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Abstract. A novel four variable refined plate theory is proposed in this work for laminated composite plates. The
theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary
conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is
based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved.
The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique.
The obtained results from the present model are compared with three-dimensional elasticity solutions and results of
the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed
theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.
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1. Introduction

The composite materials are widely utilized in civil, aerospace, automobile and other
engineering industries because of their advantage of high stiffness and strength to weight ratio.
With the ever-increasing use of laminated composites in engineering structures, a variety of
laminated models have been proposed to predict its behavior. A critical review of more recent
studies on the development of laminated models can be found in Refs. (Ghugal and Shimpi 2002,
Khandan er al. 2012). These theories can be classified as equivalent single layer (ESL), layer-wise
and zig—zag theories. The ESL theories can be divided into three main categories: classical
laminated plate theory (CLPT), first-order shear deformation theory (FSDT), and higher-order
shear deformation theories (HSDTs).

The classical laminated plate theory (CLPT), which ignores the transverse normal and shear
stresses, predicts acceptable results for thin plates. However, it underestimates deflections and
overestimates frequencies as well as buckling loads with moderately thick laminates (Reddy 1997).
The first-order shear deformation theory (FSDT) based on Reissner (1945) and Mindlin (1951) is
simple to implement and applied for moderately thick plates and provides acceptable results but
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depends on a shear correction factor which is hard to compute as it depends on many parameters
(Whitney and Pagano 1970, Noor and Burton 1989, Khdeir 1989, Chakraborty et al. 2003, Li 2008,
Sina et al. 2009, Wei et al. 2012, Bellifa et al. 2016, Bouderba et al. 2016). However, there is no
requiring of shear correction coefficients when employing higher-order shear deformation theories
(HSDTs). Among these models we can cite the third-order theory of Reddy (Reddy 1984, Yesilce
2010, Yesilce and Catal 2009 and 2011, Zidi et al. 2014, Ait Atmane et al. 2015, Ait Yahia et al.
2015, Boukhari et al. 2016, Bounouara et al. 2016, Bourada et al. 2016), the sinusoidal theories
(Touratier 1991, Tounsi et al. 2013, Bouderba et al. 2013, Ait Amar Meziane et al. 2014, Draiche
et al. 2014, Al-Basyouni et al. 2015, Hamidi et al. 2015, Beldjelili ef al. 2016, Houari et al. 2016),
the hyperbolic models (Soldatos 1992, Belabed et al. 2014, Akavci 2014, Bousahla et al. 2014,
2016, Hebali et al. 2014, Mahi et al. 2015, Bourada et al. 2015, Attia et al. 2015, Bouchafa et al.
2015, Belkorissat et al. 2015, Bennoun et al. 2016, Tounsi et al. 2016), the inverse hyperbolic
theories (Sahoo and Singh 2013, Grover et al. 2013), and the exponential theory of Karama et al.
(2003). Xiang et al. (2011) presented a n-order shear deformation theory in which Reddy’s theory
comes out as special case. Kant and Pandya (1988), Mallikarjuna and Kant (1989) and Kant and
Khare (1997) proposed also polynomial HSDTs with cubic variations for axial displacements as in
the article by Reddy (1984). To consider the thickness stretching effect (i.e., ¢, # 0), Lo et al. (1977)
and Kant et al. (1988) proposed HSDTs in which axial and transverse displacements are supposed
as cubic and parabolic distributions within the thickness, respectively. A review of various shear
deformation models for the investigation of laminated composite plates is available in references
(Reddy 1990, Mallikarjuna and Kant 1993).

It is worth indicating that some of the above cited HSDTs are computational costly due to
additional unknowns introduced to the theory (e.g., theories by Kant and Pandya (1988) and
Mallikarjuna and Kant (1989) with seven unknowns, Kant and Khare (1997) with nine unknowns,
Lo et al. (1977) and Kant et al. (1988) with 11 unknowns). Although some well-known HSDTs
contain five unknowns as in the case of FSDT (e.g., theories by Reddy (1984), Xiang et al. (2009,
2011), Touratier (1991), Ferreira et al. (2005), Soldatos (1992), Akavci (2010), Grover et al. (2013)
and Karama et al. (2003)), their equations of motion are much more complicated than those of
FSDT. Thus, needs exist for the development of shear deformation theory which is simple to use.

