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Abstract.    A novel four variable refined plate theory is proposed in this work for laminated composite plates. The 
theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary 
conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is 
based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. 
The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. 
The obtained results from the present model are compared with three-dimensional elasticity solutions and results of 
the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed 
theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates. 
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1. Introduction 
 

The composite materials are widely utilized in civil, aerospace, automobile and other 
engineering industries because of their advantage of high stiffness and strength to weight ratio. 
With the ever-increasing use of laminated composites in engineering structures, a variety of 
laminated models have been proposed to predict its behavior. A critical review of more recent 
studies on the development of laminated models can be found in Refs. (Ghugal and Shimpi 2002, 
Khandan et al. 2012). These theories can be classified as equivalent single layer (ESL), layer-wise 
and zig–zag theories. The ESL theories can be divided into three main categories: classical 
laminated plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order 
shear deformation theories (HSDTs). 

The classical laminated plate theory (CLPT), which ignores the transverse normal and shear 
stresses, predicts acceptable results for thin plates. However, it underestimates deflections and 
overestimates frequencies as well as buckling loads with moderately thick laminates (Reddy 1997). 
The first-order shear deformation theory (FSDT) based on Reissner (1945) and Mindlin (1951) is 
simple to implement and applied for moderately thick plates and provides acceptable results but 
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depends on a shear correction factor which is hard to compute as it depends on many parameters 
(Whitney and Pagano 1970, Noor and Burton 1989, Khdeir 1989, Chakraborty et al. 2003, Li 2008, 
Sina et al. 2009, Wei et al. 2012, Bellifa et al. 2016, Bouderba et al. 2016). However, there is no 
requiring of shear correction coefficients when employing higher-order shear deformation theories 
(HSDTs). Among these models we can cite the third-order theory of Reddy (Reddy 1984, Yesilce 
2010, Yesilce and Catal 2009 and 2011, Zidi et al. 2014, Ait Atmane et al. 2015, Ait Yahia et al. 
2015, Boukhari et al. 2016, Bounouara et al. 2016, Bourada et al. 2016), the sinusoidal theories 
(Touratier 1991, Tounsi et al. 2013, Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Draiche 
et al. 2014, Al-Basyouni et al. 2015, Hamidi et al. 2015, Beldjelili et al. 2016, Houari et al. 2016), 
the hyperbolic models (Soldatos 1992, Belabed et al. 2014, Akavci 2014, Bousahla et al. 2014, 
2016, Hebali et al. 2014, Mahi et al. 2015, Bourada et al. 2015, Attia et al. 2015, Bouchafa et al. 
2015, Belkorissat et al. 2015, Bennoun et al. 2016, Tounsi et al. 2016), the inverse hyperbolic 
theories (Sahoo and Singh 2013, Grover et al. 2013), and the exponential theory of Karama et al. 
(2003). Xiang et al. (2011) presented a n-order shear deformation theory in which Reddy’s theory 
comes out as special case. Kant and Pandya (1988), Mallikarjuna and Kant (1989) and Kant and 
Khare (1997) proposed also polynomial HSDTs with cubic variations for axial displacements as in 
the article by Reddy (1984). To consider the thickness stretching effect (i.e., εz ≠ 0), Lo et al. (1977) 
and Kant et al. (1988) proposed HSDTs in which axial and transverse displacements are supposed 
as cubic and parabolic distributions within the thickness, respectively. A review of various shear 
deformation models for the investigation of laminated composite plates is available in references 
(Reddy 1990, Mallikarjuna and Kant 1993). 

It is worth indicating that some of the above cited HSDTs are computational costly due to 
additional unknowns introduced to the theory (e.g., theories by Kant and Pandya (1988) and 
Mallikarjuna and Kant (1989) with seven unknowns, Kant and Khare (1997) with nine unknowns, 
Lo et al. (1977) and Kant et al. (1988) with 11 unknowns). Although some well-known HSDTs 
contain five unknowns as in the case of FSDT (e.g., theories by Reddy (1984), Xiang et al. (2009, 
2011), Touratier (1991), Ferreira et al. (2005), Soldatos (1992), Akavci (2010), Grover et al. (2013) 
and Karama et al. (2003)), their equations of motion are much more complicated than those of 
FSDT. Thus, needs exist for the development of shear deformation theory which is simple to use. 

