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Abstract.    Viscoelastic sandwich structures (VSSs) are widely used in mechanical equipment, but in the service 
process, they always suffer from aging which affect the whole performance of equipment. Therefore, aging state 
recognition of VSSs is significant to monitor structural state and ensure the reliability of equipment. However, non-
stationary vibration response signals and weak state change characteristics make this task challenging. This paper 
proposes a novel method for this task based on adaptive second generation wavelet packet transform (ASGWPT) 
and multiwavelet support vector machine (MWSVM). For obtaining sensitive feature parameters to different 
structural aging states, the ASGWPT, its wavelet function can adaptively match the frequency spectrum 
characteristics of inspected vibration response signal, is developed to process the vibration response signals for 
energy feature extraction. With the aim to improve the classification performance of SVM, based on the kernel 
method of SVM and multiwavelet theory, multiwavelet kernel functions are constructed, and then MWSVM is 
developed to classify the different aging states. In order to demonstrate the effectiveness of the proposed method, 
different aging states of a VSS are created through the hot oxygen accelerated aging of viscoelastic material. The 
application results show that the proposed method can accurately and automatically recognize the different structural 
aging states and act as a promising approach to aging state recognition of VSSs. Furthermore, the capability of 
ASGWPT in processing the vibration response signals for feature extraction is validated by the comparisons with 
conventional second generation wavelet packet transform, and the performance of MWSVM in classifying the 
structural aging states is validated by the comparisons with traditional wavelet support vector machine. 
 

Keywords:    viscoelastic sandwich structures; aging state recognition; vibration response signals; adaptive 
second generation wavelet packet transform; multiwavelet support vector machine 
 
 
1. Introduction 
 

Viscoelastic sandwich structures (VSSs) are the composite structures in which viscoelastic 
layers are sandwiched between steel layers (Moita et al. 2011, Bilasse et al. 2011). Because of the 
perfect performance in energy dissipation, VSSs are playing an important role in sealing, vibration 
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damping and noise reduction of mechanical equipment. During the long-term service of VSSs, 
their health states are influenced by such environmental factors and their variations as temperature 
and humidity, and hence structural aging will come up inevitably. The main reason resulting in the 
structural aging is the aging of viscoelastic material. If aging occurs, the dynamic characteristics of 
VSSs may be forced to change, which will result in the performance degradation of VSSs and even 
lead to the breakdown of the entire mechanical equipment. Moreover, huge financial loss and even 
serious personal injury maybe unfortunately caused, if VSSs keep servicing in an excessive aging 
state and timely maintenance is not performed. Consequently, to ensure the usability and reliability 
of VSSs, it is urgent to study on the aging state recognition method which can recognize the 
structural aging states accurately and automatically. 

Aging can be regarded as a kind of damage that affects the performance of VSSs, and aging 
state recognition of VSSs belongs to the scope of structural health monitoring. Owing to the 
advantages of convenience, efficiency and non-destruction, vibration response analysis is one of 
the principal tools widely applied in the scope of structural health monitoring (Carden and Fanning 
2004, Yan et al. 2007, Fan and Qiao 2011, Hou et al. 2012, Xiang et al. 2012, Sun et al. 2014a, 
Xiang et al. 2014, Qu et al. 2014, Xiang et al. 2015, Zhang et al. 2016). As an important carrier of 
structural state information, vibration response signals generated by different structural aging 
states tend to vary. By performing some processing techniques on vibration response signals, vital 
state information can be obtained from the vibration response signals. Moreover, aging state 
recognition of VSSs, through the vibration response analysis, can be treated as a problem of 
pattern recognition. It consists of three steps: data acquisition, feature extraction, and state 
classification. Feature extraction is the key of aging state recognition, and state classification is the 
core of aging state recognition. However, due to the strong non-stationarity of vibration response 
signals and the weakness of state change characteristics, it is difficult to carry out the two tasks of 
feature extraction and state classification effectively. For this reason, in order to make the accurate 
and automated aging state recognition of VSSs come true, it is of great significance to develop 
effective feature extraction and state classification means. 