Recently, a new FSDT with four variables is proposed by Mantari and Ore (2015). The aim of
this work is to improve the novel FSDT developed by Mantari and Ore (2015) by considering
higher-order variations of axial displacements across the plate thickness and studying the bending
and buckling behavior of laminated composite plates. Navier solution is employed to determine
the analytical solutions for simply supported antisymmetric cross-ply and angle-ply laminates. To
demonstrate the accuracy of the present formulation, the computed results are compared with
three-dimensional elasticity solutions and results of the FSDT and HSDTs.

2. Theory and formulation

Consider a rectangular plate of total thickness 4 composed of n orthotropic layers with the
coordinate system as indicated in Fig. 1.

2.1 Kinematics

In this work, further simplifying assumptions are considered to the existing HSDT so that the
number of variables is diminished. The displacement field of the existing HSDT is given by
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Fig. 1 Coordinate system and layer numbering used for a typical laminated plate

0
u(x, y,2) =u0(x,y>—z%+f<z)(px<x,y> (1a)
0
v(x,y,z)=vo<x,y)—zaly°+f<z>¢y (x,5) (1b)
w(x,y,z)zwo(x,y) (1C)

where ug, vo, wo, ¢, and ¢, are five generalized displacements, f(z) is the shape function
representing the distribution of the transverse shear strains and stresses across the thickness. By

supposing that ¢ = J. O(x,y)dx and ¢, = j@(x, v)dy, the kinematic of the present theory can be

written in a simpler form as

0
u(xy2) =ty (v.) =22+ f(2)[ 0, y)d (22)
0
x2) = v ()~ ks (@] 00 dy (2b)
w(x,y,z)zwo(x,y) (2C)

where ug (x, ¥), vo (x, ¥), wo (x, ¥) and 6 (x, y) are the four unknown displacement functions of
middle surface of the plate. The constants k; and k, depends on the geometry. The integrals
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employed are undetermined.
In this article, the current higher-order shear deformation plate theory is obtained by putting

5 522
f(z)=z(z—§] 3)

The strains associated with the displacements in Eq. (2) are

e | |& ky k; 0
' Yy Yy
£, 1= 52 +z kf +f(25 k) ¢, { y}zg(z){ f)}, 4
0 kb ks Viz Xz
7/xy 7/xy xy Xy
where
o, B
2 | ey | e
IS - SR T S R
0 ox ) oy
Tol | Ouy v Sl ot
o  Ox Oxoy (5a)
ks k0 01 (& f 0
ks — k 0 J/yz — 1
’ ? ’ el |k fodx|’
k;, klﬁjed“kzijedy o
oy ox
and
df (z
2= (5b)
dz

The integrals used in the above relations shall be resolved by a Navier solution and can be
expressed by

00 00

2 2
o9 s 0 oo Iﬁdx=A’a—, J‘QdyzBla 6)
X

ijﬁdx=A'— Tloay=B2",
oy Ox0y ox Ox0y

where the parameters 4’ and B’ are defined according to the type of solution employed, in this case
via Navier. Hence, 4’ and B’ are expressed by

e k=a*, k, =B (7)

where a and f are defined in expression (22).
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2.2 Constitutive equations

Under the supposition that each layer contains a plane of elastic symmetry parallel to the x—y
plane, the constitutive equations for a layer can be expressed as

Oy _Qll O, 0 0 0 |le
o, O, 0y 0 0 0 &y
Xy =/ 0 0 Q66 0 0 yxy (8)