Recently, a new FSDT with four variables is proposed by Mantari and Ore (2015). The aim of 
this work is to improve the novel FSDT developed by Mantari and Ore (2015) by considering 
higher-order variations of axial displacements across the plate thickness and studying the bending 
and buckling behavior of laminated composite plates. Navier solution is employed to determine 
the analytical solutions for simply supported antisymmetric cross-ply and angle-ply laminates. To 
demonstrate the accuracy of the present formulation, the computed results are compared with 
three-dimensional elasticity solutions and results of the FSDT and HSDTs. 
 
 

2. Theory and formulation 
 

Consider a rectangular plate of total thickness h composed of n orthotropic layers with the 
coordinate system as indicated in Fig. 1. 

 
2.1 Kinematics 
 
In this work, further simplifying assumptions are considered to the existing HSDT so that the 

number of variables is diminished. The displacement field of the existing HSDT is given by 
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Fig. 1 Coordinate system and layer numbering used for a typical laminated plate 
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where u0, v0, w0, φx and φy are five generalized displacements, f(z) is the shape function 
representing the distribution of the transverse shear strains and stresses across the thickness. By 

supposing that  dxyxx ),(  and ,),( dyyxy   the kinematic of the present theory can be 

written in a simpler form as 
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where u0 (x, y), v0 (x, y), w0 (x, y) and θ (x, y) are the four unknown displacement functions of 
middle surface of the plate. The constants k1 and k2 depends on the geometry. The integrals 
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employed are undetermined. 
In this article, the current higher-order shear deformation plate theory is obtained by putting 
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The strains associated with the displacements in Eq. (2) are 
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The integrals used in the above relations shall be resolved by a Navier solution and can be 

expressed by 
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where the parameters A′ and B′ are defined according to the type of solution employed, in this case 
via Navier. Hence, A′ and B′ are expressed by 
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where α and β are defined in expression (22). 
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2.2 Constitutive equations 
 
Under the supposition that each layer contains a plane of elastic symmetry parallel to the x–y 

plane, the constitutive equations for a layer can be expressed as 
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where Qij are the plane stress-reduced stiffnesses, and are expressed in terms of the engineering 
constants in the material axes of the layer 
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The constitutive equations of each lamina must be transformed to the laminate coordinates (x, y, 

z). The stress-strain relations in the laminate coordinates of the kth layer are expressed as 
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where ijQ are the transformed material constants given in Reddy (1997). 

 
2.3 Governing equations 
 
The governing equations will be determined by employing principle of the minimum total 

potential energy as follows 
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where A is the top surface and the stress resultants N, M, and S are expressed by 
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The variation of the external work can be expressed as 
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where q and ) , ,( 000

xyyx NNN are transverse and in-plane applied loads, respectively. 
Substituting the relations for δU, and δV from Eqs. (12) and (14) into Eq. (11) and integrating 

by parts, and collecting the coefficients of δu0, δv0, δw0, and δθ, the following governing equations 
for the laminate plate are obtained as follows 

 

  0'''' kk  : 

022  : 

0   : 

0   : 

21

2

2121

2
0

2
00

2
0

2
0

2
0

2

22

2

2

0

0

0






























































y

S
Bk

x

S
Ak

yx

M
BkAkMM

y

w
N

yx

w
N

x

w
Nq

y

M

yx

M

x

M
w

y

N

x

N
v

y

N

x

N
u

s
yz

s
xz

s
xys

y
s
x

yxyx

b
y

b
xy

b
x

yxy

xyx









 (15)