The purpose of feature extraction is to extract features representing the structural aging states to 
be used for state classification. However, due to the high nonlinearity on the dynamic 
characteristics of VSSs, the measured vibration response signals are strongly non-stationary so that 
the useful state information is usually too weak to be extracted from the raw vibration response 
signals. Thus, in order to obtain contributing state information, it is essential to employ effective 
signal processing techniques to analyze the vibration response signals before feature extraction. 
Wavelet transform (WT), possessing the property of multi-resolution analysis, has been proven to 
be highly powerful in non-stationary mechanical signal analysis for feature extraction (Peng and 
Chu 2004, Yan et al. 2014, Si et al. 2015, Meng et al. 2015a). Subsequently, second generation 
wavelet transform (SGWT) is presented by Sweldens (1998) using lifting scheme in time domain. 
Compared with classical WT, SGWT possesses such advantages as simple, fast, irregular samples 
and integral transform. What is more important is that SGWT provides much more flexibility and 
freedom for the construction of biorthogonal wavelets and can achieve adaptive wavelet 
construction via the design of prediction operator and update operator. Second generation wavelet 
packet transform (SGWPT) is an extension of SGWT, and overcomes the shortcoming that SGWT 
cannot realize multi-resolution analysis in the high frequency band where the contributing state 
information always exists (Leng et al. 2007, Hu et al. 2007, Pan et al. 2009, Meng et al. 2015b). 
However, one common approach taken by SGWPT is that, the wavelet is constructed via the 
design of prediction operator and update operator by means of equivalent filter method (Claypoole 
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2003). Unfortunately, such wavelet functions constructed via this method are fixed and 
independent of the vibration response signal of VSSs. In practice, the measured vibration response 
signal is relevant to the structural aging state and different structural aging states will result in 
various vibration response signals. Therefore, for aging state recognition of VSSs, inappropriate 
wavelets irrelevant to the input vibration response signals are harmful to feature extraction and 
hence reduce the accuracy of state classification. In order to overcome this shortcoming, based on 
the time domain characteristics of given vibration response signal, Qu et al. (2014) proposed an 
adaptive second generation wavelet construction method and applied it to looseness state 
recognition of VSSs. However, when the VSS is in different aging states, the frequency spectrum 
and its distribution of the vibration response signal are different too. In this paper, to obtain 
sensitive feature information to the different structural aging states, a novel adaptive second 
generation wavelet construction method is firstly proposed based on the frequency spectrum 
characteristics of inspected vibration response signal. Then, adaptive second generation wavelet 
packet transform (ASGWPT) which can realize multi-resolution analysis in the whole frequency 
band is developed to process the vibration response signals for feature extraction. Finally, energy 
in each frequency band of reconstructed wavelet packet coefficients is extracted and taken as the 
feature to describe the structural aging states. 

After the feature extraction based on ASGWPT, state classification is another task in aging state 
recognition of VSSs. State classification via intelligent techniques can provide an automated aging 
state recognition procedure. Support vector machine (SVM), presented by Vapnik (2000), is a state 
of the art intelligent technique based on statistical learning theory and structural risk minimization 
principle. Due to its strong generalization ability even when the training samples are few, the SVM 
has been used in many applications for classification purpose. However, the generalization ability 
of SVM depends heavily on the used kernel function that maps the input data into a higher 
dimensional feature space where the data can be linearly separated. Currently, the most commonly 
adopted kernel function is Gaussian kernel. Over the past decade, the kernel function research of 
SVM has received substantial attention from scholars in many application fields. Zhang et al. 
(2004) proposed wavelet support vector machine (WSVM) by constructing scalar wavelet kernel 
on the basis of the kernel method of SVM and wavelet theory, and proved that the WSVM 
outperforms the traditional SVM in the application field of classification. For the past few years, 
successful implementations of WSVM have been emerged in the mechanical fault diagnosis 
(Keskes et al. 2013, Liu et al. 2013, Chen et al. 2013) and looseness state recognition of VSSs (Qu 
et al. 2014). However, a set of bases in the square and integrable space, constructed through the 
translations and dilations of a single wavelet function, cannot have orthogonality, symmetry, short 
support and high order vanishing moments at the same time (Daubechies 1992). Therefore, the 
approximation performance of scalar wavelet kernel is limited, which affects the classification 
performance of WSVM. With multiple wavelet functions, multiwavelets possess orthogonality, 
symmetry, short support and high order vanishing moments simultaneously (Sun et al. 2014b, 
Chen et al. 2015). Thus, a set of bases in the square and integrable space, constructed through the 
translations and dilations of multiwavelet functions, can overcome the above mentioned difficulty. 
In this paper, for further improving the generalization ability of SVM in classifying the different 
aging states of VSSs, based on the kernel method of SVM and multiwavelet theory, multiwavelet 
functions are used to construct the new SVM kernel function named multiwavelet kernel, and then 
multiwavelet support vector machine (MWSVM) is developed. Multiwavelets have more 
advantages than scalar wavelets do, so the MWSVM can obtain the higher state classification 
accuracy than the WSVM does. 
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Based on the above principles, in order to accurately and automatically recognize the aging 
state of VSSs, a novel aging state recognition method based on ASGWPT and MWSVM is 
proposed in this paper. In this method, for extracting sensitive feature information to different 
structural aging states, based on the frequency spectrum characteristics of inspected vibration 
response signal, the ASGWPT is developed to adaptively process the vibration response signal in 
the whole frequency band, and then energy features are extracted from the frequency bands of 
reconstructed wavelet packet coefficients to reflect the aging state of VSSs. In order to achieve 
desired state classification accuracy, as a combination of SVM and multiwavelet theory, the 
MWSVM is developed to automatically classify the different aging states of VSSs by using the 
extracted energy features as the input features. 

The rest of this paper is organized as follows. In Section 2, a brief review of SGWT is firstly 
given and then adaptive second generation wavelet construction method is proposed. Finally, 
ASGWPT is developed for feature extraction. In Section 3, summaries of SVM and multiwavelets 
are firstly given. Then, multiwavelet functions are adopted to construct multiwavelet kernel 
functions for SVM. Lastly, MWSVM is developed for state classification. The proposed aging 
state recognition method for VSSs is presented in Section 4. In Sections 5, the proposed aging 
state recognition method is performed on the experimental case to demonstrate its performance. 
Conclusions are given in Section 6. 
 
