Nt3  =  
σa

2
· �

2 · d + tf − 2 · xe

d + h − xe
� · tf · bf (B5) 

 

Nc  =  
σa

2 · n
· �

xe

d + h − xe
� · xe· beff (B6) 

 

a1 = d + h − xe − �
3 · d + 3 · h − 3 · xe − 2 · tf

2 · d + 2 · h − 2 · xe − tf
· 

tf
3
� (B7) 

 
 

 
Fig. B1 Elastic neutral axis is situated within the concrete slab 
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Fig. B2 Elastic neutral axis situated within the upper flange of the steel section 

 
 

a2 = d + h − xe − tf − �
3 · d + h + 𝑡𝑡𝑓𝑓 − 3 · xe

2 · d + h − 2 · xe
· 
�h − 2 · tf�

3
� (B8) 

 

a3 = d + tf − xe − �
3 · d + tf − 3 · xe

2 · d + tf − 2 · xe
· 

tf
3
� (B9) 

 
a4 = 2 3⁄  · xe (B10) 

 
Eqs. (B11)-(B22) denote the constraints for the elastic neutral axis xe positioned within the 

upper flange of the steel section, see Fig. B2. The elastic bending moment resistance is determined 
by Eq. (B12). Eqs. (B13)-(B15) represent the internal tension forces in steel Nt1, Nt2 and Nt3, whilst 
Eqs. (B16)-(B17) stand for the internal compression forces within concrete Nc1 and Nc2. The 
distances between the forces and the neutral axis a1, a2, a3, a4 and a5 are proposed by Eq. (B18)-
(B22). 

( )fe tdxd +≤≤  (B11) 
 

Mel,Rd,cb = Nt1  · a1 + Nt2  · a2 + Nt3  · a3 + Nc1 · a4 + Nc2 · a5 (B12) 
 

where 
 

Nt1  =  
σa

2
· �1 + 

d + h − xe − tf
d + h − xe

� · tf · bf (B13) 

 

Nt2  =  
σa

2
· �

2 · d + h − 2 · xe 
d + h − xe

� · �h − 2 · tf�· tw (B14) 

 

Nt3  =  
σa

2
· �

d + tf − xe

d + h − xe
� · �d + tf − xe�· bf (B15) 

 

Nc1 =  
σa

2
· �

xe − d
d + h − xe

� · (xe − d)· bf (B16) 
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Nc2 =  
σa

2 · n
· �

2 · xe − d
d + h − xe

� · d · beff (B17) 
 

a1 = d + h − xe − �
3 · d + 3 · h − 3 · xe − 2 · tf

2 · d + 2 · h − 2 · xe − tf
· 

tf
3
� (B18) 

 

a2 = d + h − xe − tf − �
3 · d + h + 𝑡𝑡𝑓𝑓 − 3 · xe

2 · d + h − 2 · xe
· 
�h − 2 · tf�

3
� (B19) 

 
a3 = 2 3⁄  · �d + tf  − xe� (B20) 

 
a4 = 2 3⁄ · (xe − d) (B21) 

 

a5 = xe − �
3 · xe − 2 · d

2 · xe − d
· 

d
3
� (B22) 

 
Eqs. (B23)-(B34) stand for the constraints for the elastic neutral axis xe lying within the web of 

the steel section, see Fig. B3. The elastic moment resistance Mel,Rd,cb is proposed by Eq. (B24). 
Whilst the internal tension forces in steel Nt1 and Nt2 are calculated by Eqs. (B25) and (B26), the 
internal compression forces in concrete Nc1, Nc2 and Nc3 are defined by Eqs. (B27)-(B29). The 
intermediate distances between the forces and the neutral axis a1, a2, a3, a4 and a5 are determined 
by Eqs. (B30)-(B34). 

xe ≥ (d +tf) (B23) 
 

Mel,Rd,cb = Nt1  · a1 + Nt2  · a2 + Nc1 · a3 + Nc2 · a4 + Nc3 · a5 (B24) 
 

where 
 

Nt1  = 
σa

2
· �1 + 

d + h − xe − tf
d + h − xe

� · tf · bf (B25) 

 

Nt2  = 
σa

2
· �

d + h − xe − tf
d + h − xe

� · �d + h − xe − tf� · tw (B26) 

 
 

 
Fig. 3 Elastic neutral axis situated within the web of the steel section 
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Nc1 = 
σa

2
· �

xe − d − tf
d + h − xe

� · �xe − d − tf� · tw (B27) 

 

Nc2 = 
σa

2
· �

2 · xe − 2 · d − tf
d + h − xe

� · tf · bf (B28) 

 

Nc3 = 
σa

2 · n
· �

2 · xe − d
d + h − xe

� · d · beff (B29) 

 

a1 = d + h − xe − �
3 · d + 3 · h − 3 · xe − 2 · tf

2 · d + 2 · h − 2 · xe − tf
· 

tf
3
� (B30) 

 
a2 = 2 3⁄ · �d + h − xe − tf� (B31) 

 
a3 = 2 3⁄  · �xe − d − tf� (B32) 

 

a4 = xe − d − �
3 · xe − 3 · d − 2 · tf

2 · xe − 2 · d − tf
· 

tf
3
� (B33) 

 

a5 = xe − �
3 · xe − 2 · d

2 · xe − d
· 

d
3
� (B34) 
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