 
Substituting Eq. (10) into Eq. (13) and integrating within the thickness of the plate, the stress 

resultants are written as 
 







































































































































































































































































































































































s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

sss

s
xy

s
y

s
x

b
xy

b
y

b
x

xy

y

x

k

k

k

k

k

k

HHH

HHH

HHH

DDD

DDD

DDD

BBB

BBB

BBB

DDD

DDD

DDD

DDD

DDD

DDD

BBB

BBB

BBB

BBB

BBB

BBB

BBB

BBB

BBB

AAA

AAA

AAA

M

M

M

M

M

M

N

N

N

0

0

0

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211

662616

262212

161211





 (16a)

 


























0

0

5545

4544

xz

yz
ss

ss

s
xz

s
yz

AA

AA

S

S




 (16b)

718



 
 
 
 
 
 

A novel four variable refined plate theory for laminated composite plates 

and stiffness components are given as 
 

),6,2,1,(,))(,)(,,)(,,1(),,,,,(
1

22)(
1

 




jidzzfzfzzzfzQHDDBBA
n

k

z

z

k

ij
s
ij

s
ijij

s
ijijij

k

k

 (17a)

 

)5,4,(,))((
1

2)(
1

 




jidzzgQA
n

k

z

z

k

ij
s
ij

k

k

 (17b)

 
Eq. (15) can be written in terms of displacements (u0, v0, w0, θ) by substituting for the stress 

resultants from Eq. (16). For homogeneous laminates, the governing Eq. (15) take the form 
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where dij, dijl and dijlm are the following differential operators 
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3. Analytical solutions for anti-symmetric cross-ply laminates 
 

The Navier procedure is utilized to determine the closed-form solutions of the partial 
differential equations in Eq. (18) for simply supported rectangular plates. For anti-symmetric 
cross-ply laminated plates, the following stiffness components are identically zero 
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Based on the Navier method, the following expansions of displacements are adopted to 

automatically respect the simply supported boundary conditions of plate 
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where Umn, Vmn, Wmn and Xmn are coefficients, and α and β are expressed as 
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The transverse load q is also expanded in the double-Fourier sine series as 
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Substituting Eqs. (23), (21) and (20) into Eq. (18), the Navier solution of anti-symmetric cross-

ply laminates can be deduced from equations 
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4. Analytical solutions for anti-symmetric angle-ply laminates 
 

For anti-symmetric angle-ply laminated plates, the following stiffness components are 
identically zero 
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The following expansions of displacements are adopted to automatically respect the simply 

supported boundary conditions of anti-symmetric angle-ply laminated plate 
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Substituting Eqs. (23), (26) and (27) into Eq. (18), the equations of the form in Eq. (24) are 

obtained with the following coefficients 
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5. Numerical results and discussion 
 

In this section, various numerical examples are proposed for checking the exactitude and 
efficiency of the present model in predicting the bending and buckling responses of simply 
supported antisymmetric cross-ply and angle-ply laminated plates. For the checking purpose, the 
results computed using the present four variable refined plate theory are compared with those of 
the CLPT, FSDT, HSDT, RPT and exact solution of 3D elasticity. The presentation of various 
displacement models is shown in Table 1. In all examined examples, a shear correction factor of 
5/6 is utilized for FSDT. The following lamina characteristics are employed: 

 
● Material 1 (Pagano 1970) 
 

25.0   ,2.0   ,5.0   ,25 122232131221  EGEGGEE (29a)
 
● Material 2 (Ren 1990) 
 

25.0   ,6.0   ,5.0   ,40 122232131221  EGEGGEE (29b)
 
● Material 2 (Ren 1990) 
 

25.0   ,5.0   ,6.0   ,40 122232131221  EGEGGEE (29c)
 
For convenience, the following dimensionless quantities are utilized in investigating the 

numerical results 
 

    ,,
2

,
2

     ,,,
2

,
2

,     ,
2

,
2

010
2

2

2

2

4
0

3

xyxyyxyx
c

qa

h

h

zba

qa

h

h

zbaba
w

aq

hE
w  





















  

3

2

     ,,0,
2

     ,,
2

,0
hE

aN
N

qa

h

h

zb

qa

h

h

zb

m

cr
yzyzxzxz 













   

