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Abstract.    Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced 
piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The 
structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of 
system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness 
direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through 
Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties 
of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using 
Hamilton’s principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) 
method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed 
parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, 
temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the 
frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different 
boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, 
FGX distribution of CNT is better than other considered cases. 
 

Keywords:   vibration of piezoelectric shell; FG-CNT; DC method; Non-uniform temperature distribution; 
temperature-dependent 
 
 
1. Introduction 
 

A great deal of interest for the analysis of carbon nanotube-reinforced composite (CNTRC) 
structures is being manifested in the specialized literature. This interest is mainly due to the advent 
of the new composite material systems exhibiting exotic properties as compared to the traditional, 
carbon fiber-reinforced composite structures. Due to their very attractive thermo-mechanical 
properties these new materials are going to play a great role in the construction of Micro-Electro-
Mechanical Systems (MEMS) and Nano-Electro-Mechanical Systems (NEMS). 

Functionally graded materials (FGMs) have found a wide range of applications in many 
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industries. Rajesh Bhangale and Ganesan (2005) investigated free vibration of non-homogeneous 
FG magneto- electro-elastic finite cylindrical shells with simply supported boundary condition. 
Based on differential quadrature method, static analysis of FG cylindrical shell integrated with 
piezoelectric layers was analyzed by Alibeigloo and Nouri (2010). Sheng and Wang (2009a, b, 
2010) investigated active vibration control, displacements and buckling of FG laminated 
cylindrical shells integrated with piezoelectric layers. Based on an analytical approach, the free 
vibration and transient response of FG piezoelectric cylindrical panels subjected to impulsive loads 
were presented by Bodaghi and Shakeri (2012). The mechanical and thermal buckling behaviors of 
ceramic–metal functionally grade plates (FGPs) were studied by Zhang et al. (2014c) using a local 
Kriging meshless method. The local meshless method was developed based on the local Petrov–
Galerkin weak-form formulation combined with shape functions having the Kronecker delta 
function property, constructed by the Kriging interpolation. Based on the proposed method by 
Zhang et al. (2014a), geometrically nonlinear thermoelastic analysis of FGM plates in thermal 
environments was developed by Zhu et al. (2014). In the thermal analysis, the dependency of 
thermal conductivity of functionally graded materials on temperature was involved, which gives 
rise to a nonlinear partial differential heat conduction equation. Zhang et al. (2015a) investigated 
active vibration control of piezoelectric bonded smart structures using PID algorithm. A nonlinear 
deflection analysis was carried out by Zhang and Liew (2016a) for internal column supported 
functionally graded material (FGM) arbitrarily straight-sided quadrilateral plates under a 
uniformly distributed loading based on based on the element-free IMLS-Ritz method. Noted that 
the mentioned method was used by Zhang et al. (2015a, b) for solution of elastodynamic problems 
and three-dimensional wave equations. Postbuckling behavior of biaxial compressed straight-sided, 
functionally graded material (FGM) plates of quadrilateral shape was studied by Zhang et al. 
(2016a) using the IMLS-Ritz method and first-order shear deformation theory (FSDT) with the 
von Kármán nonlinearity. 

