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Abstract.    In this editorial, buckling analytical investigation of the nanocomposite plate with square cut out 
reinforced by carbon nanotubes (CNTs) surrounded by Pasternak foundation is considered. The plate is presumed 
has square cut out in center and resting on Pasternak foundation. CNTs are used as amplifier in plate for diverse 
distribution, such as uniform distribution (UD) and three patterns of functionally graded (FG) distribution types of 
CNTs (FG-X, FG-A and FG-O). Moreover, the effective mechanical properties of nanocomposite plate are 
calculated from the rule of mixture. Domain decomposition method and orthogonal polynomials are applied in order 
to define the shape function of nanocomposite plate with square cut out. Finally, Rayleigh-Ritz energy method is 
used to obtain critical buckling load of system. A detailed parametric study is conducted to explicit the effects of the 
dimensions of plate, length of square cut out, different distribution of CNTs, elastic medium and volume fraction of 
CNTs. It is found from results that increase the dimensions of plate and length of square cut out have negative impact 
on buckling behavior of system but considering CNTs in plate has positive influence. 
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1. Introduction 
 

Researchers in diverse scientific areas have founded that tiny scale materials can make 
powerful bond with around materials in comparison with great scale materials. Therefore, 
nanocomposites were produced; in such compound materials, amplifier is considered in nanoscale 
at least. Nowadays, nanocomposites are spreading swiftly; it is due to the fact that they have 
extraordinary properties. Nanocomposites are classified to four types with respect to their matrix 
such as, polymer matrix nanocomposites (PMNCs), ceramic matrix nanocomposites (CMNCs), 
metal matrix nanocomposites (MMNCs) and intermetallic matrix nanocomposites (IMNCs). 
PMNCs are more prominent in comparison with other types, because they have high strength, low 
weight, high electrical conductivity, high chemical resistance, etc (Sandler et al. 1999). Thus, this 
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kind of nanocomposites has wide application such as, car industry, aerospace, medical engineering, 
foodstuffs packaging, etc. 

Buckling analysis of nanoplates has been considered by many researchers hitherto. Murmu and 
Pradhan (Murmu and Pradhan 2009) investigated the elastic buckling behavior of orthotropic 
small scale plates under biaxial compression. This study discussed the effects of the small scale on 
the buckling loads of nanoplates assuming various material and geometrical parameters. Buckling 
of single layer graphene sheet (SLGS) based on nonlocal elasticity and higher order shear 
deformation theory was addressed by Pradhan (2009). Bending, buckling and vibration analyses of 
nonhomogeneous nanotubes using generalized differential quadrature (GDQ) and nonlocal 
elasticity theory was presented by Pradhan and Phadikar (2009). Levy type solution method for 
vibration and buckling of nanoplates using nonlocal elasticity theory was reported by Aksencer 
and Aydogdu (2011). Results presented for different nonlocal parameter, different length of plates 
and different boundary conditions. In addition, results demonstrated that nonlocal effects for 
nanoscale plates should be considered. Hashemi and Samaei (2011) carried out the buckling 
analysis of micro/nanoscale plates via nonlocal elasticity theory. The effect of length scale on 
buckling behavior of a SLGS embedded in a Pasternak elastic medium using a nonlocal Mindlin 
plate theory was discussed by Samaei et al. (2011). It is understood that the nonlocal assumptions 
present larger buckling loads and stiffness of elastic medium in comparison with classical plate 
theory (CPT). Farajpour et al. (2011) reported buckling analysis of variable thickness nanoplates 
using nonlocal continuum mechanics. Result showed that the influence of percentage change of 
thickness on the stability of graphene sheets is more remarkable in the strip-type nanoplates 
(nanoribbons) than in the square-type nanoplates. Buckling response of orthotropic SLGS is 
investigated applying the nonlocal elasticity theory proposed by Farajpour et al. (2012). 
Differential quadrature method (DQM) has been applied to solve the governing equations for 
various boundary conditions. It is explicit that the nonlocal effects play a considerable role in the 
stability behavior of orthotropic nanoplates. Murmu et al. (2013) addressed nonlocal buckling of 
double-nanoplate-systems (DNPS) under biaxial compression. Both synchronous and 
asynchronous buckling phenomenon of biaxially compressed DNPS is presented in this work. 
Buckling analysis of double-orthotropic nanoplates embedded in Pasternak elastic medium using 
nonlocal elasticity theory was discussed by Radić et al. (2014). The influence of small scale 
coefficient, aspect ratio, and stiffness of internal elastic media and external elastic foundation, on 
the nondimensional buckling was considered. Golmakania and Rezatalab (2015) proposed the 
nonuniform biaxial buckling of orthotropic nanoplates embedded in an elastic medium based on 
nonlocal Mindlin plate theory. The effect of small scale effect, aspect ratio, polymer matrix 
properties, type of planar loading, mode numbers and boundary conditions were probed in details. 
Analytical solution for buckling of embedded laminated plates based on higher order shear 
deformation plate theory was addressed by Baseri et al. (2016). 