 
2. Adaptive second generation wavelet packet transform and feature extraction 
 

When the aging state of VSSs changes, the frequency spectrum and its distribution of the 
corresponding vibration response signal change too. From this point, for extracting sensitive 
feature information to the change of structural aging state, a feature extraction method based on 
ASGWPT is proposed in this section. Firstly, adaptive second generation wavelet is constructed 
based on the frequency spectrum characteristics of inspected vibration response signal. Then, in 
order to realize multi-resolution analysis in the whole frequency band, ASGWPT is developed for 
feature extraction, and energy in each frequency band of reconstructed wavelet packet coefficients 
is computed and taken as the feature to describe the structural aging state. 

 
2.1 Review of second generation wavelet transform 
 
In order to bring about the development of ASGWPT, a brief review of SGWT is firstly given 

in this section. The decomposition stage of SGWT mainly consists of the following three steps 
(Sweldens 1998). 

In the split step, the original signal x is divided into even samples xe and odd samples xo. 
 

   e 2x k x k ,      o 2 1x k x k  ,   k Z (1)
 

In the predict step, we apply an operator P on even samples xe to predict odd samples xo. The 
prediction error d is regarded as the detail coefficients of x. 

 

 o e d x P x  (2)
 

where P = [p1, p2, ..., pN] is defined as prediction operator, and N is the number of prediction 
coefficients. 
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Fig. 1 The decomposition and reconstruction stages of SGWT 
 
 

In the update step, an operator U is applied on the detail coefficients d to update even samples 
xe. By adding the result to xe, the update sequence s is considered as the approximation coefficients 
of x. 

 e s x U d  (3)
 

where U = [u1, u2, ..., ]~
N

u  is defined as update operator, and N
~

 is the number of update 
coefficients. 

By performing the above three steps on the approximation coefficients s, the detail and 
approximation coefficients at the lower resolution level can be obtained. The reconstruction stage 
of SGWT is the inverse of the decomposition stage, and can be immediately performed by 
reversing the prediction operator and update operator and changing each ‘ ’ into ‘ ’ and vice 
versa. The decomposition and reconstruction stages of SGWT are shown in Fig. 1. 

 
2.2 Construction of adaptive second generation wavelet 
 
Due to not relying on the Fourier transform, SGWT can achieve adaptive wavelet construction 

by the design of prediction operator and update operator. Based on the time domain characteristics 
of inspected vibration response signal, an adaptive second generation wavelet construction method 
is proposed in our previous work (Qu et al. 2014), and the design process of prediction operator 
and update operator was discussed in detail. In this paper, on the basis of the publication (Qu et al. 
2014), a new adaptive second generation wavelet construction method is proposed to ensure that 
the wavelet function can closely match the frequency spectrum characteristics of given vibration 
response signal. 

 
2.2.1 Design of prediction operator 
It can be seen in Fig. 1 that, the prediction operator P is used to generate the detail coefficients 

d. In order to make the designed prediction operator can effectively separate feature components 
from the original vibration response signal, an evaluation index for guiding the optimal design of 
prediction operator is required. Shannon entropy, as an effective measure to represent the diversity 
of probability distribution, is widely applied to optimization principles (Kapur and Kesavan 1992). 
Therefore, the minimum entropy principle is recommended to seek for the optimal prediction 
operator, by means of measuring the sparsity. Moreover, when the VSS is in different aging states, 
the frequency spectrum and its distribution of the vibration response signal may change. 
Consequently, the frequency spectrum entropy of the detail coefficients d is chosen as the 
evaluation index to guide the optimal design of prediction operator P in this paper. 

If {fi} is the frequency spectrum of the detail coefficients {di}, calculate the probability density 
function p(fi). Define the frequency spectrum entropy as follows 
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   ln
n

f i i
i

E p f p f   (4)

 

Our objective is to obtain the optimal prediction operator Popt by finding the minimum value of 
frequency spectrum entropy Ef, and the specific implementation process can be seen in the 
publication (Qu et al. 2014). 

 

2.2.2 Design of update operator 
It can also be seen in Fig. 1 that, using the optimal prediction operator Popt designed above, the 

detail coefficients can be obtained, and then the update operator U is applied on these detail 
coefficients to produce the approximate coefficients at a lower resolution. In order to ensure that 
the produced approximation coefficients can provide an accurate representation of the original 
vibration response signal at the lower resolution, an evaluation index for guiding the optimal 
design of update operator is also needed. In this paper, the quadratic error of reconstruction 
without using the detail coefficients is chosen as the evaluation index to guide the optimal design 
of update operator U. 

Our objective is to obtain the optimal update operator Uopt by solving the minimum value of the 
quadratic error, and the detailed optimal design procedure can be seen in the publications (Gouze 
et al. 2004, Li et al. 2008, Qu et al. 2014). 

On the basis of the above designed optimal prediction operator Popt and optimal update operator 
Uopt, adaptive second generation wavelet which can adaptively match the frequency spectrum 
characteristics of inspected vibration response signal can be constructed. 

 

2.3 Adaptive second generation wavelet packet transform for feature extraction 
 

Construction of adaptive second generation wavelet can get the better effect on the feature 
extraction from complex vibration response signals. Furthermore, in order to realize multi-
resolution analysis in the whole frequency band, ASGWPT is developed based on the constructed 
adaptive second generation wavelet. Compared with traditional SGWPT, ASGWPT is a more 
precise signal processing method because its wavelet function can adaptively match the frequency 
spectrum characteristics of inspected vibration response signal. The decomposition and 
reconstruction stages of ASGWPT are expressed as below. 