None of the above researchers have considered nanocomposite structures. The traditional 
approach to fabricating nanocomposites implies that the nanotube is distributed either uniformly or 
randomly such that the resulting mechanical, thermal, or physical properties do not vary spatially 
at the macroscopic level. Functionally graded materials (FGMs) are a new generation of composite 
materials in which the micro-structural details are spatially varied through non-uniform 
distribution of the reinforcement phase. Static analysis of functionally graded carbon nanotube 
(FG-CNT) reinforced composite plate imbedded in piezoelectric layers was discussed by 
Alibeigloo (2013). A first attempt to use the mesh-free kp-Ritz method for large deflection 
geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded (CNTR-FG) 
cylindrical panels subjected to mechanical loads was performed by Zhang et al. (2014b). The 
mesh-free kp-Ritz was utilized by Lei et al. (2014) for dynamic stability analysis of CNTR-FG 
cylindrical panels under static and periodic axial force. Based on FSDT, Zhang et al. (2014c) 
employed the mesh-free kp-Ritz for analysis of flexural strength and free vibration of FG-CNTRC 
cylindrical panels. Liew et al. (2014) analyzed postbuckling of various types of CNTR-FG 
cylindrical panels, using the element-free kp-Ritz method combined with the FSDT and von 
Kármán strains. Zhang et al. (2015c) reported free vibration analysis of FG-CNT reinforced 
triangular plates using the FSDT and element-free IMLS-Ritz method. The vibration behaviors of 
functionally graded carbon nanotube (FG-CNT) reinforced composite rectangular plates subjected 
to in-plane loads were studied by Zhang et al. (2015d). Based on state-space Levy method, the 
critical in-plane loads for the buckling of different FG-CNT plates were calculated and compared. 
The geometrically nonlinear large deformation and buckling analysis of FG-CNT reinforced 
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composite skew plates resting on Pasternak foundations was presented by Zhang and Liew (2015a) 
and Zhang et al. (2015e). Parametric studies were conducted to examine the effects of CNT 
content by volume, elastic foundation, skew angle, plate width-to-thickness ratio, plate aspect ratio 
and boundary conditions on the nonlinear responses of the FG-CNT reinforced composite skew 
plates. Nonlinear bending behaviors of FG-CNT reinforced composite thick plates were presented 
by Zhang et al. (2015f) based on arc-length iterative algorithm and the modified Newton–Raphson 
method. Free vibration of FG-CNT reinforced composite moderately thick rectangular plates with 
edges elastically restrained against transverse displacements and rotation of the plate cross section 
was considered by Zhang et al. (2015g). They used FSDT for modeling of structure and element-
free improved moving least-squares Ritz (IMLS-Ritz) method for solution. Based on FSDT, Lei et 
al. (2015a, b) presented the vibration and Elastodynamic analysis of laminated FG-CNT reinforced 
composite rectangular plates and carbon nanotube-reinforced functionally graded (CNTR-FG) 
plates using the element-free kp-Ritz method. Numerical simulations were used to study the effect 
of carbon nanotube volume fraction, plate width-to-thickness ratio, plate aspect ratio, boundary 
condition, load type and distribution type of carbon nanotubes on the dynamic responses of 
structure. An improved moving least-squares (IMLS) approximation for the field variables was 
proposed by Zhang and Liew (2015b) for geometrically nonlinear large deformation analysis of 
FG-CNT reinforced composite quadrilateral plates. The modified Newton–Raphson method 
combined with the arc-length iterative algorithm was employed to solve the nonlinear deformation 
of the structure. Lei et al. (2016) investigated bending responses of laminated carbon nanotube-
reinforced functionally graded composite plates. Effective material properties of the laminated 
nanocomposite plates were estimated using the extended rule of mixture. Zhang et al. (2016a) 
presented a geometrically nonlinear analysis of carbon nanotube reinforced functionally graded 
composite plates with elastically restrained edges and internal supports. The governing equation to 
this problem was derived through the IMLS-Ritz method. Zhang et al. (2016b, c, d) studied 
postbuckling analysis of carbon nanotube reinforced functionally graded plates with edges 
elastically restrained against translation and rotation, FG-CNT reinforced composite plates resting 
on Pasternak foundations and laminated nanocomposite plates subjected to biaxial and uniaxial 
compression. In the mentioned works, the IMLS-Ritz method was used. An aerothermoelastic 
analysis of carbon nanotube reinforced functionally graded composite panels in supersonic airflow 
was presented by Zhang et al. (2016e) based on Reddy’s third-order shear deformation theory. 
Meanwhile, the active flutter control of CNT reinforced functionally graded composite panels was 
also carried out using the piezoelectric actuator and sensor. Optimal shape control of CNT 
reinforced functionally graded composite plates was studied by Zhang et al. (2016f) based on 
genetic algorithm. The effects of CNT distributions and plate aspect ratios on optimal shape 
control results were investigated. Utilizing the FSDT element-free method, Zhang et al. (2016g, 
2016h) investigated elastodynamic and free vibration analysis of quadrilateral and triangular CNT-
reinforced composite plates. Detailed numerical simulations were carried out to investigate the 
effect of CNT volume fraction, CNT distribution type, side angles, area of quadrilateral plate, 
isosceles triangular angle, plate width-to-thickness ratio and boundary condition on the dynamic 
behaviors of structure. 

