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Abstract.  In this paper, free vibration, forced vibration, resonance and stress wave propagation behavior in 
nanocomposite plates reinforced by wavy carbon nanotube (CNT) are studied by a mesh-free method based on first 
order shear deformation theory (FSDT). The plates are resting on Winkler-Pasternak elastic foundation and subjected 
to periodic or impact loading. The distributions of CNTs are considered functionally graded (FG) or uniform along 
the thickness and their mechanical properties are estimated by an extended rule of mixture. In the mesh-free analysis, 
moving least squares (MLS) shape functions are used for approximation of displacement field in the weak form of 
motion equation and the transformation method is used for imposition of essential boundary conditions. Effects of 
CNT distribution, volume fraction, aspect ratio and waviness, and also effects of elastic foundation coefficients, plate 
thickness and time depended loading are examined on the vibrational and stresses wave propagation responses of the 
nanocomposite plates reinforced by wavy CNT. 
 

Keywords:  stress wave; resonance; vibration; nanocomposite plates; wavy carbon nanotube; mesh-free 
 
 
1. Introduction 
 

The two dimensional plate theories including classical plate theory (CPT), FSDT and the higher 
order shear deformation plate theories (HSDTs) are common for the analysis of plates. The 
classical plate theory, which neglects the transverse shear deformation effect, provides reasonable 
results for thin plates. It underestimates deflections and overestimates frequencies as well as 
buckling loads of moderately thick plate (Reddy 2004). So, many shear deformation plate theories 
which account for the transverse shear deformation effect have been developed for overcoming on 
the limitation of CPT. The Reissner (1945) and Mindlin (1951) theories are known as first order 
shear deformation plate theory. FSDT provides a sufficiently accurate description of response for 
thin to moderately thick plate (Thai and Choi 2012). The performance of the FSDT is strongly 
dependent on shear correction factors which are sensitive not only to the material and geometric 
properties but to the loading and boundary conditions. To avoid the use of shear correction factor 
and to include the actual cross-section warping of the plate, HSDTs have been extensively 
developed, considering the higher-order variation of in-plane displacement through the thickness 
(Reddy 1984). 
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Iijima’s works (Iijima 1991, Iijima et al. 1993) allowed to understand the great potentialities of 
Carbon Nanotubes and aroused the interest of many scientists, whose researches aimed to find a 
convenient application which was able to take advantage of them. Due to their excellent 
mechanical and thermal properties, CNTs have been seen immediately as the ideal candidate to 
reinforce those composite materials. So, these advantages increase using of carbon nanotube 
reinforced composites (CNTRCs) in engineering structures and technological fields, such as 
aerospace and mechanical engineering (Liew et al. 2015). Several important studies have focused 
on estimating the material properties of CNTRCs. These studies have proved that applying small 
amount of CNTs to the matrix can effectively enhance overall mechanical and electrical properties 
of polymeric composites (Selmi et al. 2007, Fidelus et al. 2005, Han and Elliott 2007). Martone et 
al. (2011) studied on the effects of CNT aspect ratio and waviness on the reinforcement behavior 
of CNT/epoxy composite. They revealed that progressive reduction of the tubes effective aspect 
ratio occurs because of the increasing connectedness between tubes upon an increase of their 
concentration. Also they investigated on the effect of nanotube curvature on the average contacts 
number between tubes by means of the waviness that accounts for the deviation from the straight 
particles assumption. Kundalwal and Ray (2013) studied on the effect of CNT waviness on the 
effective coefficient of thermal expansion of a continuous fuzzy fiber reinforced composite which 
is composed of carbon fibers, sinusoidally wavy CNTs and epoxy matrix by an analytical 
micromechanics model based on the method of cells approach. 