In the decomposition stage, cl,k is split into even samples cl,ke and odd samples cl,ko, 
 

 , e ,= 2l k l k ic c ,  , o ,= 2 1l k l k i c c (5)
 

where cl,k represent the wavelet packet coefficients of the kth frequency band at level l. The 
wavelet packet coefficients of the each frequency band at level l + 1 are calculated as follows 
 

 
 

 
 

1

1 1

1,2 ,1o ,1e

1,1 ,1e 1,2

1,2 ,2 o ,2 e

1,2 1 ,2 e 1,2

           

l l l

l l l

l l opt l

l l opt l

optl l l

optl l l



 



 



  


 

  




 


 



c c P c

c c U c

c c P c

c c U c

 (6)
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where Popt is the designed optimal prediction operator and employed on even samples 
e2, ll

c  to 
predict odd samples cl,ko, and the prediction error 12  ll

c  is considered as the wavelet packet 
coefficients of the 2l+1th frequency band at level l + 1. Uopt is the designed optimal update operator 
and employed on the wavelet packet coefficients 12  ll

c  to update even samples ,
e2, ll

c  by adding 
the result to ,

e2, ll
c , the update sequence 

12 1 ll
c  is considered as the wavelet packet coefficients 

of the (2l+1 ‒ 1)th frequency band at level l + 1. 
The reconstruction stage of ASGWPT can be deduced from its decomposition stage. In this 

paper, the frequency-band signals of decomposition stage are individually reconstructed to obtain 
the detailed description of original signal. With regard to the individual reconstruction of a 
frequency-band signal, the wavelet packet coefficients of the frequency band to be reconstructed 
are reserved, and the wavelet packet coefficients of other frequency bands are set to be zeroes. 
Finally, the reconstructed results are obtained as follows 

 

 
 

 
 

 
 

 
 

1 1

1

,2 e 1,2 1 1,2

,2 o 1,2 ,2 e

,2 ,2 e

,2 ,2 o

,1e 1,1 1,2

,1o 1,2 ,1e

,1 ,1e

,1 ,1o

2

2 1

             

2

2 1
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l l l

l l

l l

optl l l

optl l l
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l l
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l l opt l

l l

l l
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c c U c

c c P c

c c

c c

c c U c

c c P c

c c

c c

 (7)

 

The decomposition and reconstruction stages of ASGWPT are displayed in Fig. 2. It should be 
noted that ASGWPT can decompose a signal into independent frequency bands with equal 
frequency widths. 

 

Fig. 2 The decomposition and reconstruction stages of ASGWPT 
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When the VSS is in different aging states, the frequency spectrum and its distribution of the 
vibration response signal will change. This change can be illustrated by directly observing the 
energy distributions of the frequency bands of ASGWPT. Moreover, the wavelet function of the 
developed ASGWPT can adaptively match the frequency spectrum characteristics of inspected 
vibration response signal, so the energy features extracted from the frequency bands of 
reconstructed wavelet packet coefficients possess powerful capability to reflect the different 
structural aging states. 

After the original vibration response signal x is decomposed to level l by using ASGWPT, the 
2l frequency bands can be obtained that each frequency band has the same band width. Let xl,i be 
the reconstructed wavelet packet coefficients of the ith frequency band at level l, its energy is 
calculated as follows 

 

  2

, ,
1

n

l i l i
k

E x k



,   

1,2, ,2li   ,   1,2, ,k n  ,   n Z
 

(8)

 

where n denotes the length of xl,i. The feature vector using the extracted energy features as 
elements is constructed as 

 ,1 ,2 ,2
, , , ll l l

E E E T  (9)
 

Finally, for the convenience of the following analysis and processing, T is normalized as 
 

 ,1 ,2 ,2
/ , / , , /ll l l

E E E E E E  T  (10)

where 
2

,1

l

l ii
E E


 . Next, taking T ′ as the input vector of a classifier, the automated state 

classification of viscoelastic sandwich structures can be achieved. 
 
 
3. Multiwavelet support vector machine and state classification 
 

It is demonstrated in the publications (Zhang et al. 2004, Keskes et al. 2013, Liu et al. 2013, 
Chen et al. 2013) that SVM with the scalar wavelet kernel (WSVM) outperforms that with 
Gaussian kernel (SVM) in pattern recognition. As mentioned above, multiwavelets have obvious 
advantages compared with scalar wavelets. Motivated by this point, in order to improve the 
generalization ability of SVM further and obtain desired state classification result, we would like 
to investigate SVM with the multiwavelet kernel (MWSVM) for state classification of VSSs. As a 
terminal decision-making tool, the MWSVM makes use of the extracted energy features to achieve 
automated state classification for VSSs through state mode coding. 