However, to date, no report has been found in the literature on vibration analysis of FG-CNT-
reinforced piezoelectric cylindrical shell subjected to non-uniform temperate distribution. 
Motivated by these considerations, in the present study, temperature-dependent vibration analysis 
of embedded FG-CNT-reinforced piezoelectric cylindrical shell is investigated. The structure is 
subjected to external applied voltage, uniform and non-uniform temperate distributions. The rule 
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of mixture is used for calculating the equivalent material properties of nano-composite structure. 
The surrounding elastic medium is simulated by Pasternak foundation. The motion equations are 
derived based on FSDT in conjunction with Hamilton's principal. The frequency of structure is 
obtained using DC method for different boundary conditions. The effects of applied voltage, 
volume percent and distribution type of CNT in polymer, temperature distribution type, elastic 
medium and boundary conditions on the frequency of system are disused in detail. 
 
 
2. FSDT theory 
 

Based on FSDT shell theory, the displacement field can be expressed as (Reddy 2002) 
 

     , , , , , , , ,xu x z t u x t z x t      (1a)
 

     , , , , , , , ,v x z t v x t z x t      (1b)
 

   , , , , , ,w x z t w x t   (1c)
 

where (u(x, θ, z, t), v(x, θ, z, t), w(x, θ, z, t)) denote the displacement components at an arbitrary 
point (x, θ, z) in the shell, and (u(x, θ, t), v(x, θ, t), w(x, θ, t)) are the displacement of a material 
point at (x, θ) on the mid-plane (i.e., z = 0) of the shell along the x-, θ-, and z-directions, 
respectively; ϕx and ϕθ are the rotations of the normal to the mid-plane about x- and θ- directions, 
respectively. Based on above relations, the strain-displacement equations may be written as 
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where (εxx, εθθ) are the normal strain components and (γθz, γxz, γxθ) are the shear strain components. 
 
 
3. Constitutive equations of piezoelectric material 
 

The subsequent characterization of electromechanical coupling covers the various classes of 
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piezoelectric materials. Details with respect to definition and determination of the constants 
describing these materials have been standardized by the Institute of Electrical and Electronics 
Engineers (Alibeigloo,2013). Stresses σ and strains ε on the mechanical side, as well as flux 
density D and field strength E on the electrostatic side, may be arbitrarily combined as follows 
(Tiersten 1969) 
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where σij (i, j = x, θ, z), εij (i, j = x, θ, z), Dii (i = x, θ, z) and Eii (i = x, θ, z) are stress, strain, electric 
displacement and electric field, respectively. Also, Qij (i, j = 1, 2,..., 6), eij (i, j = 1, 3, 4, 5) and ij (i, 
j = 1, 2, 3) denote elastic, piezoelectric and dielectric coefficients, respectively. Noted that Cij (i, j 
= 1, 2,..., 6) and αxx, αθθ may be obtained using rule of mixture (next section). The electric field in 
terms of electric potential (Φ) is expressed as 

 

,kE  (5)
 

where, the electric potential is assumed as the combination of a half-cosine and linear variation, 
which satisfies the Maxwell equation. It can be written as (Liu et al. 2013) 
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where ϕ (x, θ, t) is the time and spatial distribution of the electric potential which must satisfy the 
electric boundary conditions, V0 is external electric voltage. 