T
T yz 0 0 0 Q44 0 Y vz
sz 0 0 0 0 Q55 B 7 Xz

where Qj; are the plane stress-reduced stiffnesses, and are expressed in terms of the engineering
constants in the material axes of the layer

vipE, 0,, = E,
— > Yn= —1
—Vi2Vai

E
O, = 1 ; O =

= = ; 5 Ose =Glps Qg =0n35 Oss =0 ©)
1=v,vy 1=v,vy

The constitutive equations of each lamina must be transformed to the laminate coordinates (x, y,
z). The stress-strain relations in the laminate coordinates of the kth layer are expressed as

(k) 1K) (k)

Ox gll 912 916 0 0 &y
Oy glz 922 926 0 0 &y
Tw =1 016 Q2 Des _0 _0 Yy (10)
Ty 0 0 0 944 245 Yy
Ty L0 0 0 Oy Oss| Ve

where é ; are the transformed material constants given in Reddy (1997).
2.3 Governing equations

The governing equations will be determined by employing principle of the minimum total
potential energy as follows
ST=6(U-V)=0 (11)

where I1 is the total potential energy. dU is the virtual variation of the strain energy; and JV is the
variation of work done by external forces. The first variation of the strain energy is given as

oU = J‘[O'xé‘ e+ O'y5 &, + Txy5 Vot ryz5 Ve 7.0 ;/xz]dV
%

=[[V.6 20+ NG+ NS+ MES KD + MES KD + MES KL, (12)
A
MK + MK+ M5k, + S

N
yz

Syl +8.870|da=0
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where A is the top surface and the stress resultants N, M, and S are expressed by

hl/2 hi/2
(Wombomp)= [(z oz, (i=xp0) and (S2.55)= [gle.r, ) (13)
—h/2 —h/2

The variation of the external work can be expressed as

8w065w0+2N08w085w0+N08w065w0JdA (14

oV =—|qo wydA—- (N? .
;[ -[ Ox Ox Y ox Oy Yoy oy

where g and (N?, N 3 , N fy) are transverse and in-plane applied loads, respectively.
Substituting the relations for dU, and 6V from Egs. (12) and (14) into Eq. (11) and integrating
by parts, and collecting the coefficients of dug, dvo, dwy, and 66, the following governing equations

for the laminate plate are obtained as follows

ON
Suy: N +—2=0
ox oy
ON_, ON
Svy: —=+—2=0
Ox oy (15)
5
2a0b oM oMb 2 2 2
§w0:aAZ"+2 >+ 2y+q+N8—6 M2’°+2N8y—a W°+N§—6 VZ‘):O
Ox Ox0Oy oy T oox ~ Oxoy Oy
o*M? s AN
50 -k M —k, M —(kyA'+ky B)——>+ k, A CaE A il
Ox0Oy Ox oy

Substituting Eq. (10) into Eq. (13) and integrating within the thickness of the plate, the stress
resultants are written as

N, (A, A, Ag | [Bi By B B}, By, Bj N
Ny Ay Ay Ay | | By By By By, B3, B3 ‘9,8
N, | A Ay Ags | | Bis Bas Beo Bjs B Bgg 7)?y
M B, By, B |[Dy Dy, Dy | Dy DYy Dj k?
Mﬁ =|| B2 By By || Dy Dy Dy | | Diy Diyy Dig k; (162)
Mfy :Bl6 By B66: :Dm Dy D66: Dy D3¢ De k)lc,y
M; By By Big || Dy Diy Dy || Hyy Hiy Hig ||| |k
M3 By, By, Bl | |Diy Dy, Dig | | Hyy Hy Hig |||k
)| || B B Bl || Dl D3 Dl | | Hiy H H || |K

{S;ZHAL Azs} {7;2} (16b)
s s K 0
sz A45 ASS 7xz
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and stiffness components are given as

n Zk+1

(4;.8,.85.0,. D, H) =Y [ 0 (12./(2).%.2/(2). /(2) dz . (.7 =126).  (17a)
[
= NP
4= [ 0 (8()dz, (i) =45) (17b)
k=1 %,

Eq. (15) can be written in terms of displacements (u, vo, Wo, ) by substituting for the stress
resultants from Eq. (16). For homogeneous laminates, the governing Eq. (15) take the form

