
 
 
 
 
 
 
 

Steel and Composite Structures, Vol. 22, No. 2 (2016) 429-448 
DOI: http://dx.doi.org/10.12989/scs.2016.22.2.429 

Copyright © 2016 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=scs&subpage=6         ISSN: 1229-9367 (Print), 1598-6233 (Online) 
 
 
 

 
 
 
 

Behaviour and design of demountable 
steel column-column connections 

 

Dongxu Li 1, Brian Uy 1,2a, Vipul Patel 3b and Farhad Aslani 1,4c 
 

1 Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, 
The University of New South Wales, Sydney, NSW 2052, Australia 

2 School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia 
3 School of Engineering and Mathematical Sciences, College of Science, 

Health and Engineering, La Trobe University, PO Box 199, Bendigo, VIC 3552, Australia 
4 School of Civil, Environmental and Mining Engineering, 

The University of Western Australia, Crawley, WA 6009, Australia 
 

(Received February 04, 2016, Revised June 14, 2016, Accepted October 13, 2016) 

 
Abstract. This paper presents a finite element (FE) model for predicting the behaviour of steel column-column 
connections under axial compression and tension. A robustness approach is utilised for the design of steel column-
column connections. The FE models take into account for the effects of initial geometric imperfections, material 
nonlinearities and geometric nonlinearities. The accuracy of the FE models is examined by comparing the predicted 
results with independent experimental results. It is demonstrated that the FE models accurately predict the ultimate 
axial strengths and load-deflection curves for steel column-column connections. A parametric study is carried out to 
investigate the effects of slenderness ratio, contact surface imperfection, thickness of cover-plates, end-plate thickness 
and bolt position. The buckling strengths of steel column-column connections with contact surface imperfections are 
compared with design strengths obtained from Australian Standards AS4100 (1998) and Eurocode 3 (2005). It is 
found that the column connections with maximum allowable imperfections satisfy the design requirements. 
Furthermore, the steel column-column connections analysed in this paper can be dismantled and reused safely under 
typical service loads which are usually less than 40% of ultimate axial strengths. The results indicate that steel 
column-column connections can be demounted at 50% of the ultimate axial load which is greater than typical service 
load. 
 

Keywords: steel columns; column-column connection; robustness design; demountability; finite element 
analysis 
 
 
1. Introduction 
 

Recently, many buildings are being demolished due to redevelopment and their inability to 
meet the needs of new owners and occupants. This early demolition leads to a significant waste of 
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study was conducted to provide a rational mesh size, which secures the accuracy whilst reducing 
the computational time. Based on the sensitivity analysis, the element size for column section is 
determined to be L/70, in which L represents the total length of the column connection (see Fig. 2). 

For the cover-plate and the end-plate, the mesh size was taken as w/20, where w is the width of 
cover- or end-plate. D/3 was adopted as the mesh size for the bolt and nut, with D representing the 
bolt diameter. Both ends of the steel column-columns were constrained by the pin-ended boundary 
conditions. All nodes on the top and bottom surfaces of the connections were tied with centrally 
located reference point. The axial load, tension or compression, was applied on the top reference 
point. The pin-ended boundary conditions were assigned to the top and bottom reference points, 
respectively. The boundary conditions are shown in Fig. 2. 

 
2.3 Interactions between components 
 
Surface-to-surface contact with a Hard Contact Model in the normal direction with no 

penetration was considered for all contact surfaces. A Coulomb friction model in the tangential 
direction was assumed with a coefficient of friction. The appropriate value of the coefficient of 
friction depends on the surface treatment given in Eurocode 3 (2005) and it is taken as 0.25 for 
cleaned surfaces. This value is also suggested by Lee et al. (2010). 

The surfaces, which come into contact (see Fig. 3) and are assigned as surface-to-surface 
contact, are the inner surface of the cover-plates to the outer surface of the steel columns (Contact 
A), top column to bottom column (Contact B), bolt head to cover-plate and bolt nut to column 
flange (Contact C), bolt shank to bolt holes (Contact D), as well as the top end-plate to bottom 
end-plate (Contact E). Apart from the contact interactions, the definition of constraints between 
column-section and end-plate in connection Type 2 shall be carried out properly. The constraint, 
Tie, was employed to model all welds. This is because no weld failure was observed in the test 
specimens (Lindner 2008, Snijder and Hoenderkamp 2008). 