However, using Eq. (1), the governing equations of piezoelectric material (i.e., Eqs. (3) and (4)) 
for FSDT may be written as 
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4. Uniform and nano-uniform temperature distribution 
 

In order to accurately describe the effect of the temperature rise through-the-thickness different 
temperature distributions are taken into account in the present analysis. 

 
4.1 Uniform temperature rise 
 
The cylindrical shell initial temperature is assumed to be Ti. The temperature is uniformly 

raised to a final value T. The temperature change is give by 
 

,iT T T    (15)
 
4.2 Linear temperature rise 
 
The temperature of the outer surface is To and it is considered to vary linearly from Tt to the 

inner surface temperature Ti. Therefore, the temperature rise through-the-thickness is given by 
 

1
(z) , .

2 i o i

z
T T T T T T

h
        
 

 (16)

 
4.3 Harmonic temperature rise 

 
In the third case, the temperature distribution across the thickness direction follows a sinusoidal 

law as 
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5. Mixture rule 
 

As shown in Fig. 1, a FG-CNT reinforced piezoelectric cylindrical shell with length L and 
thickness h is considered. The structure is surrounded by Pasternak medium. One uniform and 
three functionally graded CNT distributions are considered. However, for calculating the 
equivalent material properties of present nano-composite structure, the rule of Mixture is applied. 

According to this theory, the effective Young and shear moduli of structure may be expressed as 
(Liew et al. 2014, Zhang et al. 2015h) 

 

,)1(11111 mCNTrCNT EVEVE   (18)

 
 

 
  

 

(a) UD (b) FGV 
  

 

(c) FGO (d) FGX 

Fig. 1 Configurations of the CNT distribution in a piezoelectric cylindrical shell 
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where Er11, Er22 and Em are Young’s moduli of CNTs and matrix, respectively; Gr11 and Gm are 
shear modulus of CNTs and matrix, respectively; VCNT and Vm show the volume fractions of the 
CNTs and matrix, respectively; ηj (j = 1, 2, 3) is CNT efficiency parameter for considering the 
size-dependent material properties. Noted that this parameter may be calculated using molecular 
dynamic (MD). However, the CNT distribution for the mentioned patters obeys from the following 
relations (Zhang et al. 2015h, Liew et al. 2014) 
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Furthermore, the thermal expansion coefficients in the axial and transverse directions 
respectively (α11 and α22) and the density (ρ) of the nano-composite structure can be written as 
(Liew et al. 2014) 
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where wCNT is the mass fraction of the CNT; ρm and ρCNT present the densities of the matrix and 
CNT, respectively; vr12 and vm are Poisson’s ratios of the CNT and matrix, respectively; αr11, αr22 
and αm are the thermal expansion coefficients of the CNT and matrix, respectively. Noted that v12 is 
assumed as constant. 
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6. Energy method 
 
The total potential energy, V, of the system is the sum of potential energy, U, kinetic energy, K, 

and the work done by the elastic medium, W. 
 
6.1 Potential energy 
 
The potential energy can be written as 
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Combining of Eqs. (1), (7)-(14) and (24) yields 
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where the stress resultant-displacement relations can be written as 
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In which k′ is shear correction coefficient. Substituting Eqs. (1) and (7)-(14) into Eqs. (26)-(28), 

the stress resultant-displacement relations can be obtained as reported in Appendix A. 
 
6.2 Kinetic energy 
 
The kinetic energy of system may be written as 
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Defining the moments of inertia as below 
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the kinetic energy may be written as 
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6.3 External works 
 
The external work due to Pasternak medium can be written as (Shen and Chen 2011) 
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where Kw and Kg are Winkler’s spring modulus and shear layer coefficients, respectively. The 
foundation stiffness Kw for soft medium may be written by 
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where Es, vs, Hs are Young’s modulus, Poisson’s ratio and depth of the foundation, respectively. In 
this paper, Es is assumed to be temperature-dependent while vs is assumed to be a constant. In 
addition, the in-plane forces may be written as 
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7. Motion equations 
 