On the other hand, mechanical properties of CNTRC will become worse if the volume fraction 
of CNTs arises beyond certain limit (Meguid and Sun 2004). Therefore, due to high cost of CNTs, 
in the modeling of CNTRC the concept of functionally graded materials (FGMs) might be 
incorporated to effectively make use of the CNTs. FGMs are classified as novel composite 
materials with gradient compositional variation. The concept of FGMs can be utilized for the 
management of a material’s microstructure, so that the mechanical behavior of a structure made of 
such material can be improved. The composites, which are reinforced by CNTs with grading 
distribution, are called functionally graded carbon nanotube reinforced composites (FG-CNTRCs). 
By using their concept, several works on FG-CNTRC structures were carried out after the 
researches on the FGMs. Shen (2009) suggested that the interfacial bonding strength can be 
improved through the use of a graded distribution of CNTs in the matrix. He examined nonlinear 
bending behavior of FG-CNTRC plates and showed that the linear FG reinforcements can increase 
these mechanical behaviors. Yas and Sobhani Aragh (2010) used generalized differential 
quadrature (GDQ) method and 3D, linear and small strain elasticity theory to present free vibration 
behavior of simply supported rectangular continuously graded fiber reinforced (CGFR) plates 
resting on the Pasternak elastic foundations. Hedayati and Sobhani Aragh (2012) studied on the 
free vibration analysis of continuously graded CNTRC annular sectorial plates resting on 
Pasternak elastic foundation by 3D elasticity solution. Kaci et al. (2012) presented nonlinear 
cylindrical bending of simply supported FG-CNTRC plates subjected to uniform pressure loading 
in thermal environments. They reduced the governing equations to linear differential equation with 
nonlinear boundary conditions by a simple solution procedure. Sobhani Aragh et al. (2012) 
investigated the effect of CNT orientation on the natural frequencies characteristics of a 
continuously graded carbon nanotube-reinforced (CGCNTR) cylindrical panels based on the 
Eshelby–Mori–Tanaka approach and GDQ method. Zhu et al. (2012) studied on static and free 
vibration analyses of thin-to-moderately thick FG nanocomposite plates reinforced by straight 
CNTs. They developed a finite element method (FEM) based on the FSDT. Natarajan et al. (2014) 
investigated on the bending and free flexural vibration behavior of sandwich plates with CNT 
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reinforced composite face sheets based on higher-order structural theory. They reported that the 
deflection of sandwich plates decreases by increasing of CNT volume fraction. Kamarian et al. 
(2013) examined the vibrational behavior of FG-CNTRC plates resting on Winkler-Pasternak 
elastic foundation by Eshelby-Mori-Tanaka approach. Mehar et al. (2015) presented free vibration 
behavior of FG-CNTRC plates in thermal environment by an FEM based on HSDT. Ansari et al. 
(2015) investigated nonlinear forced vibration behavior of FG-CNTRC plates using of FSDT and 
von karman-type kinematic relations. They used GDQ method and a Galerkin based scheme to 
obtain a time-varying set of ordinary differential equations of Duffing-type. Fan and Wang (2016) 
investigated the effect of matrix cracks on the nonlinear bending and thermal postbuckling of a 
piezoelectric shear deformable laminated beam which contains both CNTRC layers and 
piezoelectric fiber reinforced composite (PFRC) layers. They assumed the beam resting on a two-
parameter elastic foundation in thermal environments and used von Kármán nonlinear strain-
displacement relationships and HSDT. Also, The effect of CNT agglomeration on the stresses due 
to bending behavior of FG-CNTRC open cylindrical shells (Jafari Mehrabadi and Sobhani Aragh 
2014), and also on the vibration behavior of arbitrary shaped plate (Fantuzzi et al. 2016), conical 
shells (Kamarian et al. 2016) and laminated composite doubly-curved shells (Tornabene et al. 
2016) are presented. 

Furthermore, there are some investigations to analysis of FG-CNTRC and FGM structures 
which used some forms of mesh-free method were used. Qian et al. (2004) examined the static and 
vibrational behaviors of a thick rectangular FGM plate by a meshless local Petrov–Galerkin 
(MLPG) method based on a higher order shear and normal deformable plate theory. Moradi-
Dastjerdi et al. (2013a, b) studied on the static and dynamic responses of FG nanocomposite 
cylinders reinforced by straight CNTs. They used a mesh-free method based on MLS shape 
function. The element-free kp-Ritz method based on FSDT is used by Lei et al. (2013a, b) for 
buckling and free vibration analyses of FG-CNTRC plates. Ansari and Arjangpay (2014) presented 
axial buckling and free vibration characteristics of SWCNTs with different boundary conditions by 
MLPG method. They used a nonlocal shell model accounting for the small scale effect and showed 
that the critical axial buckling loads and natural frequencies of SWCNTs are strongly dependent on 
the small scale effect and geometrical parameters. Zhang et al. (2015a, b) used an element-free 
based improved moving least squares-Ritz (IMLS-Ritz) method and FSDT to study the buckling 
behavior FG-CNTRC plates resting on Winkler foundations and nonlinear bending of these plates 
resting on Pasternak elastic foundation. Also, dynamic stability analysis of FG-CNTRC cylindrical 
panels under static and periodic axial force is presented by using the element-free kp-Ritz method 
(Lei et al. 2016). Moradi-Dastjerdi (2016) presented the effects of CNT orientation and 
aggregation on the stress wave propagation of FG-CNTRC cylinders by the same mesh-free 
method. 