 
3.1 Summary of support vector machine 
 
The main idea of SVM is to transform the input vectors into a higher dimensional feature space, 

and find the optimal separating hyper-plane that maximizes the margin between the two classes in 
this space by using kernel functions. Let S = {(xi, yi) | xi  Rd, yi  {+1, ‒1}, i = 1,..., l} be a 
training sample set, where xi is an input vector, d is the dimension of xi, yi is the label of xi and l is 
the number of training samples, the decision function used by SVM to find the label of a given 
testing sample x is 
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1

sign ,
l

i i i
i

f y K b


 
  

 
x x x  (11)

 

where K( ) is the used kernel function, b is the bias value and αi is the Lagrange multiplier 
obtained by solving the following dual form of quadratic optimization problem 

 

   
1 , 1

1

1
max  ,

2

. .   0,  0 ,  1, ,

l l

i i j i j i j
i i j

l

i i i
i

W y y K

s t y C i l

  

 

 




 


    

 



α



x x

 (12)

 
where C is the penalty factor implementing the trade-off between empirical risk and confidence 
interval. 

The kernel function used in SVM can be constructed based on the Mercer’s theorem. The 
above mentioned Gaussian kernel and scalar wavelet kernel are respectively defined as follows: 

Gaussian kernel 

 
2

2

'
, ' exp

2
K



 
  
 
 

x x
x x  (13)

 
Scalar wavelet kernel (Zhang et al. 2004) 

 

 
2

2
1

''
, ' cos 1.75 exp

2

d
i ii i

i

x xx x
K

a a

              
x x  (14)

 
where σ and a are the kernel parameters for the Gaussian and scalar wavelet kernels, respectively. 
Wavelet function used to construct the scalar wavelet kernel is 

 

   
2

cos 1.75 exp
2


 

  
 

x
x x  (15)

 
3.2 Summary of multiwavelets 

 
Multiwavelets are the generalization of scalar wavelets. What the difference between them is 

that multiwavelet bases are generated by two or more mother wavelets. Similar to the scalar 
wavelet, the multiscaling functions Φ = [ϕ1, ϕ2,..., ϕr]

T (r > 1) and the corresponding multiwavelet 
functions Ψ = [ψ1, ψ2,..., ψr]

T satisfy the following two scale matrix refinement equations 
 

   
0

2 2 ,    
M

k
k

t t k k


   ZH   (16)

 

   
0

2 2 ,    
M

k
k

t t k k


   ZG   (17)
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where the coefficients {Hk} and {Gk} are respectively r × r matrix low-pass and high-pass filters. 
In this paper, we consider a very important and widely adopted multiwavelet system named 

GHM multiwavelets which is constructed by Geronimo, Hardin and Massopust (Geronimo et al. 
1994). They possess such excellent properties as orthogonality, symmetry, compact support, with 
approximation order 2. However, it is impossible for scalar wavelets. The two scale matrix 
equations of GHM multiwavelets are expressed as 

 

   
         1

0 1 2 3
2

2 2 1 2 2 2 3
t

t t t t t
t



 

        
 

H H H H      (18)

 

where 
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5 5
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0

20
1

0
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G

. 
According to Eq. (17), the two multiscaling functions ϕ1(t) and ϕ2(t) can be obtained. 

Analogously, the two mother multiwavelet functions ψ1(t) and ψ2(t) can be generated according to 
Eq. (18). In the following section, the two GHM multiwavelet functions ψ1(t) and ψ2(t), as shown 
in Fig. 3, are used to construct multiwavelet kernel functions for SVM. 

 
3.3 Construction of multiwavelet kernel functions 
 
Based on the two GHM multiwavelet functions, two multiwavelet kernel functions for SVM 
 
 

 
(a) Multiwavelet function 1 (b) Multiwavelet function 2 

Fig. 3 The two GHM multiwavelet functions 
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are constructed in this section. The formation of a support vector kernel function can be expressed 
as either a inner product type K(x, x′) = K(x · x′) or a translation invariant type K(x, x′) = K(x ‒ x′). 
As a matter of fact, any function can serve as an admissive support vector kernel, if it satisfies the 
Mercer’s theorem. However, it is not easy to transform a translation invariant kernel function into 
the product of two functions, and then to demonstrate that it is an admissive support vector kernel. 
For this reason, there exists the following theorem (Zhang et al. 2004) in place of Mercer’s 
theorem, which provides the necessary and sufficient condition to judge whether a translation 
invariant kernel function can serve as an admissive support vector kernel. 

Theorem 1. A translation invariant kernel function K(x, x′) = K(x ‒ x′) is an admissive support 
vector kernel, when and only when the Fourier transform of K(x) satisfies the following condition 

 

         /2
2 exp d 0

d

d

R
F K j K      x x x  (20)

 
Because the two GHM multiwavelet functions ψ1(t) and ψ2(t) do not satisfy the Mercer’s 

theorem, they cannot serve as admissible support vector kernels. By the definition of the auto-
correlations of the two multiwavelet functions, we have 

 

      k k kCOR t t t dt   



  ,   1,2k   

(21)

 
Based on the autocorrelations of the two multiwavelet functions, two multiwavelet kernel 

functions can be constructed for SVM and are defined as follows 
 

 1 1 2
1 1

' '
, '

d d
i i i i

i i

x x x x
K COR COR

a a
 

 

              
      

 x x  (22)

 

 2 1 2
1

' '
, '

d
i i i i

i

x x x x
K COR COR

a a
 



                
       

x x  (23)

 