Ayydyug + 2 Ajgdyaug + Ag doyyttg + (Alz + A66)d12v0 + Ay dyyvy + A dy vy

- (Blldlllwo +3Bd Wy + (Bl2 +2Bg )dIZZWO + 326d222W0) (18a)
+ (b, A+ B) Bl dyy0 + (kB + ky By ) di0 + (ky A+ ey B) By dy120 — (kB + Ky B )y 0= 0,

Ay dguy + (AIZ + Age )dlzuo + Ay doptty + Ags dyyvy + 2455 d1vy + Ay d vy
- (Blédlllwo +3Byd Wy + (Blz +2Bg )dllzwo + B22d222W0) (18b)
+ (b A+, B)BE dy o0 + (ky By + B ) dy0 + (e A'+ ey BY)BS dyy0 + (kB + ky B, )0 = 0,

(By1ddyy ity + 3 Bygddy oty + (Byy +2Bgg )ity + Brgdontty)

+(Bigdy11vo + 3 Bydingvy + (Biy +2Bes )y 129y + Basdlyvy)

=Dy dy W = 2(D12 + 2D66) dyigaWo = Doy Ay Wy = 4Dy dyy ;W = 4 Dy dyp W (18¢c)
+ (kD5 + ks DSy ) dyy0 + 2k A+ ky B Dy dy 5o + (6,05 + ky D3y ) 0 + 2 (kD3 + Ky D3 ) iy

+ (kA + kyB') D d, 1,0 + (ky A’ + kyB') Dsg dy,0 + NO dy jwy + 2N, dyywy + N dyywy +q =0

3 [(klA' +kyB) Big dy gty + (lelsl + kB ) dyu, j
+(kyA'+ k,B")B' Bj dy 1ty - (lels6 +ky B3 )d2u0
3 ((klA, + kyB')Big dy vy + (szzsz + leISZ) dyVy J
+ (koA + kyB')Bsg dyyvy + (leige +k, B3 )dl"o
+ (lelsl +k, Dy, ) dy Wy +2(k A"+ k, B') Dy dy 1w + (lelsz + kzDzsz) dyW
+ 2(k1D1S6 + kzDiYs) dyywy + (ke A+ sz’)Dlss diypwy + (klA’ + k&, B) Dy,
— H}\k0— H, k0 — 2 Hisk o0 — (ke A+, B Y Hig dyyy0 — 2k A+ by B )(Hy + Hg )d 0
+ A3, (k,B'Y dpy0 + Az (ke A'Y d 0 +2 Al kk, AB'd,, 0 =0

(18d)

where dj;, d;; and dj;, are the following differential operators
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— 82 d = 83 d _8—4 d—i (llm_12) 19
’ Ox,0x ; ’ " Ox,;0x 0, ’ i Ox,0x ;0x,0x,, ’ oo oJo5 e (19)

1

3. Analytical solutions for anti-symmetric cross-ply laminates

The Navier procedure is utilized to determine the closed-form solutions of the partial
differential equations in Eq. (18) for simply supported rectangular plates. For anti-symmetric
cross-ply laminated plates, the following stiffness components are identically zero

A16 :Aze =Dy =Dy :Blsé :Bge =D =Dy :Dlsé :Dzso :HIS() :Hgé :Ais =0

R . (20)
Bl2 = 866 = Bl2 = 866 =0

Based on the Navier method, the following expansions of displacements are adopted to
automatically respect the simply supported boundary conditions of plate

Z’tO Umn COS(a X) Sil’l(ﬂ y)

vV, 2 3|V sin(a x)cos
0 — ZZ mn ‘ ( ) ' (ﬂ J’) (2 1)
=W, sin(a x)sin(fS y)

o X, sin(a x)sin(f y)
where U,,., Viun, Won and X,,,, are coefficients, and o and S are expressed as
a=mrla and pB=nrlb (22)

The transverse load ¢ is also expanded in the double-Fourier sine series as
q(5,3) =YD 0, sin(a x)sin(B y), (23)
m=1 n=1

Substituting Egs. (23), (21) and (20) into Eq. (18), the Navier solution of anti-symmetric cross-
ply laminates can be deduced from equations