(30)

 
 

Table 1 Displacement models 

Model Theory Unknown variables 

CLPT Classical laminate plate theory 3 

FSDT First-order shear deformation theory (a) 5 

HSDT Higher-order shear deformation theory (b) 5 

Ren Higher-order shear deformation theory (c) 5 

RPT Refined plate theory (d) 4 

Present Present higher-order shear deformation theory 4 
(a) Whitney and Pagano (1970) 
(b) Reddy (1980) 
(c) Ren (1990) 
(d) Kim et al. (2009) 
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5.1 Bending problem 
 
The bending solution can be deduced from Eq. (24) by setting the in-plane loads to zero 
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Example 1: A simply supported two-layer anti-symmetric cross-ply (0/90) square plate 

subjected to sinusoidal transverse force is examined using Material 1. The obtained numerical 
values of the non-dimensional transverse displacement are presented in Table 2. From this example, 
it can be observed that the results determined by employing HSDT, RPT and the present theory are 
identical. Compared to the elasticity solution (Pagano 1970), the present model underpredicts 
deflection by 3.57% for a / h ratio equal to 5. This small difference is due to the thickness 
stretching effect which is neglected in the present model (εz = 0). Table 3 shows comparison of 
displacement and stresses for the (0/90) laminated plate subjected to single sine load. The 
deflection and stresses predicted by the present model are identical with those of HSDT of Reddy. 
The maximum deflections computed by present theory are also in good agreement with those of 
exact solution (Pagano 1970) and other solutions of Sayyad and Ghugal (2014) whereas CLPT 
underestimates the results for all slenderness ratios. The axial normal stress x  calculated by the 
present model is in good agreement with that of Sayyad and Ghugal (2014) and in tune with exact 
solution whereas FSDT and CLPT underestimate this stress for all slenderness ratios when 
compared with the values of other refined theories. Both the present theory and the theory 
proposed by Sayyad and Ghugal (2014), give the same values of the axial normal stress y  and 
shear stress .xy  These results are also in good agreement with those of exact solution (Pagano 
1970). The proposed theory predicts more accurate transverse shear stresses than those reported by 
other refined theories as compared to exact values. Fig. 2 demonstrates the variation of non-
dimensional transverse displacement versus thickness ratios a / h by employing all displacement 
models. It can be confirmed that the curves of present theory and HSDT are identical, and the 
CLPT underestimates the deflection of composite plate. Since the transverse shear deformation 
effects are not considered in CLPT, the non-dimensional transverse displacement w  calculated 
by CLPT are not influenced by the variation of thickness ratio a / h. Thus, in general, the proposed 
theory is successfully verified. 

 
 

Table 2 Non-dimensional deflections of simply supported two-layer (0/90) square laminates 
under sinusoidal transverse load 

a / h Source w  

2 

Pagano (1970) 4.9362 

HSDT 4.5619 

FSDT 5.4103 

RPT 4.5619 

Present 4.5619 
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Table 2 Continued 

a / h Source w  

5 

Pagano (1970) 1.7287 

HSDT 1.6670 

FSDT 1.7627 

RPT 1.6670 

Present 1.6670 

10 

Pagano (1970) 1.2318 

HSDT 1.2161 

FSDT 1.2416 

RPT 1.2161 

Present 1.2161 

20 

Pagano (1970) 1.1060 

HSDT 1.1018 

FSDT 1.1113 

RPT 1.1018 

Present 1.1018 

100 

Pagano (1970) 1.0742 

HSDT 1.0651 

FSDT 1.0653 

RPT 1.0651 

Present 1.0651 

CLPT 1.0636 
 

 

Table 3 Comparison of transverse displacement and stresses for simply supported 
two-layer (0/90) square laminated plate subjected to single sine load 

a / h Theory Model 
w  

(z = 0) 
x  

(z = ‒h / 2)
y  

(z = ‒h / 2)
xy  

(z = ‒h / 2)
xz  

(z = 0) 
yz  

(z = 0) 