But in all the above mentioned works about FG-CNTRC structures, it can be seen that they 
assumed that CNTs are straight and didn’t consider the effects of CNT aspect ratio and waviness 
while, CNT curvature (waviness index) dramatically decreases modulus of elasticity. But, Jam et 
al. (2012) investigated the effects of CNT aspect ratio and waviness on the vibrational behavior of 
nanocomposite cylindrical panels. They used a 3D elasticity theory and indicated that CNTs 
volume fraction and distribution pattern have a significant effect on the natural frequencies of a 
nanocomposite cylindrical panel. Also, Moradi-Dastjerdi et al. (2014) studied on the effects of 
CNTs waviness and aspect ratio on the vibrational and dynamic behaviors of FG-CNTRC 
cylinders by a mesh-free method. They showed that CNT waviness has a significant effect on the 
natural frequency and stress wave propagation of nanocomposite cylinders reinforced by wavy 
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CNTs. Finally, the effects of CNT waviness and aspect ratio on the buckling behavior of FG-
CNTRC plates subjected to in-plane loads are investigated by Shams et al. (2015). They used 
reproducing kernel particle method (RKPM) based on modified FSDT. 

In this paper, vibrational, resonance and dynamic behaviors of nanocomposite plates reinforced 
by wavy CNTs resting on two parameter elastic foundation are investigated by a mesh-free method 
based on FSDT. The plates are subjected to periodic or impact loads for vibration or wave 
propagation analysis, respectively. In the mesh-free method, MLS shape functions are used to 
approximate of displacement field in the weak form of motion equation and for imposition of 
essential boundary conditions, the transformation method is used. This mesh-free method doesn’t 
increase the calculations against Element-Free Galerkin (EFG). A micro mechanical model is used 
to estimate material properties of FG-CNTRC plates but for the scale difference between the nano 
and micro levels, some efficiency parameters are defined and estimated by matching the Young’s 
moduli of CNTRCs obtained by the extended rule of mixture to those obtained by MD simulation. 
CNTs volume fraction of nanotube is assumed functionally graded along the plate thickness. So 
the effect of CNT distribution and the effects of aspect ratio, waviness and volume fraction of 
CNTs, and geometric dimension elastic foundation coefficients of plates are investigated on the 
free vibration, forced vibration, resonance behavior and stress wave propagation of the 
functionally graded composite plates reinforced by wavy CNTs. 
 
 
2. Material properties in FG-CNTRC plates 
 

In this paper, FG-CNTRC plates resting on Winkler-Pasternak elastic foundation are 
considered with length a, width b, and thickness h, as shown in Fig. 1. Volume fraction of CNT is 
assumed to be graded along the plate thickness. The plates are made from a mixture of wavy 
SWCNTs and isotropic matrix. The wavy SWCNT reinforcement is either uniformly distributed 
(UD) or functionally graded in the plate thickness. To obtain mechanical properties of 
CNT/polymer composites an extended rule of mixture equation assumes that the fibers are wavy 
and has uniform dispersion in the polymer matrix. This equation can’t consider the length of fiber, 
so it can be modified by incorporating efficiency parameter (η*) to account the nanotube aspect 
ratio (AR) and waviness (w) (Martone et al. 2011).The effective mechanical properties of the 
CNTRC plates are obtained based on a micromechanical model according to Shen (2009) 
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VCN and Vm are the fiber (CNT) and matrix volume fractions and are related by VCN + Vm = 1. ηj (j = 
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modulus of CNTRCs observed from the molecular dynamic (MD) simulation result with the 
numerical results obtained from the extended rule of mixture in Eqs. (1)-(5). It must be noticed 
that the average number of contacts, c , for tubes is dependent on their aspect ratio (Martone et al. 
2011) 
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where the waviness index, w, has been introduced in order to account the CNTs curvature within 
the real composite. Accordingly to Martone et al. (2011), the variation of the excluded volume due 
to nanotubes curvature has been here investigated by introducing the waviness parameter, w. 

The variation profile of CNT volume fraction along the plate thickness has important effects on 
the plate behavior. In this paper, three linear types (FG-V, FG-X and FG-O) are assumed for the 
distribution of CNT reinforcements along the thickness direction in FG-CNTRC plates. Also, a 
uniform distribution for CNTs in the nanocomposite plate with the same thickness, referred to as 
UD-CNTRC, is considered as a comparator. These distributions along the thickness are shown in 
Fig. 2, where 
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and wCN is the mass fraction of nanotube. 
 
 

 

Fig. 1 Schematic of the plate resting on Winkler-
Pasternak elastic foundation 

Fig. 2 Variation of VCN along the thickness of plate 
for different CNT distributions 
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3. Governing equations 
 

Based on the FSDT, the displacement components can be defined as (Reddy 2004) 
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where u, v and w are displacements in the x, y, z directions, respectively. u0, v0 and w0 denote mid-
plane displacements, θx and θy rotations of normal to the mid-plane about y-axis and x-axis, 
respectively. The kinematic relations can be obtained as follows 
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The linear constitutive relations of a FG plate can be written as 
 

(13)

 
in which α denotes the transverse shear correction coefficient, which is suggested as α = 5 / 6 for 
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(14)

 
Also by considering of the Pasternak foundation model, total energy of the plate is as 
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where P(t) is the time depend applied load, kw and ks are coefficients of Winkler and Pasternak 
(shear) foundation. If the foundation is modeled as the linear Winkler foundation, the coefficient ks 
in Eq. (15) is zero. 
 