 
2.4 Material properties for structural steel 
 
The material property of the structural steel, which includes column section, cover-plates and 

high-strength bolts is summarised below: 
 

(a) Steel grade S235 was used for the steel column sections and cover-plates. Based on the 
tensile coupon test results (Lindner 2008), this material has an actual minimum yield stress 
fsy of 254 MPa and an ultimate strength fu of 360 MPa. Therefore, in the developed FE 
model, the constitutive behaviour of the steel with actual properties is utilised. In addition, 
the other material properties specified in ABAQUS include the elastic modulus of steel Es 
and Poisson’s ratio νs, which are taken as 210,000 MPa and 0.3, respectively. 

(b) The behaviour of the structural bolts is normally different from structural steel. This study 
utilised the full range stress-strain curve based on the test results from Hanus et al. (2011). 

 
2.5 Influence of initial geometric imperfections 
 
An eigenvalue buckling simulation of the steel column-column connection is a prerequisite for 

obtaining an accurate prediction of structural behaviour with initial geometric imperfections 
(Mago and Hicks 2016). The deflection of all nodes was recorded in the eigenvalue buckling 
analysis. The deflection of nodes from the eigenvalue buckling analysis serves as the input for the 
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(a) Specimen 3 (b) Specimen 5 

Fig. 9 Comparison of transverse deflections along column-column connection between experimental 
and FE results for Specimens 3 and 5 (Snijder and Hoenderkamp 2008) 

 
 

Table 2 Comparison of ultimate strength between experiment and FE results for Specimens 3 and 5 

Specimens 
Column
section 

L 
(mm) 

fsy 

(MPa) 
NTest 

(kN)
NFEM 
(kN) 

NFEM/NTest Ref. 

Specimen 3 HE100A 3390 298 574 521 0.91 Snijder and 
Hoenderkamp (2008)Specimen 5 HE100A 4530 298 370 335 0.91 

 
 
3. Steel column-column connections under accidental loading 
 

Current practical design codes state that for steel column-column connections with members 
prepared for full contact bearing, the connection shall be designed to provide for continuity of 
stiffness and be capable of transmiting 25% of the maximum compressive force. However, there is 
no detailed guidance for steel column-column connections under axial tension. 

As stated in Eurocode 1 (2006), the column-column connection is subjected to axial tension 
when a bottom column is removed after exhibiting accidental damage. Fig. 10 illustrates the 
column-column connection in a steel frame. It can be seen from the figure that if the bottom 
column is removed from the frame after exhibiting damage, the loading pattern of the connection 
shall be reversed from compressive to tensile. The design equation given in AS1170 (2002) for 
determining the ultimate tensile strength of a column-column connection is expressed by 

 

cc NT   (1)
 

where Nc represents the ultimate axial strength under axial compression and η reflects the factor 
which accounts for the accidental damage and it is expressed by 

 

ON

N1  (2)

 
in which No denotes the axial compression before the accidental damage. An empirical equation 
for determining this axial compression (No) of a column without accidental damage is given in 
AS1170 (2002) as follows 
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column-column connections. Slenderness ratio (λ) of the specimen was determined by 
 

r

L
  (5)

 

where L is the total length of the column-column connection, and r is the radius of gyration of the 
cross-section of the column, which can be determined as 

 

A

I
r   (6)

 

in which I is the second moment of area of the column section and A is the column cross-section 
area. 

Steel column-column connections of Type 1 with total length of 1500 mm, 3000 mm, 5000 mm 
and 7000 mm were modelled, which have a corresponding slenderness ratio of 18, 35, 58 and 82, 
respectively. The effect of slenderness ratio (λ) on the axial load-deformation curves for steel 
column-column connections of Type 1 is illustrated in Fig. 13(a). It can be observed that the initial 
stiffness and ultimate axial strength decreases as the slenderness ratio increases. The axial load-
deformation curves for very slender column-column connections are distinguished by the drop 
from the pre-peak to the post-peak stages. 