CNTs can be used as amplifier in different structure (beam, plate, etc.) and produce 
nanocomposite system in order to enhance mechanical properties and improve behavior of system. 
Buckling analysis of laminated composite rectangular plates reinforced by CNTs using analytical 
and finite element methods was carried out by Ghorbanpour Arani et al. (2011). In this article, the 
effects of the CNTs orientation angle, the edge conditions, and the aspect ratio on the critical 
buckling load are considered using both the analytical and finite element methods. The critical 
buckling load of composite rectangle plate reinforced with CNTs subjected to axial compressive 
load using CPT is discussed by Jam and Maghamikia (Jam and Maghamikia 2011). 
Mohammadimehr et al. (2014a) proposed the buckling and vibration analysis of a double-bonded 
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nanocomposite piezoelectric plate reinforced by boron nitride nanotube based on the Eshelby-
Mori-Tanaka approach applying modified couple stress theory under electro-thermo-mechanical 
loadings surrounded by an elastic foundation. The buckling analysis of annular composite plates 
reinforced by CNTs subjected to compressive and torsional loads was addressed by Asadi and Jam 
(2014). It is concluded that the stability of plate increases as the thickness or inner to outer ratio 
rises and when the CNTs arranged in the circumferential direction the highest buckling load is 
obtained. Mohammadimehr et al. (2014b) analyzed the biaxial buckling and bending of smart 
nanocomposite plate reinforced by CNTs using extended mixture rule approach. The effect of CNT 
waviness and aspect ratio on the buckling behavior of FG nanocomposite plates was investigated 
by Shams and Soltani (2015). Mosallaie Barzoki et al. (2015) presented the temperature-dependent 
nonlocal nonlinear buckling analysis of functionally graded SWCNT-reinforced microplates 
embedded in an orthotropic elastomeric medium. Bending, buckling and vibration responses of 
functionally graded carbon nanotube-reinforced composite beams were analyzed by Tagrara et al. 
(2015). Dynamic stability analysis of temperature-dependent FG-CNTR visco-plates resting on 
orthotropic elastomeric medium was presented by Kolahchi et al. (2016). The buckling behavior of 
laminated carbon nanotube reinforced composite (CNTRC) plates resting on Pasternak elastic 
foundations under in-plane loads was studied by Shams and Soltani (2016). The results presented 
that the geometric and mechanical properties and boundary conditions have prominent effects on 
the buckling behavior of laminated CNTRC plates. 

With respect to the literature, no report has presented the buckling analysis of nanocomposite 
plate with square cut out. These considerations motivated us to present buckling analytical 
investigation of the nanocomposite plate with square cut out reinforced by CNTs embedded by 
Pasternak medium. Rule of mixture is used to obtain the mechanical properties of nanocomposite 
plate. This investigation will be made into the effect of the dimensions of plate, length of square 
cut out, different distribution of CNTs, elastic medium and volume fraction of CNTs. 

The remainder of this essay is classified as follows: In Section 2, Eringen’s nonlocal elasticity 
theory. In Section 3, the effective mechanical properties of nanocomposite plate are specified 
according to the rule of mixture. In Section 4, total energy of the system is obtained. In Section 5, 
at first by using domain decomposition method and orthogonal polynomials shape function of 
plate is determined, afterwards critical buckling load is distinguished by Rayleigh-Ritz method. In 
Section 6, numerical results of study are presented. In Section 7, conclusion of this dissertation is 
expressed. 
 