 
4. Mesh-free numerical analysis 
 

In these analyses moving least square shape functions introduced by Lancaster and Salkauskas 
(1981) is used for approximation of displacement vector in the weak form of motion equation. 
Displacement vector d can be approximated by MLS shape functions as follows 
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By using of the MLS shape function, Eq. (11) can be written as 
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in which 
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Also for elastic foundation, φw and Bp can be defined as following 
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Substitution of Eqs. (13) and (21) in Eq. (15) leads to 
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in which the components of the extensional stiffness A, bending-extensional coupling stiffness ,B  
bending stiffness D, transverse shear stiffness AS and also Gi and M  are introduced for mass 
matrix and they are defined as 
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where I0, I1 and I2 are the normal, coupled normal-rotary and rotary inertial coefficients, 
respectively and defined by 
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It can be noticed that the arrays of bending-extensional coupling stiffness matrix, ,B  are zero 

for symmetric laminated composites. Finally, by a derivative with respect to displacement vector, 
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,d̂  the Eq. (24) can be expressed as 
 

FdKdM  ˆ̂ (28)
 

in which, M, K and F are mass matrix, stiffness matrix and force vector, respectively and are 
defined as 

dA
A

j
T
i GMGM (29)

 
(30)

 

dAtP
A

T
w )(φF (31)

 
in which, Km, Kb and Ks are stiffness matrixes of extensional, bending-extensional and bending, 
respectively and also, Kw and Kp are stiffness matrixes that represented the Winkler and Pasternak 
elastic foundations. They are defined as 
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(32)

 

(33)

 

For numerical integration, problem domain is discretized to a set of background cells with 
gauss points inside each cell. Then global stiffness matrix K is obtained numerically by sweeping 
all gauss points. Imposition of essential boundary conditions in the system of Eq. (28) is not 
possible. Because MLS shape functions don’t satisfy the Kronecker delta property. In this work 
transformation method is used for imposition of essential boundary conditions. For this purpose 
transformation matrix is formed by establishing relation between nodal displacement vector d and 
virtual displacement vector .d̂  

dTd ˆ (34)
 
T is the transformation matrix that is a (5N × 5N) matrix and is defined as 
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where I(5×5) is an identity matrix of size 5. By using Eq. (34), system of linear Eq. (28) can be 
rearranged to 

FdKdM ˆˆˆ  (36)

pwsbm KKKKKK 
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where 

FTFKTTKMTTM TTT   ˆ,ˆ,ˆ 11 (37)
 
Now the essential B. Cs. can be enforced to the modified equations system Eq. (36) easily like 

the finite element method. By using of Newmark method, the time depended system Eq. (36) can 
be solved and time history of displacement can be derived. Also, in the absence of external forces, 
Eq. (36) is simplified as follows 

(38)
 
So, natural frequencies and mode shapes of the sandwich plate are determined by solving this 

eigenvalue problem. 
 
 

5. Results and discussions 
 

In this section, vibrational and dynamic behaviors of functionally graded wavy CNT-reinforced 
nanocomposite plates are investigated using the mesh-free method. The Poly (methyl- 
methacrylate), referred as PMMA, is selected as the matrix with isotropic material properties. The 
relevant material properties for CNTs and PMMA are as follows (Shen 2009): 

,GPa 5.2mE 3Kg/m1150m  and 34.0m  for PMMA 
TPa,6466.51 CNE TPa,0800.72 CNE ,TPa9445.112 CNG 3Kg/m1400CN and 175.012 CN  

for (10,10) SWCNTs and material properties of the nanocomposite are derived from Eqs. (1)-(5) 
and with respect to 23 7.0    (Song and Youn 2006) and values of Table 1 (Moradi-Dastjerdi et 
al. 2013b). The accuracy of this method has been investigated by a comparing with experimental 
results (Jam et al. 2012, Moradi-Dastjerdi et al. 2014, and Moradi-Dastjerdi Pourasghar 2016). 

In this work, free vibration, forced vibration, resonance phenomenon and stress wave 
propagation are presented to investigate the mechanical characteristics of FG-CNTRC plates by 
several numerical examples. The plates are assumed subjected to periodic or impact load and 
resting on Winkler-Pasternak elastic foundation. At first, convergence and accuracy of the mesh-
free method are examined by a comparison between the results and reported results in literatures 
about homogeneous, FGM and straight CNT-reinforced composite plates. Then, new mesh-free 
results on the vibrational and dynamic characteristics of wavy CNT-reinforced composite plates on 
the elastic foundation will report. In all examples of CNTRC plates, the foundation parameters are 
presented in the non-dimensional form of Kw = kwa4/D and Ks = ksa

2/D, in which D = Emh3/12(1-υm
2) 

is a reference bending rigidity of the plate. Also, the normalized deflection and natural frequency 
of the applied plates are defined as (Ferreira et al. 2009) 

 
4

0
310ˆ aPqhEq m (39)

 

mm Eh  ˆ (40)
 

in which, f0 is the value of amplitude of time depended applied load and q is central deflection. 
 