4 

Present / 1.9985 0.9060 0.0891 0.0577 0.3128 0.3128

Ref(a) TSDT 1.9424 0.9063 0.0964 0.0562 0.3189 0.3189

Reddy HSDT 1.9985 0.9060 0.0891 0.0577 0.3128 0.3128

Mindlin FSDT 1.9682 0.7157 0.0843 0.0525 0.2274 0.2274

Kirchhoff CLPT 1.0636 0.7157 0.0843 0.0525 ― ― 

Pagano Elasticity 2.0670 0.8410 0.1090 0.0591 0.3210 0.3130

10 

Present / 1.2161 0.7468 0.0851 0.0533 0.3190 0.3190

Ref(a) TSDT 1.2089 0.7471 0.0876 0.0530 0.3261 0.3261

Reddy HSDT 1.2161 0.7468 0.0851 0.0533 0.3190 0.3190

Mindlin FSDT 1.2083 0.7157 0.0843 0.0525 0.2274 0.2274

Kirchhoff CLPT 1.0636 0.7157 0.0843 0.0525 ― ― 

Pagano Elasticity 1.2250 0.7302 0.0886 0.0535 0.3310 0.3310
(a) Results taken from reference Sayyad and Ghugal (2014) 
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Fig. 2 The effect of thickness ratio on non-dimensional deflection of simply supported two-layer 
(0/90) square laminates under sinusoidal transverse load 

 
 
Example 2: A simply supported two-layer anti-symmetric angle-ply (45/–45) laminate subjected 

to sinusoidal transverse force is investigated by considering Material 2. Dimensionless deflections 
for the square and rectangular plates are presented in Table 4 for various values of thickness ratio a 
/ h. The computed results are compared with those generated via HSDT, RPT, and FSDT. It can be 
confirmed that a good agreement is demonstrated for all values of thickness ratio a / h. The 
dimensionless deflections of two-layer (45/–45) square laminates under sinusoidal transverse force 

 
 

Table 4 Non-dimensional deflections of simply supported two-layer (45/– 45) laminates 
under sinusoidal transverse load 

a / h Source 
w  

Square plate (a = b) Rectangular plate (a = 3b) 

4 

HSDT 1.0203 3.1560 

FSDT 1.1576 3.3814 

RPT 1.0203 3.0971 

Present 1.0203 3.0971 

10 

HSDT 0.5581 2.2439 

FSDT 0.5773 2.2784 

RPT 0.5581 2.2325 

Present 0.5581 2.2325 

100 

HSDT 0.4676 2.0671 

FSDT 0.4678 2.0674 

RPT 0.4676 2.0670 

CLPT 0.4667 2.0653 

Present 0.4676 2.0670 
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Fig. 3 The effect of modulus ratio on non-dimensional deflection of simply supported two-layer 
(45/-45) square laminates under sinusoidal transverse load (a / h = 10) 

 
 

are illustrated in Fig. 3 for various ratio of modulus E1 / E2. Again, it can be concluded that the 
results predicted by the present theory, HSDT and RPT are in excellent agreement for a wide range 
of values of modulus ratio. 

 
5.2 Buckling problem 
 
For buckling investigation, the applied loads are supposed to be in-plane forces 
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The buckling solution can be determined from Eq. (24) by setting the transverse loads to zero 
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Example 3: A simply supported anti-symmetric cross-ply (0/90)n (n = 2, 3,5) square plate 

subjected under uniaxial compressive force on sides x = 0, a is examined by considering Material 
3. Table 5 demonstrates a comparison between the results computed by employing the various 
models and the 3D elasticity solutions reported by Noor (1975). The examination of presented 
results clearly shows that both the present theory and HSDT predict identical values of the 
buckling load and these results are in good agreement also with those given by 3D elasticity 
solutions (Noor and Burton 1990). Compared to the 3 D elasticity solution, the buckling loads 
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predicted by the present model, HSDT, and FSDT are 6.11%, and 7.17%, respectively, for four-
layer antisymmetric cross-ply (0/90/0/90) square laminates. The observed difference is due to the 
thickness stretching effect which is neglected in the present model (εz = 0). The influence of 
thickness ratio a / h on buckling force of simply supported four-layer (0/90/0/90) square plates is 
also shown in Fig. 4. Again, it can be confirmed that the curves of present theory and HSDT are 
identical, and the CLPT overestimates the buckling load of composite plate. 