 
2. Nonlocal elasticity theory 
 

Consider a nanocomposite plate as illustrated in Fig. 1(a), with the length of a, width b and 
thickness h and a central square hole with length d. The plate is subjected to uniaxial load and 
surrounded by Pasternak foundation. Moreover, the plate is reinforced by CNTs in different 
distribution such as FG-UD, FG-X, FG-A and FG-O, in Fig. 1(b). 

The local elasticity theory is applied in macro scale and this theory demonstrates that the stress 
state at any point depends on the strain state at this point; but, in nano/micro scale this hypothesis 
is not valid and some other theories are suggested such as Eringen’s nonlocal elasticity theory. 
This theory expresses that the stress state at a reference point in the body is not related only to the 
strain state at this point but also on the strain states at all of the points throughout the body. 
According to this theory it can be express as (Ghorbanpour Arani et al. 2015) 
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(a) 
 

(b) 

Fig. 1 (a) A nanocomposite cut out plate subjected to uniaxial buckling load surrounded 
by Pasternak foundation; (b) Distribution of CNTs in plate 
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in which 
nl
ij  and 

l
ij  the nonlocal stress tensor and the local stress tensor, respectively. α (|x ‒ x′|, 

τ) demonstrates the nonlocal modulus, wherein |x ‒ x′| is the euclidean distance, and τ = e0a / l is a 
material constant that relates to the internal characteristic length a (e.g., distance between carbon–
carbon bonds, granular size, lattice parameter) and external characteristic length l. The small scale 
parameter e0a is gained from molecular dynamics, experimental results, experimental studies and 
molecular structure mechanics. 

The constitutive equation of the nonlocal elasticity can be expressed as (Ghorbanpour Arani et 
al. 2015) 

,)1( 22 l
ij

nl
ij    (2)

 

where the parameter μ = (e0a)2 demonstrates the small scale effect regard to nanoscale, and 2 is 
the Laplacian operator. It should be represented that the nonlocal stresses tensor change to a local 
one when the nonlocal parameter set to zero. 
 
 
3. Mechanical properties of nanocomposite plate 
 

In this study, orthotropic CNTs are applied in different shapes such as FG-UD, FG-X, FG-A 
and FG-O, to produce nanocomposite plate. The plate is assumed to be isotropic but after using 
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orthotropic CNTs in it, the system change to orthotropic structure. Therefore, by using CNTs in 
plate mechanical properties of system will be improved, thus, the effective mechanical properties 
of nanocomposite plate are extended through the rule of mixture and Young’s modulus, E11 and E22, 
and shear modulus, G12, are (Ghorbanpour Arani et al. 2016a, b) 
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in which CNTCNT EE 2211 ,  and CNTG12  are Young’s modulus and shear modulus of CNTs, respectively 
and Em, Gm show the corresponding properties related to matrix. The CNT efficiency parameters, ηj 
(j = 1, 2, 3), demonstrate the scale-dependent material properties obtained by matching the 
effective mechanical properties of nanocomposite plate calculated from the MD simulations with 
those from the rule of mixture. The relation between volume fractions of CNT, VCNT, and volume 
fractions of matrix, Vm, expressed as (Ghorbanpour Arani et al. 2015) 
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in which wCNT expresses the mass fraction of nanotube. The Poisson’s ratio, υ12, of the 
nanocomposite plate is 
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,1212
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where 
CNT
12  and υm are Poisson’s ratios of CNTs and plate, respectively. 

The constitutive equations of the nonlocal elasticity are 
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in which σij and εij are stress and strain, respectively. Cij are elasticity coefficients and with respect 
to orthotropic structure, they are considered as (Wattanasakulpong and Chaikittiratana 2015) 
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4. Energy method 
 

In order to governing equations of system, energy method is applied (Pan et al. 2013) 
 

,WU   (15)
 

where, U and W are strain energy and external works, respectively and Π is total energy of system. 
 