5.1 Validation models 
 
The convergence of applied mesh-free method is examined in Fig. 3. Consider a simply 

0ˆˆ  dKdM 
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Table 1 Efficiency parameter of (10,10) SWCNT at T0 = 300 K (Martone et al. 2011) 
*

CNV  η1 η2 

0.12 0.137 1.022 

0.17 0.142 1.626 

0.28 0.141 1.585 
 
 

Fig. 3 Convergence of the non-dimensional fundamental frequency, ,̂  of the FGM plate 
with h/a = 0.2, Kw = 100, Ks = 100 

 
 

supported FGM square plate resting on two parameter elastic foundation with h/a = 0.2, Kw = 100 
and Ks = 100 as Thai and Choi (2011). Fig. 3 shows normalized fundamental frequency ,̂ of the 
plates for volume fraction exponent of, n = 1. This figure shows that, by using of only 5×5 node 
arrangement, the applied method has a very good accuracy and agreement with reported results by 
Thai and Choi (2011) in FGM plates. Also, the normalized fundamental frequency of this plate are 
presented in Table 2 for various values of h/a (= 0.05, 0.1 and 0.2) and elastic foundation 
coefficients. This table reveals that the applied method in has very good accuracy and agreement 
with the reported results by Thai and Choi (2011) and Baferani et al. (2011) especially in thinner 
plates. 

The accuracy of applied mesh-free method in nanocomposite plates reinforced by straight CNT 
is examined too. Consider square simply supported UD and FG-CNTRC plates with CNT volume 
fraction, 17.0* CNV  and values of b/h (= 50, 20 and 10). Table 3 compares normalized 
fundamental frequency ,̂ of the applied mesh-free method and FEM with FEM (based on FSDT) 
reported results by Zhu et al. (2012) and FEM (based on HSDT) reported results by Mehar et al. 
(2015). The results show a good agreement for both UD and FG nanocomposite reinforced by 
straight CNTs. 

 
5.2 Free vibration analysis of FG-CNTRC plates 
 
The effects of boundary conditions, plate thickness and coefficients of elastic foundation on the 

frequencies of FG-CNTRC plates are investigated in Table 4. This table shows the fundamental 
normalized frequency parameter, ,̂ for clamped and CSCS (C: clamped and S:simply supported) 
plates with CNT waviness, w = 0.425, aspect ratio, AR = 1000, and volume fraction, .17.0* CNV  
As observed, using of the elastic foundation increases the frequency parameters and frequency 
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parameters of clamped plates are bigger than frequencies of CSCS plates in all cases. Also, the 
frequency parameter is dramatically decreased by increasing of CNT waviness or by decreasing of 
the plate thickness. FG-X and FG-O for wavy CNT distribution show the best and worst 
reinforcement behavior in free vibration analysis, respectively. 

Now, the effects of CNTs characteristics are investigated on the frequencies of the 
nanocomposite plates reinforced by wavy CNTs. Table 5 lists the normalized fundamental 
frequency, ,̂  for clamped square plates reinforced by wavy CNT resting on Winkler-Pasternak 
foundation with Kw = 100 and Ks = 10, and with ratio of plate thickness, h/a = 0.1. This table 
reveals that the effect of CNT waviness is more than CNT Volume fraction on the natural 

 
 

Table 2 Comparison of the normalized fundamental frequency, ,̂  in simply supported square FGM plates 

Kw Ks h/a Method n = 0 n = 1 

0 0 

0.05 

Present 0.0291 0.0222 

Baferani et al. 2011 0.0291 0.0227 

Thai and Choi 2011 0.0291 0.0222 

0.1 

Present 0.1135 0.0869 

Baferani et al. 2011 0.1134 0.0891 

Thai and Choi 2011 0.1135 0.0869 

0.2 

Present 0.4167 0.3216 

Baferani et al. 2011 0.4154 0.3299 

Thai and Choi 2011 0.4154 0.3207 

100 100 

0.05 

Present 0.0411 0.0384 

Baferani et al. 2011 0.0411 0.0388 

Thai and Choi 2011 0.0411 0.0384 

0.1 

Present 0.1618 0.1519 

Baferani et al. 2011 0.1619 0.1542 

Thai and Choi 2011 0.1619 0.1520 

0.2 

Present 0.6167 0.5857 

Baferani et al. 2011 0.6162 0.5978 

Thai and Choi 2011 0.6162 0.5855 
 
 

Table 3 Comparison of the normalized fundamental frequency, ,̂  in simply supported square plates 
reinforced by straight CNTs )17.0( * CNV  

b/h 

UD FG-X 

Mesh-Free 
(31×31) 