 
 

Table 5 Non-dimensional uniaxial buckling load of simply supported 
anti-symmetric cross-ply (0/90/…) square laminates (a / h = 10) 

a / h Source N  

4 

Exact (a) 21.2796 

HSDT 22.5790 

FSDT 22.8060 

Present 22.5790 

CLPT 30.3591 

10 

Exact (a) 23.6689 

HSDT 24.4596 

FSDT 24.5777 

Present 24.4596 

CLPT 33.5817 

100 

Exact (a) 24.9636 

HSDT 25.4225 

FSDT 25.4500 

Present 25.4225 

CLPT 35.4225 
(a) Noor (1975) 
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Fig. 4 The effect of thickness ratio on non-dimensional uniaxial buckling load of simply supported 
four-layer (0/90/0/90) square laminates 
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Table 6 Non-dimensional uniaxial buckling load of simply supported two-layer (θ / ‒θ) square laminates 

a / h Source 
N  

θ = 30° θ = 45° 

4 

Ren (1990) 9.5368 9.8200 

HSDT 9.3391 8.2377 

FSDT 7.5450 6.7858 

RPT 9.3518 8.3963 

Present 9.3518 8. 3963 

10 

Ren (1990) 15.7517 16.4558 

HSDT 17.1269 18.1544 

FSDT 16.6132 17.5522 

RPT 17.2795 18.1544 

Present 17.2795 18.1544 

100 

Ren (1990) 20.4793 21.6384 

HSDT 20.5017 21.6663 

FSDT 20.4944 21.6576 

RPT 20.5040 21.6663 

Present 20.5040 21.6663 

CLPT 20.5026 21.6643 
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Fig. 5 The effect of modulus ratio on non-dimensional uniaxial buckling load of simply supported 
two-layer (45/-45) square laminates (a/h = 10) 

 
 
Example 4: A simply supported two-layer anti-symmetric angle-ply (θ/-θ) square plate under 

an uniaxial compressive force on sides x = 0, a, a is investigated by considering Material 3. The 
numerical values of dimensionless buckling load are reported in Table 6. The computed results are 
compared with those predicted by Ren (1990). For all values of thickness ratio and fiber 
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orientation, the buckling forces determined by the present theory, RPT and HSDT are almost 
identical. For a / h ratio equal to 4 and the fiber orientation equal to 30°, the buckling force values 
computed by FSDT, HSDT, and the present theory are 20.88 %, 2.07 %, and 1.94 % lower as 
compared to the results determined by Ren (1990). The buckling force values calculated by 
employing the five models are in an excellent agreement with those given by Ren (1990) for thin 
plates (a / h = 100). The influence of modulus ratio on dimensionless uniaxial buckling force of 
simply supported two-layer (45/-45) square plate is demonstrated in Fig. 5. It can be concluded 
that increasing the modular ratio makes the plate stiffer because the buckling load is reduced. 

 
 

6. Conclusions 
 
A simplified HSDT is developed for laminated composite plates. By proposing some additional 

simplifying assumptions to the existing HSDT, with the consideration of an undetermined integral 
term, the number of variables and governing equations of the proposed HSDT are reduced by one, 
and thus, make this formulation simple and efficient to utilize. The theory provides parabolic 
variable of the transverse shear strains, and respects the zero traction boundary conditions on the 
surfaces of the plate without employing shear correction coefficients. Verification investigations 
demonstrate that the predictions by the proposed HSDT and existing HSDT for anti-symmetric 
cross-ply and angle- ply laminates are close to each other. In conclusion, the present model can 
improve the numerical computational cost because of their diminished degrees of freedom 
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