The effect of slenderness ratio on axial load-deformation curves for connection Types 2 and 3 is 
presented in Figs. 13(b) and (c). Generally, the increase of slenderness ratio induces the reduction 

 
 

 
(a) Type 1 (b) Type 2 

 

(c) Type 3 

Fig. 13 Effect of slenderness ratio on load-deformation curves for steel column-column connections 
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of compressive strength and initial stiffness. However, it can be observed from Fig. 13(c) that the 
ultimate compressive strength of connection Type 3 decreases slightly until the slenderness ratio 
reaches 58, which is attributed to the higher stiffness of the connection. 

 
4.2.2 Effect of contact surface imperfection (ψ and φ) 
When cutting the steel I-section columns into two parts, there is a spatial gap between two 

single parts of the column. These gaps create an initial contact surface imperfection. AS4100 
(1998) requires the maximum tolerated inclination of 0.57° for this particular column section 
(HE200B), which corresponds to a maximum 2 mm gap. 

This paper investigates the effects of contact surface imperfection along the X-axis (ψ) and 
along Y-axis (φ) on the load-deformation curves for slender column-column connection Type 1. In 
the FE model, slender column-column connections utilised HE 200B as column sections and the 
total length is 4270 mm. It is observed from Fig. 14 that an increase of inclination between the two 
contact surfaces along both axes decreases the initial stiffness and ultimate compressive strength. 
It can also be found that the contact surface inclination increases from 0.14° to 0.57° only results 
in a 40 kN (2%) reduction in ultimate compressive strength. This is because the inclination only 
induces the buckling of column connections, while compressive strength largely depends on the 
buckling behaviour of the connection. It can also be concluded from Figs. 14(a) and 14(b) that the 
inclination along the strong axis leads to a larger reduction in the ultimate axial strength of the 
connection due to the buckling about the weaker axis. 

It can be seen from Fig. 14(c) that the inclination along the strong axis governs the buckling 
behaviour when the column-column connections are subjected to inclinations along both axes. 

 
 

 
(a) Inclination along Y-axis (b) Inclination along X-axis 

 

(c) Inclination along both X-axis and Y-axis 

Fig. 14 Effect of contact surface imperfections on load-deformation curves for steel column-
column connection of Type 1 
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Fig. 15 Effect of cover-plate thickness on the load-deformation curves for column connection of Type 1 
 
 
This is due to the fact that the buckling about the weaker axis is easier to occur when inclination 
along both axes exists without lateral bracing being provided in the weaker axis. 

Since welding was used between the column section and end-plates for connection Type 2, the 
effects of contact surface imperfections on the behaviour are ignored. For connection Type 3 with 
cover-plates in flanges and web, similar results and conclusions can be obtained. 

 
4.2.3 Effect of cover-plate thickness (tc) 
For column-column connections with full contact bearing and subjected to axial compression, 

cover-plates serve to hold the column sections in position and the thickness of the cover-plate does 
not influence the axial load-deformation curves of the connection. However, when the connections 
are subjected to axial tension, the cover-plates transfer the tensile load from the upper column to 
the bottom through a number of bolts. The effect of cover-plate thickness on the load-deformation 
curves of connection Type 1 under axial tension is presented in Fig. 15. 

It can be observed from Fig. 15 that the ultimate tensile strength increases with an increase in 
the cover-plate thickness (tc) and the initial stiffness is not affected significantly. The horizontal 
line indicates the design tensile strength required by the robustness approach given in Section 3, 
which is about 50% of the axial compressive strength of the connection. The connection with 15 
and 10 mm thick cover-plates leads to the yielding of the cover-plates and the connection with 10 
mm thick cover-plates cannot meet the tension capacity required by the robustness approach. On 
the other hand, the connection with thicker cover-plates (25 mm) ensures the connection fails by 
column section yielding. However, 25 mm cover-plates not fail by yielding, since the tensile 
strength of the connection based on robustness design can be satisfied with a 15 mm thick cover-
plate. 