The autocorrelations of two GHM multiwavelet functions are shown in Fig. 4. The constructed 
two multiwavelet kernel functions are shown in Fig. 5. These two multiwavelet kernel functions 
are admissible support vector kernels, and the corresponding theorem and its proof are presented 
as follows 

 
 

 
(a) The autocorrelation of multiwavelet function 1 (b) The autocorrelation of multiwavelet function 2

Fig. 4 The autocorrelations of two GHM multiwavelet functions 
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(a) Multiwavelet kernel function 1 (b) Multiwavelet kernel function 2 

Fig. 5 The constructed two multiwavelet kernel functions 
 
 
Theorem 2. The multiwavelet kernel functions K1 (x, x′) and K2 (x, x′) constructed above are 

admissible support vector kernels. 
Proof. It is easy to know that the Fourier transform of the autocorrelation function of ψk (t), k = 

1, 2, is equal to the power spectrum |F(ψk)|
2 (Chen and Dudek 2009). Due to |F(ψk)|

2  ≥ 0, in 
accordance with the Theorem 1, we know that COR(ψk ((xi ‒ xi′) / a)) are admissible support vector 
kernels. According to the construction principle of kernel functions (Shawe-Taylor and Cristianini 
2004), the addition and multiplication of two admissible kernels are also admissible support vector 
kernels. As a result, it is obvious that the multiwavelet kernel functions K1 (x, x′) and K2 (x, x′) 
constructed above are admissible support vector kernels. 

 
3.4 Multiwavelet support vector machine for state classification 
 
The two multiwavelet kernel functions constructed above are used to develop MWSVM 

classifier for the state classification of VSSs, and the decision function of MWSVM is defined as 
 

   
1

sign ,
l

i i k i
i

f y K b


 
  

 
x x x  (24)

 
where k = 1 or 2. The selection of different k values, the different MWSVM classifiers can be 
obtained. Moreover, it is important to note that, in the following analysis, the MWSVM using 
multiwavelet kernel function 1 is denoted as MWSVM1. Similarly, the MWSVM with 
multiwavelet kernel function 2 is named as MWSVM2. In approximation performance, the 
constructed multiwavelet kernel can make up for the deficiency of scalar wavelet kernel. Thus, the 
built MWSVM has better classification performance than the traditional WSVM. 

SVM is originally proposed for two-class classification problem, which is not applicable to 
state classification of VSSs, since there always appear multiple aging states in the service process 
of the structure. Therefore, it is necessary to develop MWSVM to deal with multi-class 
classification problem. Several multi-class classification strategies, such as one-against-all, one-
against-one and directed acyclic graph (DAG), have been introduced by Hsu and Lin (2002), in 
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which they also conduct a comparison of these strategies and draw a conclusion that the one-
against-one strategy is more powerful in practical applications than the other strategies. In this 
paper, we perform the one-against-one strategy on MWSVM for classifying the multiple aging 
states of VSSs. 
 
 

4. The proposed aging state recognition method 
 

In this paper, a novel method to aging state recognition of VSSs is proposed by analyzing 
vibration response signals, which is based on ASGWPT and multi-class MWSVM. Considering 
the strong non-stationarity of vibration response signals and the weakness of state change 
characteristics, in order to extract salient feature information to characterize the structural aging 
states obviously, the ASGWPT, its wavelet function can adaptively match the frequency spectrum 
characteristics of inspected vibration response signal, is developed to process the vibration 
response signals for energy feature extraction. In addition, in order to improve the generalization 
ability of SVM and obtain the accurate state classification result, multiwavelet kernel functions are 
constructed on the basis of the kernel method of SVM and multiwavelet theory, and then 
MWSVM is developed to accomplish the state classification of different structural aging states by 
using the extracted energy features. The proposed aging state recognition method for VSSs is 
shown in Fig. 6. It mainly includes the following several procedures. 

First, when the VSS is in different aging states, by means of data acquisition system, the 
corresponding vibration response signals are acquired by sensors. 

Second, for each of structural aging states, adaptive second generation wavelet is constructed 
by the design of prediction operator and update operator based on the frequency spectrum 
characteristics of inspected vibration response signal, and then ASGWPT is used to process the 
vibration response signals in the whole frequency band. 

Third, energy features are extracted from the frequency bands of reconstructed wavelet packet 
coefficients to describe the different structural aging states. 

Forth, sample data set is collected and split into a training sample set and a testing sample set. 
Fifth, the training sample set is adopted to train the multi-class MWSVM classifier that is based 
 
 

 

Fig. 6 The flow chart of the proposed aging state recognition method 
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on the one-against-one multi-class classification strategy. Herein, according to previous studies 
and our experimental experience, the parameters C and a of the multi-class MWSVM classifier are 
selected by the widely used cross validation technique in the ranges of C = {2‒5, 2‒4, ..., 210} and a 
= {0.25, 0.5, 1.2, ..., 16}. 

Finally, the testing sample set is fed into the trained MWSVM classifier, and then the structural 
aging states can be recognized according to the output of the MWSVM classifier. 

It is important to note that two classifiers (MWSVM1 or MWSVM2) are respectively used in 
the method, the classifier which can obtain higher recognition accuracy is chosen as the final 
classifier. 
 