FEM & FSDT 
(31×31) 

FEM & 
FSDT 

(Zhu et al. 
2012) 

FEM & 
HSDT 

(Mehar et al. 
2015) 

Mesh-Free
(31×31) 

FEM & 
FSDT 

(31×31) 

FEM & 
FSDT 

(Zhu et al. 
2012) 

50 23.6323 23.6791 23.697 23.66561 28.3400 28.3891 28.413 

20 21.5053 21.541 21.456 21.41301 24.8639 24.8973 24.764 

10 17.0010 17.0189 16.815 16.83529 18.5240 18.5382 18.278 
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Table 4 Normalized fundamental frequency, ,̂  in clamped square FG-CNTRC plates 
with w = 0.425, AR = 1000 and 17.0* CNV  

B.C. h/a w Kw Ks 
CNT Distribution 

UD FG-V FG-X FG-O 

CCCC 

0.1 

0 
0 0 0.2086 0.2045 0.2159 0.1974 

100 10 0.2153 0.2113 0.2224 0.2045 

0.425 
0 0 0.1419 0.1434 0.1443* 0.1428 

100 10 0.1518 0.1532 0.1540** 0.1526 

0.2 0.425 
0 0 0.4302 0.4339 0.4352 0.4323 

100 10 0.4884 0.4817 0.4829 0.4804 

CSCS 0.1 0.425 
0 0 0.1161 0.1168 0.1202 0.1137 

100 10 0.1275 0.1281 0.1312 0.1253 

*2nd frequency: 0.2638; 3rd frequency: 0.2709 
** 2nd frequency: 0.2741; 3rd frequency: 0.2809 

 
 

Table 5 Normalized fundamental frequency, ,̂  in clamped square FG-CNTRC plates 
with Kw = 100, Ks = 10 and h/a = 0.1 

*
CNV  w AR 

CNT Distribution 

UD FG-V FG-X FG-O 

0.12 

0 
400 0.1707 0.1674 0.1751 0.1628 

1000 0.1715 0.1684 0.1756 0.1641 

0.425 
400 0.1285 0.1286 0.1284 0.1294 

1000 0.1290 0.1294 0.1288 0.1306 

0.17 

0 
400 0.2142 0.2099 0.2217 0.2027 

1000 0.2153 0.2113 0.2224 0.2045 

0.425 
400 0.1516 0.1527 0.1539 0.1518 

1000 0.1518 0.1532 0.1540 0.1526 

0.28 

0 
400 0.2280 0.2282 0.2402 0.2201 

1000 0.2287 0.2292 0.2406 0.2215 

0.425 
400 0.1528 0.1554 0.1594 0.1518 

1000 0.1528 0.1558 0.1595 0.1525 
 
 

frequencies of the FG-CNTRC plates. Increasing of CNT volume fraction increases the frequency 
parameter but this effect is more considerable at small value of CNT volume fraction. Also, 
frequency parameter is increased by increasing of CNT aspect ratio, but CNT aspect ratio doesn’t 
have a significant effect. Finally, it can be seen that, except in the plate with wavy CNT and 

,17.0* CNV  X-CNTRC plates have the biggest values of frequencies parameters. 
 
5.3 Forced vibration and resonance behavior in FG-CNTRC plates 
 
In this section, forced vibration and resonance behavior of clamped square plates are 
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investigated. The plates subjected to a periodic uniform pressure load at top face as follows 
 

)sin()( 0 tPtP t (41)
 

where ωt is the frequency of time depended applied load. For resonance phenomenon, frequency 
of loading, ωt, is equal to nth natural frequency, ωn. Figs. 4 and 5 illustrate the effects of loading 
frequency and elastic foundation on the forced vibration and resonance behavior of clamped X-
CNTRC plates with h/a = 0.1, b/a = 1, ,17.0* CNV  w = 0.425 and AR = 1000 in two cases of Kw = 
Ks = 0 and Kw = 100, Ks = 10. Figs. 4 and 5 show time history of normalized central deflection, ,q̂  
of the plates in forced vibration and resonance analysis, respectively. In forced vibration analysis, 
the plates subjected to periodic loads with ωt = ω0, 2ω0/3, ω0/3, when ω0 = 1500 rad/s but for 
resonance phenomenon, the plate subjected to periodic loads with loading frequencies equal to 

 
 

(a) (b) 

Fig. 4 Time history of normalized central deflections, ,q̂ of clamped X-CNTRC plates with b/a = 1, h/a =
0.1, ,17.0* CNV  w = 0.425, AR = 1000 for (a) Kw = 0, Ks = 0; (b) Kw = 100, Ks = 10 (Forced Vibration)

 
 

(a) (b) 