4.1 Strain energy 
 
Strain energy can be obtained as (Ghorbanpour Arani et al. 2014) 
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By applying CPT, Refs. (Ashoori Movassagh and Mahmoodi 2013, Ghorbanpour Arani and 

Shokravi 2014) and Eq. (14) in Eq. (17) 
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in which moment resultants are considered as (Reddy 2003) 
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4.2 External works 
 
According to Fig. 1, the nanocomposite plate is subjected to two types of forces such as: 
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● Foundation forces 
 

The plate is embedded by Pasternak foundation; as it is known, this foundation model is 
considers both normal (Kw) and shear (Gp) loads. Therefore, the work of this foundation can be 
obtained as (Ghorbanpour Arani et al. 2012) 
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● Buckling load 
 

Kw and Gp are Winkler’s spring modulus and shear foundation parameters, respectively. 
The nanocomposite plate is subjected to buckling, thus the work of this force can be calculated 

as (Pan et al. 2013) 
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the buckling load is uniaxial, so Nxx = ‒P and Nyy = 0. 
With respect to Eringen’s nonlocal elasticity theory and energy method, total energy of 

nanocomposite plate is equal to 
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and the stiffness components in aforementioned equations can be specified as (Ghorbanpour Arani 
et al. 2016b) 
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5. Buckling of nanocomposite plate with central square cut out 
 

5.1 Domain decomposition method and orthogonal polynomials 
 
In this section, the shape function of plate with central cut out in simply supported boundary 

conditions (S-S-S-S), will be calculated by applying domain decomposition method and 
orthogonal polynomials. At first domain decomposition method (Bhat 1985, Lam et al. 1989, Lam 

 
 

Fig. 2 Illustration of dividing the nanocomposite cut out plate to three sub-domains 
 
 

 

Fig. 3 A schematic of one fourth of plate divided to three sub-domains 
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and Hung 1990a, b, Liew et al. 1993, 1995, 2001, 2003, Pan et al. 2013), which considers not only 
the outer boundary conditions (S-S-S-S), but also the inner (cut out edges) free boundary condition, 
is used to divide plate to some sub-domain. 

Because of the two symmetrical conditions only one quarter of the rectangular plate with a 
central square cut out need to be considered as Fig. 2, therefore, one fourth of plate is divided to 
three sub-domains as Fig. 3. 

After partitioning nanocomposite plate with a central square cut out, shape function should be 
determined. Orthogonal polynomials (Bhat 1985) are applied to present the shape function of each 
sub-domain which considers the geometric boundary conditions. The deflection shape functions 
for each sub-domain can be defined as 
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Table 1 Starting polynomials for sets of orthogonal polynomials (Pan et al. 2013) 

Boundary conditions Starting polynomials, f1 (x) Generating functions, g0 (x) 

Free-free 

,0)0( )0( 11  ff  1.0 x 

,0)1( )1( 11  ff    

Free-simply supported 

,0)0( )0( 11  ff  1 ‒ x x2 ‒ 2x 

,0)1( )1( 11  ff    

Free-clamped 

,0)0( )0( 11  ff  3 ‒ 4x + x4 x 

,0)1( )1( 11  ff    

Symmetric-free 

,0)0( )0( 11  ff  1 + x2 1 + x2 

,0)1( )1( 11  ff    

Symmetric-simply supported 

,0)0( )0( 11  ff  5 ‒ 6x2 + x4 x2 

,0)1( )1( 11  ff    

Symmetric-clamped 

,0)0( )0( 11  ff  1 ‒ 2x2 + x4 1 ‒ x2 

,0)1( )1( 11  ff    

Anti-symmetric-simply supported 

,0)0( )0( 11  ff  x ‒ 2x3 + x4 x2 

,0)1( )1( 11  ff    
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where, the superscripts (1), (2) and (3) are imply to sub-domain 1, 2 and 3 respectively. w(i) (i = 1, 
2, 3) are the shape functions of sub-domain 1, 2 and 3 respectively. )(i

mnA  are the undetermined 
coefficients of the shape functions w(i). )()( xf i

m  are polynomial functions which consider the 
essential boundary conditions along x-direction, while )()( yg i

n  are polynomial functions which 
consider the essential boundary conditions along y-direction. The orthogonal polynomial functions 

)()( xf i
m  and )()( yg i

n  are made by the Gram–Schmidt process (Bhat 1985), applying the initial 
polynomials (f1 (x), g0 (x)) which initially satisfy the essential boundary conditions, can be 
calculated for different boundary conditions according to Table 1. 