The governing equations can be derived by Hamilton’s principal as follows 
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Substituting Eqs. (25), (31), (32) and (35) into Eq. (39) yields the following governing 
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Substituting Eqs. (A1) to (A8) into Eqs. (40) to (45), the governing equations can be obtained 
as listed in Appendix B. In this paper, three types of boundary conditions are used which are 
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8. Solution procedure 
 

DCM is a numerical procedure expressing a calculus operator ( ) value of the function (f(x, 
θ)) at a discrete point in the solution domain as a weighted linear sum of discrete function values 
chosen within the overall domain of a problem. For a two-dimensional problem, supposing that 
there are N arbitrarily located grid points, the cubature approximation at the ith discrete point can 
be expressed as (Kolahchi et al. 2016a, b) 
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where Cij and N are the cubature weighting coefficients and total number of grid points in the 
solution domain, respectively. The computation of the weighting coefficients can be done using the 
following expression (Kolahchi et al. 2016a, b) 
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The above equation may be written in matrix form as 
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The coefficient matrix, ][   jjx 
 can be expanded with j in column wise and one row of each 

pair of (v, μ). Also, each pair of (v, μ) is required to fill the column on the right of the equal sign. 
The cubature weighting coefficients may be obtained by solving Eq. (30) repeatedly for i = 1, 2, ..., 
N, respectively. 

Based on Eqs. (49) and (50), the motion equations (i.e., Eqs. (40) to (45)) may be written in 
matrix form as follows 
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 (52)

 
where [K] and [M] are stiffness and mass matrixes, respectively; Y is the displacement vector (Y = 
(u, v, w, ϕx, ϕθ, ϕ)); subtitles of b and d are related to boundary and domain points, respectively. 
Finally, for calculating the frequency of the system (ω), the eigenvalue problem can be used. 

 
 

9. Numerical results and discussion 
 
In this section, the effects of different parameters on the frequency of system are shown. For 

this purpose, PZT-5A is selected for the piezoelectric cylindrical shell with the following 
temperature-dependent thermal, mechanical and electrical properties as (Yaqoob Yasin and 
Kapuria 2014, Shen 2005) 

 TEEE  11111011 1  (53a)
 

 TEEE  22122022 1  (53b)
 

 TEEE  33133033 1  (53c)
 

 TGGG  12112012 1  (53d)
 

 TGGG  13113013 1  (53e)
 

 TGGG  23123023 1  (53f)
 

 Txx  111110 1   (53g)
 

 T 221220 1   (53h)
 

,1232113131 CdCde   (53i)
 

,2232123132 CdCde   (53j)
 

,333333 Cde   (53k)
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Table 1 Elastic, piezoelectric and thermal constants of PZT-5 

Elastic constants Piezoelectric constants Thermal coefficients 

GPaEE 61220110   

GPaE 2.53330   

GPaGGG 2.24230130120   

35.012   
38.01323   

0005.0111 E  

0002.0231131121331221  GGGEE  

Vmdd /1071.1 10
3231

  
Vmdd /1084.5 10

1524
  

Vmd /1074.3 10
33

  

K/1109.0 6
220120

  

0005.0221111   

 
 

Table 2 Temperature-dependent material properties of (10, 10) SWCNT 
(L = 9.26 nm, R = 0.68 nm, h = 0.067 nm, )175.012 CNT  (Shen and Chen 2011) 

VCNT
 MD (Liew et al. 2014) Rule of mixture 

)(11 GPaE  )(22 GPaE  )(11 GPaE 1 )(22 GPaE  2
0.11 94.8 2.2 94.57 0.149 2.2 0.934 

0.14 120.2 2.3 120.09 0.150 2.3 0.942 

0.17 145.6 3.5 145.08 0.149 3.5 1.381 
 
 

Table 3 Comparisons of Young’s moduli for PmPV/CNT composites reinforced by (10,10)-tube 
under T = 300 K (Shen and Chen 2011) 