Sy S S S ||[U, 0
S, S S S V 0
12 922 On D]V | _ (24)
Si3 Sy Syytk Sy || W, 9
Sia Sa Sy Sy [ X 0

S = _(Anaz + A66ﬂ2 ), Sp=—af (AIZ + A66)’ Sy=a (Bnaz), Siy = a(lelsl)7 (25)
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Sy = _(A66 o’ + Ay Jig )a Sy = ﬁ(Bzzﬂ2 ), Sy = ﬂ(szzsz)a
Sy = _(DMO‘4 +2(Dy, +2Dyg)a’ B + D, ),
Ss4 = _(

kDiya? + Iy Dy B2 )+ 20k A+, BY) Digar 2 — ke, D3y 2 + by Dyt ) 5

Sy =—k (lelsl +k2H1Sz)_ (klA'+sz')((k1A’+sz')Hésa2ﬂ2)_ kz(lelsz + szzsz)
- (klAv)2 Agsaz - (sz,)z Ai4ﬂ2

k= N'a? + N

4. Analytical solutions for anti-symmetric angle-ply laminates

For anti-symmetric angle-ply laminated plates, the following stiffness components are
identically zero

Aig = Ay = Dyg = Dog = Big = Byg = Dy = Dy = Dy = Dog = Hyg = Hyg = Hy5 =0

S A S S (26)
B, =B, =B, =B =B, =B}, =By, = Bss =0

The following expansions of displacements are adopted to automatically respect the simply
supported boundary conditions of anti-symmetric angle-ply laminated plate

u, U,,, sin(a x)cos(S )
Vo | s | Vi cos(a x)sin(f y)
- ;Z‘ W, sin(a x)sin(8 y)

o X, sin(a x)sin(f y)

27

Wo

Substituting Egs. (23), (26) and (27) into Eq. (18), the equations of the form in Eq. (24) are
obtained with the following coefficients
Sy = _(‘411052 + Age S )’ Sy, =-af (Alz + A()s), Si3 =3B’ B+ By B’ ,
S =l d + k.8 )Biea* -+ (Bl + Ky Bse )
Sy = _(A66 a’ + 4, ﬂz) Sy, =3By aff’ +Bléa3’

Syu =~k A+k,B) B3yaf® + atlk, By + kB ) :
S Z—(D11a4 +2(Dy, +2Dg)a’ 5 +D22ﬂ4), %)
Sy = —(le{:az + kleSZﬁz)-i' 2k, A'+k,B") Dgga® B - (kzDgzﬁz + leISZO‘Z)
Sy =—k (lefl +k,H )_ (klA'+sz')((klA""sz')ngazﬂz)
Iy (ke H Y + ks H S )~ (A Alse® = (ky B'Y: AL 2
k= N£a2 + N)(,),Bz
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5. Numerical results and discussion
In this section, various numerical examples are proposed for checking the exactitude and
efficiency of the present model in predicting the bending and buckling responses of simply
supported antisymmetric cross-ply and angle-ply laminated plates. For the checking purpose, the
results computed using the present four variable refined plate theory are compared with those of
the CLPT, FSDT, HSDT, RPT and exact solution of 3D elasticity. The presentation of various
displacement models is shown in Table 1. In all examined examples, a shear correction factor of
5/6 is utilized for FSDT. The following lamina characteristics are employed:
e Material 1 (Pagano 1970)
E =25E,, G, =G;3=05E,, G,,=02E,, v, =025 (29a)
e Material 2 (Ren 1990)
E, =40E,, G, =G;3=05E,, G,,=0.6E,, v, =0.25 (29b)
e Material 2 (Ren 1990)
E =40 E,, G, =G;=0.6E,, Gy=05E,, v, =0.25 (29¢)

For convenience, the following dimensionless quantities are utilized in investigating the
numerical results