The process is as (Bhat 1985) 
 

),())(()( 1102 xfAxgxf   (29)
 

2          ),()())(()( 101   kxfBxfAxgxf kkkkk  (30)
 
In order to specify functions gn (y) the same process of determining fm (x) as defined in Eqs. 

(29)-(32) can be used. 
Therefore, shape functions of three sub-domains were defined hitherto and the final step in 

order to calculate buckling load, is to determine deflection functions of three sub-domains in terms 
of the undetermined coefficients of one the sub-domains. Thus, the best way is to apply some spots 
in the interconnecting boundary between sub-domains and according to the mathematical 
derivation, the undetermined coefficients of sub-domains 1, 2 and 3 are related together (Bhat 
1985, Lam and Hung 1990a, b, Liew et al. 2001, 2003). 

 
5.2 Rayleigh-Ritz method 
 
Rayleigh-Ritz method is used to calculate buckling load of nanocomposite plate with a central 

square cut out. As noted before, because of the two symmetrical conditions only one quarter of the 
rectangular plate with a central square cut out need to be considered. The total energy of cut out 
plate is determined as 

,)3()2()1(   (31)
 
Π(i) (i = 1, 2, 3) are total energy of sub-domains 1, 2 and 3, respectively and they are presented 

in Appendix A. Therefore, total energy of cut out plate is specified in terms of the undetermined 
coefficients of shape function of sub-domain 1. The critical buckling load of the cut out plate after 
applying Rayleigh-Ritz method is determined by putting the coefficient determinant of the 
equations equal to zero. 

 
 

6. Results and discussion 
 
In this section, the results of considering buckling analysis in nanocomposite plate with square 

cut out reinforced by CNTs resting on Pasternak foundation are presented through some figures. 
The goal of this essay is to distinguish the effects of the dimensions of plate, length of square cut 
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Table 2 Material properties of matrix and CNTs (Shams and Soltani 2016) 

Matrix CNTs 

Em = 2.1 (GPa) (TPa) 6466.511 CNTE  

υm = 0.34 (TPa) 08.722 CNTE  
 (TPa) 9447.112 CNTG  
 (TPa) 175.012 CNT  

 
 

Table 3 A comparison between the buckling analysis of SLGS using the theories of 
classical plate, higher order shear deformation and Mindlin plate 

a/h e0a 
CPT (Pradhan and 

Murmu 2009) 
Higher order plate theory

(Pradhan 2009) 
Mindlin plate theory 

(Hashemi and Samaei 2011) 
Present 

100 

0.0 9.8791 9.8671 9.8671 9.8790 

0.5 9.4156 9.4031 9.4029 9.4156 

1.0 8.9947 8.9807 8.9803 8.9945 

1.5 8.6073 8.5947 8.5939 8.6073 

2. 8.2537 8.2405 8.2393 8.2533 

20 

0.0 9.8177 9.8067 9.8067 9.8172 

0.5 9.3570 9.3455 9.3455 9.3570 

1.0 8.9652 8.9528 8.9527 8.9648 

1.5 8.5546 8.5420 8.5420 8.5546 

2.0 8.2114 8.1900 8.1898 8.2111 
 
 

Table 4 A comparison by considering CNTs for different (KW, GP) and V*
CNT 

 
 W PK ,G

(0,0) (1000,0) (1000,10) 

V*
CNT 

(Shams and 
Soltani 2016) 

Present 
(Shams and 

Soltani 2016) 
Present 

(Shams and 
Soltani 2016) 