 

5. Experimental results and analysis 
 

In this section, an experiment is carried out to research the vibration response characteristics of 
a VSS subjected to different degrees of aging, and the corresponding vibration response signals are 
acquired to demonstrate the performance of the proposed aging state recognition method for VSSs. 

 
5.1 Experimental viscoelastic sandwich structure 
 
In order to create the different aging states of VSSs, a representative VSS is devised and 

manufactured, which possesses the ability to regulate the size of preload, and can conveniently 
change the viscoelastic layers with different aging degrees. The sketch of the experimental VSS is 
illustrated in Fig. 7(a), and the physical photo of the experimental VSS is shown in Fig. 7(b). 

From Fig. 7, it can be seen that the experimental VSS structure is mainly constituted of steel 
layers with four viscoelastic layers sandwiched in. In addition, there is a connecting bolt and a 
force sensor. The connecting bolt is adopted to impose a preload on the structure to compress the 
steel layers and viscoelastic layers, and the force sensor is employed to measure the size of 

 
 

 
(a) The sketch of the structure (b) The physical photo of the structure 

Fig. 7 The sketch and the physical photo of the experimental VSS 

 235 mm

 178 mm

255 m
m
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preload. Then, a certain size of preload can be imposed on the structure by adjusting the 
connecting bolt and monitoring the force sensor. In this study, rubber material is chosen as the 
viscoelastic material and tailored to the needed viscoelastic layers. 

 
5.2 Hot oxygen accelerated aging of viscoelastic material 
 
In the practical engineering application, structural aging is a time-consuming process, and the 

aging of VSSs is mainly resulted from the aging of viscoelastic material. Therefore, in this paper, 
in order to create the different aging states of the experimental VSS, the hot oxygen accelerated 
aging of viscoelastic material is carried out. On the basis of the research conclusions presented in 
the publication (Woo et al. 2010), some of the rubber material specimens are input into an 
environmental chamber for hot oxygen accelerated aging. 

As shown in Fig. 8, the environmental chamber has such functions as temperature regulation, 
continuous air blast, air intake and exhaust. By controlling the environmental conditions of 
environmental chamber and the duration of aging, the viscoelastic material can achieve a certain 
degree of accelerated aging. In this study, the temperature of environmental chamber is set to 
110°C, and the way of air circulation is chosen as forced air blast. Moreover, the duration of aging 
is used to describe the aging degree of viscoelastic material. 

As shown in Fig. 9, the placement of rubber material specimens in environmental chamber is in 
a hanging and hierarchical manner. Furthermore, in order to ensure that the hot air of 
environmental chamber is circulated, the aging degree of rubber material is uniform and the 
phenomenon two adjacent specimens sticking together is averted, the distance between two 
neighboring specimens is at least 10 mm, and the distance between the specimen and the wall to be 
not less than 70 mm. There are three kinds of rubber material specimens. The specimens A are the 
viscoelastic layers those are employed to sandwich in the experimental VSS. The specimens B and 
C are adopted to implement the compressive property tests and tensile property tests of the rubber 
material with different aging degrees, respectively. 

According to the sampling plan, when the predetermined aging duration comes, a set of rubber 
material specimens which include four viscoelastic layers, three tensile specimens and one 

 
 

 

Fig. 8 Environmental chamber 
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Fig. 9 The aging specimens 
 
 

compressive specimen are taken out and regarded as an aging state. In this way, we finally obtain 
thirteen sets of rubber material specimens which correspond to thirteen aging states. The 
corresponding aging days of the thirteen aging states, respectively, are 0, 1, 3, 5, 7, 9, 11, 14, 17, 
20, 23, 26 and 29. 

In order to characterize the aging phenomena of the rubber material in thirteen aging states, 
according to the national standard of China (GB/T 7757-2009), the compressive property tests of 
the thirteen sets of compressive specimens in different aging states are carried out. For each aging 
state, the big compressive specimen is tailored to three small specimens with diameter of 10mm, 
and the test result is the average of three small compressive specimens. The amount of 
compression and compression rate are set as 1 mm and 0.5 mm/min, respectively. The 
corresponding compressive stress-strain curve and elasticity modulus are shown in Fig. 10(a) and 
Fig. 10(b), respectively. Moreover, according to the national standard of China (GB/T 528-2009), 
the tensile property tests of the thirteen sets of tensile specimens in different aging states are also 
performed. For each aging state, the test result is the average of these tensile specimens which are 
snapped normally. The compression rate is set as 100 mm/min, and the corresponding tensile 
stress-strain curve and elasticity modulus are shown in Figs. 11(a) and (b), respectively. 

 
 

(a) Compressive stress-strain curve (b) Compressive elasticity modulus 

Fig. 10 The results of compressive property tests 
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(a) Tensile stress-strain curve (b) Tensile elasticity modulus 

Fig. 11 The results of tensile property tests 
 
 
From Figs. 10(a) and 11(a), we can see that, when the compressive stress and the tensile stress 

are in a certain value, the compressive strain and tensile strain of rubber material gradually become 
smaller with the increment of aging days. From Figs. 10(b) and 11(b), it can be seen that, along 
with the increment of aging days, the compressive elasticity modulus and tensile elasticity 
modulus of rubber material gradually increase. All the above analysis results show that, the aging 
degrees of the rubber material in thirteen aging states are gradually deepening with aging days 
increasing. 