_ 100ER (a b — —Ya b z\ K - (abz\ I
W:—4 I ) Uxaay Ty o =—2(O'X,(7y), Txy DRERE z—zfxy,
qoa 22 22 h) qa 22 h) qa (30)
- b z h - (b z h — N,a*
Txz 0,_,_ :_sz, Tyz _,0,_ :_Tyz, N: 3
2 h) gqa 2 h) gqa E. h
Table 1 Displacement models
Model Theory Unknown variables
CLPT Classical laminate plate theory 3
FSDT First-order shear deformation theory © 5
HSDT Higher-order shear deformation theory ® 5
Ren Higher-order shear deformation theory © 5
RPT Refined plate theory @ 4
Present Present higher-order shear deformation theory 4

@ Whitney and Pagano (1970)
® Reddy (1980)

© Ren (1990)

@ Kim et al. (2009)
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5.1 Bending problem

The bending solution can be deduced from Eq. (24) by setting the in-plane loads to zero

Sll S12 Sl3 Sl4 Umn O
S, S, S, S V 0
12 92 P23 P4 mn | _ 31
Si3 Sa Sz Sz || W 9 un
Sia Soq Sz Saa [ X 0

Example 1: A simply supported two-layer anti-symmetric cross-ply (0/90) square plate
subjected to sinusoidal transverse force is examined using Material 1. The obtained numerical
values of the non-dimensional transverse displacement are presented in Table 2. From this example,
it can be observed that the results determined by employing HSDT, RPT and the present theory are
identical. Compared to the elasticity solution (Pagano 1970), the present model underpredicts
deflection by 3.57% for a/ h ratio equal to 5. This small difference is due to the thickness
stretching effect which is neglected in the present model (e, = 0). Table 3 shows comparison of
displacement and stresses for the (0/90) laminated plate subjected to single sine load. The
deflection and stresses predicted by the present model are identical with those of HSDT of Reddy.
The maximum deflections computed by present theory are also in good agreement with those of
exact solution (Pagano 1970) and other solutions of Sayyad and Ghugal (2014) whereas CLPT
underestimates the results for all slenderness ratios. The axial normal stress o, calculated by the
present model is in good agreement with that of Sayyad and Ghugal (2014) and in tune with exact
solution whereas FSDT and CLPT underestimate this stress for all slenderness ratios when
compared with the values of other refined theories. Both the present theory and the theory
proposed by Sayyad and Ghugal (2014), give the same values of the axial normal stress o, and
shear stress 7,,. These results are also in good agreement with those of exact solution (Pagano
1970). The proposed theory predicts more accurate transverse shear stresses than those reported by
other refined theories as compared to exact values. Fig. 2 demonstrates the variation of non-
dimensional transverse displacement versus thickness ratios a/# by employing all displacement
models. It can be confirmed that the curves of present theory and HSDT are identical, and the
CLPT underestimates the deflection of composite plate. Since the transverse shear deformation
effects are not considered in CLPT, the non-dimensional transverse displacement w calculated
by CLPT are not influenced by the variation of thickness ratio a/A. Thus, in general, the proposed
theory is successfully verified.

Table 2 Non-dimensional deflections of simply supported two-layer (0/90) square laminates
under sinusoidal transverse load