Fig. 5 Time history of normalized central deflections, ,q̂ of clamped X-CNTRC plates with b/a = 1, h/a =
0.1, ,17.0* CNV  w = 0.425, AR = 1000 for (a) Kw = 0, Ks = 0; (b) Kw = 100, Ks = 10 (Resonance 
Phenomenon) 

0 2 4 6 8 10 12
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

t (ms)

N
or

m
al

iz
ed

 D
ef

le
ct

io
n

 

 
=

0

=2
0
/3

=
0
/3

Kw=0, Ks=0

0 2 4 6 8 10 12
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

t (ms)

N
or

m
al

iz
ed

 D
ef

le
ct

io
n

 

=
0

=2
0
/3

=
0
/3

Kw=100, Ks=10

0 2 4 6 8 10
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t (ms)

N
or

m
al

iz
ed

 D
ef

le
ct

io
n

 

t=1

t=2

t=3

Kw=0 , Ks=0

0 2 4 6 8 10

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t (ms)

N
or

m
al

iz
ed

 D
ef

le
ct

io
n

 

t=1

t=2

t=3

Kw=100 , Ks=10

290



 
 
 
 
 
 

A novel four variable refined plate theory for bending, buckling, and vibration of... 

three first natural frequencies of the plates. It can be seen that elastic foundation decreased the 
amplitudes and increased speed of vibration the in both analyses. The resonance phenomenon is 
occurred only for loading with fundamental frequency. 

Figs. 6 and 7 illustrate the effects of thickness and CNT distribution on the vibrational 
responses of clamped FG-CNTRC plates resting on the Winkler-Pasternak elastic foundation with 
b/a = 1, ,17.0* CNV  w = 0.425, AR = 1000, Kw = 100, Ks = 10 and with h/a = 0.1 and 0.2. Figs. 6 
and 7 show time history of normalized central deflection, ,q̂  of the plates subjected to periodic 
load with loading frequency equal to ωt = ω0 (forced vibration) and ωt = ω1 (resonance), 
respectively. It can be seen that X-CNTRC plates have the biggest vibrational speeds and the 
smallest amplitudes of vibration while UD ones are in opposite points, for all cases. Increasing of 
the plate thickness increases the vibration amplitudes (by considering of Eq. (39)) and speeds 
especially for resonance responses. 

 
 

(a) (b) 

Fig. 6 Time history of normalized central deflections, ,q̂  of clamped CNTRC plates with ωt = ω0, b/a = 1,
,17.0* CNV w = 0.425, AR = 1000, Kw = 100, Ks = 10 for (a) h/a = 0.1; (b) h/a = 0.2 (Forced Vibration)

 
 

(a) (b) 

Fig. 7 Time history of normalized central deflections, ,q̂  of clamped CNTRC plates with ωt = ω0, b/a = 1, 
,17.0* CNV  w = 0.425, AR = 1000, Kw = 100, Ks = 10 for (a) h/a = 0.1; (b) h/a = 0.2 (Resonance 

Phenomenon) 
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Finally, the effects of CNT waviness and aspect ratio on the on the vibrational responses of FG-
CNTRC plates resting on the Winkler-Pasternak elastic foundation are examined. Figs. 8 and 9 
show forced vibration and resonance responses (time history of )q̂  for clamped X-CNTRC plates 
with b/a = 1, h/a = 0.1, AR = 1000, Kw = 100, Ks = 10 and with and w = 0 and w = 0.425. It can be 
seen that increasing of the waviness increases vibrational amplitudes, changes profile of forced 
vibration responses and decreases the vibrational speeds in resonance responses. Also increasing 
of the CNT volume fraction increases vibrational speeds and decreases their amplitudes. These 
effects are more considerable in resonance responses. 

 
5.2 Dynamic analysis of FG-CNTRC plates 
 
In this section, dynamic behavior of FG-CNTRC plates resting on Winkler-Pasternak elastic 

foundation is investigated. The plates are subjected to a uniform impact load on the top face as 
follows 

 
 

(a) (b) 

Fig. 8 Time history of normalized central deflections, ,q̂  of clamped X-CNTRC plates with ωt = ω0, b/a = 1, 
h/a = 0.1, AR = 1000, Kw = 100, Ks = 10 for (a) w = 0; (b) w = 0.425 (Forced Vibration) 

 
 

(a) (b) 

Fig. 9 Time history of normalized central deflections, ,q̂  of clamped X-CNTRC plates with ωt = ω0, b/a = 1, 
h/a = 0.1, AR = 1000, Kw = 100, Ks = 10 for (a) w = 0; (b) w = 0.425 (Resonance Phenomenon) 
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(42)

 

where P0 = ‒1e5 N/m2 is the amplitude of the above half sine loading. In the following simulations, 
thickness plates is equal to h = 0.1 m. 