 
4.2.4 Effect of end-plate thickness (te) 
Although steel column-column connections with end-plate joints have been commonly used in 

the construction industry, it is still difficult to demonstrate that the end-plates meet the 
requirements in design codes. The common practice for this type of connection is to ensure the 
plate thickness is large enough or enlarge end-plate size with additional bolts arranged outside the 
profile of the section. This paper investigates the effect of the end-plate thickness on the axial 
load-deformation curves for Type 2 steel column-column connections under axial tension. In the 
developed FE model, 4 high-strength bolts were arranged close to the column section, the end-
plate size is 240 × 240 mm with thicknesses ranging from 15 mm to 40 mm. 

The axial load-deformation curves for the Type 2 connection are depicted in Fig. 16. It can be 
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Four high-strength bolts were positioned at the centre and corner respectively, which is shown in 
Fig. 17. The load-deformation curves are depicted in Fig. 18. It can be observed from Fig. 18 that 
the ultimate tensile strength and initial stiffness for the centre bolted connection is larger than the 
connection with corner bolts. However, the corner bolt configuration is generally utilised in the 
construction industry for easy access and erection. 
 
 
5. Buckling strength of steel column-column connections 
 

Since column-column connections are part of the column, it must be designed for buckling and 
stability. Furthermore, concerns about the inaccuracy of the products leading to strength reduction 
have been raised in the past. To secure the compressive strength of the column-column connection, 
careful and costly measures like pre-processing of the contact areas of the end section was 
conducted. In this study, to achieve a better understanding of the axial compressive behaviour of 
the slender column-column connection and the effect of contact surface imperfection, comparison 
between FE analysis and design codes was made. The developed FE models are utilised with a 
column section HE 200B and total length of 4270 mm. The details of each individual model are 
summarised in Table 4. 

In Table 4, λX is the slenderness ratio of the column about its major axis, which can be 
calculated from Eq. (5), while λη is the modified member slenderness, which can be calculated by 

 

om

s

N

N
90  (7)

 

in which Ns is the nominal section capacity and Nom is the elastic flexural buckling load of the 
member in axial compression (AS4100 1998). In particular, Ns can be calculated by 

 

ynfs fAkN   (8)
 

in which kf is the form factor, which is the ratio of effective area over the gross area of the section. 
In this study, kf was taken as 1.0. In Eq. (7), Nom is the elastic critical buckling force, which can 

be calculated by 

2

2

)( Lk

EI
N

e
om


  (9)

 
 

Table 4 Geometric details of a series of FE models for connection Type 1 

L 
λx λη Nb,rd_X Nc_X NFEM NFEM_Imp NFEM NFEM NFEM_Imp

EC3 AS4100 EC3 AS4100 Type 1 Type 2 Type 3 

mm - - kN kN kN kN kN kN kN 

1500 18 19 2334 2296 2340 2300 2371 2335 2320 

3000 35 39 2148 2156 2330 2228 2314 2323 2258 

4270 50 55 1959 1966 2235 2146 2290 2285 2200 

7000 82 90 1419 1429 1993 1900 2093 2138 1986 

10000 117 128 885 893 1700 1570 1788 1847 1631 
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in which L is the total length of the column-column connection in Table 4. In addition, ke is the 
member effective length factor, which was taken as 1.0 due to pin-supports at both ends. Nc_X is the 
nominal member capacities required by AS4100 (1998), which is calculated by 

 

scc NN   (10)
 
In Table 4, NFEM and NFEM-Imp represents the compressive strength of the column-column 

connection without and with contact surface imperfection along minor axis, respectively. 
It can be observed from Fig. 19(a) that the buckling strength required by Eurocode 3 (2005) is 

more conservative than AS4100 (1998). The buckling strength of connection Type 3 is similar with 
connection Type 2 and higher than connection Type 1. Figs. 19(b) and (c) present the buckling 
strength of column-column connections with contact surface imperfection along Y-axis and X-axis, 
respectively. Due to the existence of welding, initial contact surface imperfection of connection 
Type 2 is ignored. It is found that the compressive strength of the column-column connection with 
contact surface imperfection along Y-axis and X-axis is reduced by 10% and 50%, respectively. 
This is because the contact surface imperfection along the X-axis results in the buckling of 
column-column connections about its weaker axis, which induces a higher lateral deflection prior 
to failure. However, even the maximum allowable contact surface imperfection is taken into 
consideration, the compressive strength of the column-column connection is still sufficient 
compared with the design codes. 