alh Source w
Pagano (1970) 4.9362
HSDT 4.5619
2 FSDT 5.4103
RPT 4.5619

Present 4.5619
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alh Source w
Pagano (1970) 1.7287
HSDT 1.6670
5 FSDT 1.7627
RPT 1.6670
Present 1.6670
Pagano (1970) 1.2318
HSDT 1.2161
10 FSDT 1.2416
RPT 1.2161
Present 1.2161
Pagano (1970) 1.1060
HSDT 1.1018
20 FSDT 1.1113
RPT 1.1018
Present 1.1018
Pagano (1970) 1.0742
HSDT 1.0651
100 FSDT 1.0653
RPT 1.0651
Present 1.0651
CLPT 1.0636
Table 3 Comparison of transverse displacement and stresses for simply supported
two-layer (0/90) square laminated plate subjected to single sine load
w o o T T T
alh  Theory — Model = Coh/2) =—h/2) (=-h/2) (=0) (z=0)
Present / 1.9985 0.9060 0.0891 0.0577 03128  0.3128
Ref® TSDT 1.9424 0.9063 0.0964 0.0562 0.3189  0.3189
Reddy HSDT 1.9985 0.9060 0.0891 0.0577 0.3128  0.3128
Mindlin FSDT 1.9682 0.7157 0.0843 0.0525 0.2274  0.2274
Kirchhoff ~ CLPT 1.0636 0.7157 0.0843 0.0525 — —
Pagano  Elasticity 2.0670 0.8410 0.1090 0.0591 0.3210  0.3130
Present / 1.2161 0.7468 0.0851 0.0533 0.3190  0.3190
Ref® TSDT 1.2089 0.7471 0.0876 0.0530 0.3261  0.3261
10 Reddy HSDT 1.2161 0.7468 0.0851 0.0533 0.3190  0.3190
Mindlin FSDT 1.2083 0.7157 0.0843 0.0525 02274  0.2274
Kirchhoff =~ CLPT 1.0636 0.7157 0.0843 0.0525 — —
Pagano  Elasticity 1.2250 0.7302 0.0886 0.0535 0.3310  0.3310

@ Results taken from reference Sayyad and Ghugal (2014)
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3,0
Present

T HSDT ]

----FSDT

-=== CLPT
2,0 .
1,54 .
1,0 4 ]
05 T T T T T T T T T

10 20 a/h 30 40 50

Fig. 2 The effect of thickness ratio on non-dimensional deflection of simply supported two-layer
(0/90) square laminates under sinusoidal transverse load

Example 2: A simply supported two-layer anti-symmetric angle-ply (45/—45) laminate subjected
to sinusoidal transverse force is investigated by considering Material 2. Dimensionless deflections
for the square and rectangular plates are presented in Table 4 for various values of thickness ratio a
/ h. The computed results are compared with those generated via HSDT, RPT, and FSDT. It can be
confirmed that a good agreement is demonstrated for all values of thickness ratio @ / 4. The
dimensionless deflections of two-layer (45/—45) square laminates under sinusoidal transverse force

Table 4 Non-dimensional deflections of simply supported two-layer (45/— 45) laminates
under sinusoidal transverse load

alh Source i
Square plate (a = b) Rectangular plate (@ = 3b)
HSDT 1.0203 3.1560
FSDT 1.1576 3.3814
4 RPT 1.0203 3.0971
Present 1.0203 3.0971
HSDT 0.5581 2.2439
10 FSDT 0.5773 2.2784
RPT 0.5581 2.2325
Present 0.5581 2.2325
HSDT 0.4676 2.0671
FSDT 0.4678 2.0674
100 RPT 0.4676 2.0670
CLPT 0.4667 2.0653

Present 0.4676 2.0670
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Fig. 3 The effect of modulus ratio on non-dimensional deflection of simply supported two-layer
(45/-45) square laminates under sinusoidal transverse load (a / & = 10)

are illustrated in Fig. 3 for various ratio of modulus £, / E,. Again, it can be concluded that the
results predicted by the present theory, HSDT and RPT are in excellent agreement for a wide range
of values of modulus ratio.

5.2 Buckling problem

For buckling investigation, the applied loads are supposed to be in-plane forces

NO
N}=-N,, N!=yN,, y=—%, N} =0 (32)

X 0°
N,

The buckling solution can be determined from Eq. (24) by setting the transverse loads to zero

S Si S Sia || U 0
S Sy S S {) Vin _ 0 (33)
Si3 Sy Sy=No(@? + 1) Sy || W, 0
Sia Sa S Sas (X 0

Example 3: A simply supported anti-symmetric cross-ply (0/90), (n = 2, 3,5) square plate
subjected under uniaxial compressive force on sides x = 0, a is examined by considering Material
3. Table 5 demonstrates a comparison between the results computed by employing the various
models and the 3D elasticity solutions reported by Noor (1975). The examination of presented
results clearly shows that both the present theory and HSDT predict identical values of the
buckling load and these results are in good agreement also with those given by 3D elasticity
solutions (Noor and Burton 1990). Compared to the 3 D elasticity solution, the buckling loads
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predicted by the present model, HSDT, and FSDT are 6.11%, and 7.17%, respectively, for four-
layer antisymmetric cross-ply (0/90/0/90) square laminates. The observed difference is due to the
thickness stretching effect which is neglected in the present model (¢, = 0). The influence of
thickness ratio a / & on buckling force of simply supported four-layer (0/90/0/90) square plates is
also shown in Fig. 4. Again, it can be confirmed that the curves of present theory and HSDT are

identical, and the CLPT overestimates the buckling load of composite plate.