Temperature 
(K) )(11 TPaECNT  )(22 TPaECNT )(12 TPaGCNT )/10( 6

12 KCNT   )/10( 6
22 KCNT 

300 5.6466 7.0800 1.9445 3.4584 5.1682 

500 5.5308 6.9348 1.9643 4.5361 5.0189 

700 5.4744 6.8641 1.9644 4.6677 4.8943 

 
 

,442424 Cde   (53l)
 

,551515 Cde   (53m)
 

where the above constants are listed in Table 1. 
Furthermore, the material properties of CNTs as reinforce and efficiency parameter ηj are 

shown in Tables 2 and 3, respectively. The Poly dimethylsiloxane (PDMS) is selected for 
elastomeric medium with vs = 0.48 and Es = (3.22 ‒ 0.0034T) GPa in which T = T0 + ΔT and T0 = 
300 K (room temperature) (Shen and Chen 2011). 

 
9.1 Convergence of DCM 
 
The convergence and accuracy of the DC method in evaluating the dimensionless frequency of 

structure is shown in Fig. 2 for different grid point numbers. Fast rate of convergence of the 
method is quite evident and it is proven that the results may be converged with 113 grid points. 
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Fig. 2 Convergence and accuracy of DCM 
 
 
9.2 Validation 
 
In order to validated the results of this work, ignoring the CNT volume percent (i.e., VCNT = 0), 

elastic medium (i.e., Kw = Kg = 0) and temperature dependency of shell (i.e., T = 300 K), vibration 
of a piezoelectric cylindrical shell is investigated. Based on FSDT and Navier’s method, the 
frequency of structure is obtained and compared with the results of Sheng and Wang (2010) in Fig. 
3. As can be seen, present results are in good agreement with those reported by Sheng and Wang 
(2010), indicating validation of present work. 

 
 

 

Fig. 3 Comparison of present work with Sheng and Wang (2010) 
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9.3 Effects of different parameters on vibration of system 
 
The effect of distribution type of CNT in piezoelectric cylindrical shell on the dimensionless 

frequency )/( 11
m

m EL   of system versus external applied voltage is shown in Fig. 4. The 

CNT uniform distribution and three types of FG patterns namely as FGV, FGO and FGX are 
considered. It can be seen that the dimensionless frequency decreases with changing external 
applied voltage from negative to positive values. In the other words, the dimensionless frequency 
of structure with applying negative external voltage is higher than the dimensionless frequency of 

 
 

 

Fig. 4 Dimension frequency versus external applied voltage for different CNT distribution types 
 
 

 

Fig. 5 Dimension frequency versus external applied voltage for different CNT volume percent 
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structure with applying positive one. It is since the applied positive and negative voltages createthe 
axial compressive and tensile forces in the structure, respectively. With respect to the distribution 
types of CNTs in the shell, it can be concluded that the FGX pattern is the best choice compared to 
other cases. It is because, in the FGX mode, the frequency of structure is maximum which means 
the stiffness of system is higher with respect to other three patterns. Meanwhile, the frequency of 
structure with CNT uniform distribution is higher than FGV and FGO models. However, it can be 
concluded that the CNT distribution close to top and bottom are more efficient than those 
distributed nearby the mid-plane. 

The effect of the CNT volume fraction on the dimensionless frequency of the CNTRC shell 
 
 

 

Fig. 6 Dimension frequency versus external applied voltage for different elastic medium types 
 
 

 

Fig. 7 Dimension frequency versus external applied voltage for different temperature distribution types 
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with respect to external applied voltage is illustrated in Fig. 5. It can be found that applied negative 
voltage can increase the dimensionless frequency of the CNTRC shell. It is also observed that 
increasing the CNT volume fraction increases the dimensionless frequency of structure. This is due 
to the fact that the increase of CNT volume fraction leads to a harder structure. Hence, applying 
nanotechnology in shell is a new idea which can harder the system and consequently improve the 
vibration behavior of structure. 