Fig. 10 show the effects of CNT distribution on the stress wave propagations and time history 
of deflection of clamped CNTRC plates with h/a = 0.1, b/a = 1, Kw = 100, Ks = 10, ,17.0* CNV  w 
= 0.425 and AR = 1000. Since Young’s modules of CNT are greater than shear module, so values 
of normal stresses are much greater than shear stresses also UD and X-CNTRC plates have the 
biggest values of σxx and σyy, respectively. But, O and X-CNTRC plates have the minimum and 
maximum values of shear stresses, respectively. σyz has the biggest values of the shear stresses. 
Also, it can be seen that, CNT distribution doesn’t have a significant effect on central deflections 
of the plates. 

Fig. 11 show the effects of CNT volume fraction and waviness on the dynamic behavior of the 
clamped X-CNTRC plates with h/a = 0.1, b/a = 1, Kw = 100, Ks = 10 and AR = 1000. It can be seen 
that the normal stress at x direction has the maximum values of stresses. Increasing of waviness 
index increases the values of deflection and stresses except for σxz (at low value of CNT volume) 
and σxx. Also, increasing of the CNT volume fraction increases the values of stresses in all cases 
(except for σxx in plates with different values of waviness index) and decreases the values of 
deflection in wavy CNT-reinforced plates. 

Fig. 12 show the effects of Winkler-Pasternak elastic foundation coefficients on the dynamic 
behavior of clamped X-CNTRC plates with h/a = 0.1, b/a = 1, ,17.0* CNV  w = 0.425 and AR = 
1000. It can be seen that using of elastic foundation decreases the values of stresses and deflection 
in all cases, while the effect of shear coefficient, Ks, is more than the normal coefficient, Kw. 

Fig. 13 show time histories of σxx (in-plane) and σyz (out-plane) at top, mid and bottom planes (z 
= ‒h, 0, h) of clamped X-CNTRC plates with h/a = 0.1, b/a = 1, Kw = 100, Ks = 10, ,28.0* CNV  w 
= 0.425 and AR = 1000. It can be seen that the plate at z = 0 almost senses no in-plane stresses 
while top and bottom planes sense the same in-plane stresses with different sign. But, the plates 
sense out-plane stresses at z = 0 and their values are less than the values of stresses at z = ‒h and h. 

 
 

6. Conclusions 
 
In this paper, dynamic responses of nanocomposite plates reinforced by wavy CNTs resting on 

Winkler-Pasternak elastic foundation were investigated by a mesh-free method based on FSDT. 
The plates were assumed subjected to periodic or impact loading for vibration or stress wave 
propagation analysis, respectively. CNT distribution was assumed to be functionally graded along 
the plate thickness. So, the effects of CNTs aspect ratio, waviness index, distribution pattern and 
volume fraction, and also elastic foundation coefficients, plate thickness and time depended 
loading were examined on the vibrational and dynamic behavior of the plates. The following 
results were obtained: 

 

 The developed mesh-free method has an excellent convergence and accuracy for dynamic 
analysis of the plates. 

 Using of the elastic foundation increases the frequency parameters of FG-CNTRC plates. 
 The frequency parameter is dramatically decreased by increasing of CNT waviness or by 
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(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 10 Time history of (a) σxx; (b) σyy; (c) σxy; (d) σxz; (e) σyz; and (f) ,q̂  at top face of clamped CNTRC 
plates with h/a = 0.1, b/a = 1, ,17.0* CNV w = 0.425, AR = 1000, Kw = 100, Ks = 10 

 
 

 decreasing of the plate thickness 
 The effect of CNT waviness is more than CNT Volume fraction on the natural frequencies of 

the FG-CNTRC plates. 
 The resonance phenomenon is accrued only for loading with fundamental frequency. 
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(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 11 Time time history of (a) σxx; (b) σyy; (c) σxy; (d) σxz; (e) σyz; and (f) ,q̂  at top face of clamped X-
CNTRC plates with h/a = 0.1, b/a = 1, AR = 1000, Kw = 100, Ks = 10 

 
 

 Increasing of CNT waviness increases vibrational amplitudes, changes profile of forced 
vibration responses and decreases the vibrational speeds in resonance responses. 

 Increasing of the CNT volume fraction increases vibrational speeds and decreases their 
amplitudes. 
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 The values of normal stresses are more than shear stresses. 
 In most cases, increasing of waviness index increases the values of deflection and stresses. 

Also, increasing of the CNT volume fraction increases the values of stresses and decreases 
the values of deflection in wavy CNT-reinforced plates. 

 
 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 12 Time time history of (a) σxx; (b) σyy; (c) σxy; (d) σxz; (e) σyz; and (f) ,q̂  at top face of clamped X-
CNTRC plates with h/a = 0.1, b/a = 1, ,17.0* CNV w = 0.425, AR = 1000 
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(a) (b) 

Fig. 13 Time history of (a) σxx; and (b) σyz in clamped X-CNTRC plates with h/a = 0.1, b/a = 1, ,28.0* CNV
w = 0.425, AR = 1000, Kw = 100, Ks = 10 
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