Table 5 Non-dimensional uniaxial buckling load of simply supported
anti-symmetric cross-ply (0/90/...) square laminates (a / 2 = 10)

alh Source N
Exact © 21.2796
HSDT 22.5790
4 FSDT 22.8060
Present 22.5790
CLPT 30.3591
Exact @ 23.6689
HSDT 24.4596
10 FSDT 24.5777
Present 24.4596
CLPT 33.5817
Exact @ 24.9636
HSDT 25.4225
100 FSDT 25.4500
Present 25.4225
CLPT 35.4225

@ Noor (1975)
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Fig. 4 The effect of thickness ratio on non-dimensional uniaxial buckling load of simply supported
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four-layer (0/90/0/90) square laminates
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Table 6 Non-dimensional uniaxial buckling load of simply supported two-layer (6 / —0) square laminates

alh Source N
6=30° 0 =45°
Ren (1990) 9.5368 9.8200
HSDT 9.3391 8.2377
4 FSDT 7.5450 6.7858
RPT 9.3518 8.3963
Present 9.3518 8.3963
Ren (1990) 15.7517 16.4558
HSDT 17.1269 18.1544
10 FSDT 16.6132 17.5522
RPT 17.2795 18.1544
Present 17.2795 18.1544
Ren (1990) 20.4793 21.6384
HSDT 20.5017 21.6663
100 FSDT 20.4944 21.6576
RPT 20.5040 21.6663
Present 20.5040 21.6663
CLPT 20.5026 21.6643

25

Present e

0 ' 10 20 30 ' 40

EL/E,

Fig. 5 The effect of modulus ratio on non-dimensional uniaxial buckling load of simply supported
two-layer (45/-45) square laminates (a/h = 10)

Example 4. A simply supported two-layer anti-symmetric angle-ply (6/-0) square plate under
an uniaxial compressive force on sides x = 0, a, a is investigated by considering Material 3. The
numerical values of dimensionless buckling load are reported in Table 6. The computed results are
compared with those predicted by Ren (1990). For all values of thickness ratio and fiber



A novel four variable refined plate theory for laminated composite plates 729

orientation, the buckling forces determined by the present theory, RPT and HSDT are almost
identical. For a / & ratio equal to 4 and the fiber orientation equal to 30°, the buckling force values
computed by FSDT, HSDT, and the present theory are 20.88 %, 2.07 %, and 1.94 % lower as
compared to the results determined by Ren (1990). The buckling force values calculated by
employing the five models are in an excellent agreement with those given by Ren (1990) for thin
plates (a/h = 100). The influence of modulus ratio on dimensionless uniaxial buckling force of
simply supported two-layer (45/-45) square plate is demonstrated in Fig. 5. It can be concluded
that increasing the modular ratio makes the plate stiffer because the buckling load is reduced.

6. Conclusions

A simplified HSDT is developed for laminated composite plates. By proposing some additional
simplifying assumptions to the existing HSDT, with the consideration of an undetermined integral
term, the number of variables and governing equations of the proposed HSDT are reduced by one,
and thus, make this formulation simple and efficient to utilize. The theory provides parabolic
variable of the transverse shear strains, and respects the zero traction boundary conditions on the
surfaces of the plate without employing shear correction coefficients. Verification investigations
demonstrate that the predictions by the proposed HSDT and existing HSDT for anti-symmetric
cross-ply and angle- ply laminates are close to each other. In conclusion, the present model can
improve the numerical computational cost because of their diminished degrees of freedom
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