Present 

0.11 31.1573 31.1663 40.7179 40.7280 59.5620 59.5715 

0.14 37.3815 37.3923 46.9422 46.9511 65.7863 65.7013 

0.17 48.2092 48.2202 57.7699 57.7814 76.6144 76.6261 
 
 

out, different distribution of CNTs (FG-X, FG-UD, FG-A and FG-O), elastic medium and volume 
fraction of CNTs on critical buckling load of plate. Here Poly-co-vinylene, referred to as PmPV, 
and orthotropic CNTs are selected as the matrix and the reinforcement materials, respectively. The 
geometrical parameters of structure are assumed as, a = b = 30 nm, d = 0.1 × b and h = 1 nm; in 
addition, the material properties of CNTs and PmPV are presented in Table 2. 

In order to validate the result of this study with other article, a comparison among the buckling 
analysis of CPT (Pradhan and Murmu 2009), higher order plate theory (Pradhan 2009), Mindlin 
plate theory (Hashemi and Samaei 2011) and present essay is reported in Table 3. 
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Fig. 4 Comparison of buckling road ratio versus nonlocal parameter 
 
 

In this table, critical buckling load for diverse values of nonlocal parameter and aspect ratio of 
length to thickness is defined. As can be seen, the present results closely match with those 
presented by Hashemi and Samaei (2011), Pradhan and Murmu (2009) and Pradhan (2009). 
Moreover, a comparison of buckling load ratio with respect to nonlocal parameter between 
Pradhan and Murmu (2009) and present study is provided in Fig. 4. 

To compare the results of this article by considering CNTs as booster, Table 4 shows a 
comparison between Shams and Soltani (2016) and present study. 

In this editorial, buckling load ratio, dimensionless Winkler modulus and shear modulus are 
specified as follows 

,
)( theory local from load Buckling

)( theory nonlocal from load Buckling
ratio load Buckling

l

nl

P

P
  (32)

 

,
m

w
W E

hK
K   (33)

 

.
m

p
P hE

G
G   (34)

 
It is noted, figures presented in this section are depicted according to UD distribution. 
Fig. 5 illustrates the effect of length of plate on buckling load ratio by considering 

dimensionless nonlocal parameter. As can be seen, by increasing nonlocal parameter, critical 
buckling load ratio decreases. The figure shows that increase length causes more buckling load 
ratio, because by increasing length, stiffness of system decreases so the critical buckling load 
decreases too but variation of local buckling load is more than nonlocal buckling load, therefore, 
the critical buckling load ratio increases. It is apparent that the effect of length on the buckling 
load ratio is more remarkable in high value of nonlocal parameter. 
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Fig. 5 Effect of the length of plate on critical buckling load ratio in terms of the dimensionless 
nonlocal parameter 

 
 

 

Fig. 6 Effect of the aspect ratio of plate on buckling load ratio versus the dimensionless nonlocal parameter
 
 
Variation of critical buckling load ratio in terms of nonlocal parameter with respect to different 

aspect ratio of nanocomposite square cut out plate is analyzed in Fig. 6. It is obvious that the 
effectiveness order of aspect ratio on buckling load ratio from high to low is as a / b > 1, a / b = 1 
and a / b < 1, respectively. To understand the reason of this order, it is better to look at Fig. 1 and 
consider the length and width of plate and the direction of uniaxial buckling load. Moreover, by 
keep in view to the trend of figure, buckling load ratio decreases by increasing nonlocal parameter. 
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Fig. 7 Variation of the critical buckling load ratio by considering dimensionless nonlocal 

parameter for different length of square cut out in plate 
 
 

 
Fig. 8 Buckling load ratio versus dimensionless nonlocal parameter for different values of 

Winkler modulus parameter 
 
 
Fig. 7 considers the effect of length of square cut out in nanocomposite plate on buckling load 

ratio in terms of the nonlocal parameter. It is apparent, existence a hole in plate causes defect in 
system and weaken the buckling behavior, therefore, by increasing length of square cut out in plate 
buckling load ratio increase. In addition, the effect of length of hole on critical buckling load ratio 
is more considerable for high dimensionless nonlocal parameter. 
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Fig. 9 Buckling load ratio versus dimensionless nonlocal parameter for different shear modulus parameter
 
 
Now the effect of the elastic medium on critical buckling ratio is examined in this section. Figs. 