The effect of the temperature-dependent elastic medium type on the dimensionless frequency of 
the CNTRC shell with respect to applied external voltage is illustrated in Fig. 6. Three cases are 
considered as without elastic medium (Kw = 0 N/m3, Kg = 0 N/m), Winkler medium (Kw ≠ 0 N/m3, 

 
 

 
Fig. 8 Dimension frequency versus external applied voltage for different boundary conditions 

 
 

 

Fig. 9 First and second mode shapes of structure with CC boundary condition 
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Kg = 0 N/m) and Pasternak medium (Kw ≠ 0 N/m3, Kg ≠ 0 N/m). As can be seen, considering elastic 
medium increases dimensionless frequency of the CNTRC shell. It is due to the fact that 
considering elastic medium leads to stiffer structure. Furthermore, the effect of the Pasternak-type 
is higher than the Winkler-type on the dimensionless frequency of the CNTRC shell. It is perhaps 
due to the fact that the Winkler-type is capable to describe just normal load of the elastic medium 
while the Pasternak-type describes both transverse shear and normal loads of the elastic medium. 

The effect of the temperature distribution type on the dimensionless frequency of the FG-CNT 
reinforced piezoelectric cylindrical shell is demonstrated in Fig. 7 versus applied external voltage. 
Here, three cases of uniform, linear and harmonic distribution fields are considered. As can be seen, 

 
 

 

Fig. 10 First and second mode shapes of structure with CS boundary condition 
 
 

 

Fig. 11 First and second mode shapes of structure with SS boundary condition 
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the dimensionless frequency of structure subjected to harmonic temperature field is higher than 
linear and uniform ones. In addition, the non-uniform temperature distributions lead to higher 
frequency with respect to the structure under uniform temperature field. 

The effect of different boundary conditions on the dimensionless frequency of system against 
external applied voltage is plotted in Fig. 8. As can be seen, the structure with CC boundary 
condition has maximum dimensionless frequency with respect to other cases. It is due to the fact 
that the CC boundary condition makes the structure harder. Furthermore, the dimensionless 
frequency of cylindrical shell with the assumed boundary conditions follows the below order: 

CC > CS > SS. 
 

The mode shapes of the structure for the first and second modes are shown in Figs. 9-11, 
respectively for CC, CS and SS boundary conditions. It can be seen that the boundary conditions 
are satisfied at both ends of the cylindrical shell. Furthermore, the maximum deflection of FG-
CNT reinforced cylindrical shell for CC and SS boundary conditions is happen at the middle of 
structure while for CS boundary condition, it is near the right side of cylindrical shell. 

 
 

10. Conclusions 
 
Temperature-dependent vibration analysis of FG-CNT-reinforced piezoelectric cylindrical shell 

subjected to uniform and non-uniform temperature distributions was presented in this study. The 
structure was subjected to external voltage in the thickness direction. The Mixture rule is used for 
obtaining the material properties of structure. The surrounding elastic medium was simulated by 
temperature-dependent Pasternak foundation. Utilizing FSDT, energy method and Hamilton's 
principle, the motion equations were derived. DC method was used for calculating the frequency 
of structure for different boundary conditions. The effects of the external applied voltage, volume 
percent and distribution type of CNT in polymer, temperature distribution type, elastic medium 
and boundary conditions on the frequency of system were shown. The results indicate that the 
dimensionless frequency decreases with changing external applied voltage from negative to 
positive values. It can be concluded that the FGX pattern is the best choice compared to other 
cases. The frequency of structure with CNT uniform distribution was higher than FGV and FGO 
models. It was also observed that increasing the CNT volume fraction increases the dimensionless 
frequency of structure. In addition, considering elastic medium increases the dimensionless 
frequency of the CNTRC shell. With respect to the effect of temperature distribution type, the 
dimensionless frequency of structure subjected to harmonic temperature field was higher than 
linear and uniform ones. Furthermore, the structure with CC boundary condition has higher 
dimensionless frequency with respect to SS and CS one. Present results were validated with those 
reported by Sheng and Wang (2010). Finally, it is hoped that the results presented in this paper 
would be helpful for control and design of NEMS/MEMS devices such as strain sensor, mass and 
pressure sensors. 
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