 
 

6. Plastic damage in steel column-column connections 
 
The demountability of steel column-column connections depends on the elasticity of both ends 

of the column sections. The elasticity of the column section is characterised by the ability to 
exhibit elastic deformation without undergoing significant plastic deformation (Uy et al. 2015). 
The demountability of steel column-column connection cannot be achieved with large plastic 
deformation occurred in the column sections. The finite element analysis was conducted for 
predicting the amount of plastic deformation in the column-column connections. 

It should be noted that the plastic deformation can be represented by zero equivalent plastic 
strain (PEEQ). Fig. 20 illustrates large plastic deformation of column sections in various steel 
column-column connections. It can be seen from Fig. 20 that the large plastic deformation strain 

 
 

(a) Without contact surface imperfection 

Fig. 19 Comparison of buckling strength of various connection types between FE analysis and design codes
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(a) Connection Type 1 (b) Connection Type 2 

 

(c) Connection Type 3 

Fig. 21 Applied load-deformation with demountability in column-column connections 
 
 

column connection is subjected with typical service loads, the column sections can be fully 
dismantled and reused without additional process or repair. 

 
 

7. Conclusions 
 
The strength and behaviour of the most commonly used steel column-column connections 

under axial compression and tension are presented in this paper. The paper innovatively applies the 
robustness design into steel column-column connections and compares the buckling strength with 
practical design codes. In addition, the effects of contact surface imperfections on the buckling 
strength of various connections have been investigated. FE models were developed and validated 
against experimental results available in the literature and a series of parametric studies were 
performed. The results obtained from the FE analysis were analysed and the following conclusions 
can be drawn: 

 

● The increase of slenderness of column-column connections reduces the compressive 
strength and initial stiffness when the connection is subjected to axial compression. The 
column-column connection with cover-plates on flanges and web performs higher stiffness 
than the connection with cover-plates on flanges only. 

● The contact surface imperfection along both axes results in a reduction in compressive 
strength of the connection. Compared with the X-axis inclination, contact surface 
imperfection along the Y-axis leads to a smaller reduction in compressive strength and initial 
stiffness. Moreover, when imperfections along both axes exist, the imperfection along the 
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X-axis governs the load-deformation behaviour of the connection. 
● For connections Type 1 and 3 with cover-plates, the thickness of the cover-plate does not 

have any effect on the load-deformation curves of the column-column connection when 
subjected to axial compression. However, when the thickness of the cover-plate increases, 
the tensile strength of the connection increased. 

● For connection Type 2 with end-plates, the increase of the end-plate thickness increases the 
initial stiffness and ultimate strength of the connection. It is found that the thickness of end-
plates should be designed large enough, so that the strength of bolts can be fully used and 
the design tensile strength can be achieved. Furthermore, it is found that the bolts should be 
designed close to column section to achieve a higher stiffness of the connection. 

● Based on the FE analysis, it can be concluded that the steel column-column connection with 
various connection methods satisfy the buckling requirement from design codes, such as 
Eurocode 3 (2005) and AS4100 (1998). In particular, the connection with cover-plates on 
both flanges and web exhibits the better performance over the other two connection methods. 
Furthermore, the effect of contact surface imperfections on the buckling strength was 
evaluated and the results indicate that the buckling strength of various connection methods 
are sufficient even with the maximum allowable imperfection are considered. 

● For the steel column-column connections under axial compression, plastic deformation in 
the contact area of the column-column connection was characterised using equivalent plastic 
strain (PEEQ). It was found that the column sections of the steel column-column 
connections with various connection methods can be dismantled whilst the contact region 
maintains its elasticity without any plastic damage. 
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