8 and 9 analyze the variation of buckling load ratio by considering nonlocal parameter keep in 
view different magnitude of Winkler modulus parameter (KW) and shear modulus parameter (GP). 
It is obvious that considering Winkler modulus parameter and shear modulus parameter, improve 
the buckling behavior of plate, because Winkler foundation imposes normal force and Pasternak 
medium impose normal and shear forces to system, therefore, considering these foundation 
increase the stiffness of system and buckling load ratio. Keep in view above-mentioned and the 
trend of Figs. 8 and 9, the effect of Pasternak foundation is more than Winkler foundation. 

In this study, in order to improve the mechanical properties of system, CNTs are used as 
amplifier. One of the important factors of CNTs distribution is their volume fraction; therefore, Fig. 
10 demonstrates variation of buckling ratio in terms of nonlocal parameter by considering different 
volume fraction for different efficiency parameters as follow (Zhu et al. 2012) 

 
934.0   ,149.0     :11.0 321

*  CNTV  (35)
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*  CNTV  (36)

 
381.1   ,149.0     :17.0 321

*  CNTV  (37)
 
It is explicit that increase volume fraction causes more critical buckling load, because volume 

fraction is a symbol of CNTs numbers in plate, thus, increase volume fraction leads to more CNTs 
in plate and improve mechanical properties of system. 

As mentioned before, CNTs are used as amplifier in four different shapes such as FG-UD, FG-
X, FG-A and FG-O. Fig. 11 shows the effect of different distribution of CNTs in plate on buckling 
load ratio with respect to nonlocal parameter. It is distinct that Isotropic type (plate without CNTs) 
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has minimum effect on critical buckling load ratio in comparison with other types which types 
have CNTs in plate. Moreover, FG-X has more effect on improvement behavior of nanocomposite 
cut out plate in comparison with FG-UD, FG-A and FG-O. The reason is that the stiffness of 
system changes with the form of CNT distribution in matrix. However, it can be comprehend that 
CNTs distribution close to top and bottom are more efficient than those distributed nearby the mid-
plane for increasing the stiffness of plates. 

 

 
Fig. 10 Variation of the critical buckling load ratio in terms of dimensionless nonlocal parameter 

for different CNTs volume fraction 
 
 

 

Fig. 11 Effect of the distribution of CNTs on buckling load ratio versus dimensionless nonlocal parameter
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7. Conclusions 
 
In this dissertation, buckling analysis of nanocomposite plate with square cut out reinforced by 

CNTs was investigated. The plate was surrounded by Pasternak foundation and reinforced by 
CNTs in different FG distributions (FG-X, FG-UD, FG-A and FG-O). Role of mixture was applied 
to determine the effective mechanical properties of nanocomposite plate and Eringen’s nonlocal 
elasticity theory was used to consider nanoscale effect. In order to define the shape function of 
nanocomposite plate with square cut out, domain decomposition method and orthogonal 
polynomials were applied. Finally, Rayleigh-Ritz energy method was used to obtain critical 
buckling load of system so that the impact of the dimensions of plate, length of square cut out, 
different distribution of CNTs, elastic medium and volume fraction of CNTs on critical buckling 
load were distinguished. Results demonstrated that: 

 

● By increasing dimensions of plate the buckling load ratio of nanocomposite plate with 
square cut out rises. 

● Existence a hole in plate causes defect in system and weaken the buckling behavior, 
therefore, by increasing length of square cut out in plate buckling load ratio increase. 

● The effect of different parameters on buckling load ratio is more remarkable in high value of 
nonlocal parameter. 

● Increase volume fraction of CNTs causes more critical buckling load. 
● By considering CNTs in plate, critical buckling load increases. 
● FG-X has more effect on improvement behavior of nanocomposite plate in comparison with 

FG-UD, FG-A and FG-O. 
 

The results provided in this paper would be useful in design and manufacturing of composite 
systems especially in nano/micro-mechanical systems. 
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With respect to Eq. (21) and Fig. 3, Π(i) (i = 1, 2, 3) are defined as 
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