 
5.3 Experiment setup and data acquisition 
 
When a certain size of preload is imposed on the experimental VSS, thirteen structural aging 

states can be created by replacing the viscoelastic layers with the thirteen aging degrees. According 
to the results of compressive property tests, the size of the preload imposed on the structure is 
intended to be 7500 N. That is because the viscoelastic layers sandwiched in the experimental VSS 
mainly endure compressive stress. In addition, under the action of this preload, the compressive 
elasticity modulus of the rubber material in thirteen aging states changes significantly. The aging 
days of the viscoelastic layers for each structural aging state is shown in Table 1, and the thirteen 
structural aging states are denoted by AS1-AS13, respectively. Corresponding to the thirteen aging 
states of the viscoelastic material, the aging degrees in the thirteen structural aging states are also 
gradually deepening. 

In order to acquire the vibration response signals of the experimental VSS in different aging 
states, an experimental system, as shown in Fig. 12(a), is built for random excitation. We can see 
from Fig. 12(a) that, the experimental system primarily consists of the experimental VSS 

 
 

Table 1 The aging state description of the experimental VSS 

 
Aging state and label 

AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13

Aging days 0 1 3 5 7 9 11 14 17 20 23 26 29 
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with acceleration sensors, a force display instrument, a data acquisition system, a vibration table 
and the corresponding vibration table control system. The arrangement of acceleration sensors is 
shown in Fig. 12(b). It can be seen from Fig. 12(b) that, twelve acceleration sensors are mounted 
on the surface of the structure, six of them are used to measure the vibration response signals from 
axial direction, and the other six are used to measure the vibration response signals from radial 
direction. In addition, the angle between two sensors in the same horizontal plane is probably 120 
degrees. By means of the force sensor, the force display instrument is used to display the size of 
the preload imposed on the structure. The experimental VSS in each of aging states is installed on 
the vibration table and randomly excited in vertical direction. The random excitation signal, 
applied to the structure via the vibration table, is generated through the vibration table control 
system. Moreover, the power spectrum density (PSD) of the random excitation signal in the 
frequency range of 10-2000 Hz is shown in Fig. 13. Under the above described random excitation, 
the vibration response signals of the experimental VSS in all aging states are measured through the 
twelve acceleration sensors and then stored by the data acquisition system. Moreover, when data 
acquisition is implemented, the sampling frequency and the sampling time of each aging state are 
set to10240 Hz and 120 seconds, respectively. 

 
 

 
      (a) Experimental system (b) The arrangement of twelve acceleration sensors

Fig. 12 Experimental system and sensor arrangement 
 
 

 

Fig. 13 The power spectrum density (PSD) of random excitation signal 
 

1200



 
 
 
 
 
 

A novel method to aging state recognition of viscoelastic sandwich structures 

 

Fig. 14 The vibration response signals of the thirteen structural aging states 
 
 
It should be noted especially that the proposed method only needs the vibration response 

signals from one sensor. Furthermore, since the direction of random excitation is vertical, the axial 
vibration response signals contain the main vibration response information of the experimental 
VSS. Therefore, after data acquisition, the vibration response signals measured by sensor 1 are 
adopted to demonstrate the effectiveness of the proposed method in recognizing the different aging 
states of the experimental VSS. 

The vibration response signals of the thirteen structural aging states are displayed in Fig. 14. It 
can be seen in Fig. 14 that, only using the vibration response signals, it is not easy to recognize the 
thirteen aging states of the experimental VSS. Thus, in order to recognize the thirteen different 
aging states of the experimental VSS accurately, it is very essential to develop an effective method 
to extract the state features which are sensitive to the different aging state. 

 
5.4 Performance analysis of the proposed method 
 
On the basis of the above experiment, the data set containing the vibration response signals of 
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the thirteen aging states of the experimental VSS is collected to evaluate the performance of the 
proposed aging state recognition method. When performing the proposed method, the vibration 
response signal of each aging state is divided into 60 non-overlapping samples with each sample 
consisting of 2048 data points. The 60 samples of each aging state are split into 30 for training and 
the other 30 for testing. 

First of all, in order to extract sensitive feature information to the different structural aging state 
from the complex vibration response signals, one sample of each aging state is taken out and 
regarded as the representative vibration response signal to construct adaptive second generation 
wavelet by the design of prediction operator and update operator. The numbers of prediction 
coefficients and update coefficients are all chosen as 6. On the basis of the optimization design 
methods of prediction operator and update operator mentioned in Section 2.2, the optimal 
prediction operators and update operators of the thirteen structural aging states are obtained, which 
can adaptively match the frequency spectrum characteristics of the corresponding vibration 
response signals. The designed optimal prediction operators and update operators corresponding to 
the thirteen structural aging states are displayed in Table 2, respectively. 

After that, all of the vibration response signals are processed by using the developed ASGWPT 
with level 3, and then eight energy features are extracted from the frequency bands of 
reconstructed wavelet packet coefficients to reveal the different aging states of the experimental 
VSS. For the each of structural aging states, taking one sample as instance, the energy distributions 
of the frequency bands of ASGWPT are shown in Fig. 15. We can find from Fig. 15 that, when the 
experimental VSS is in different aging states, the corresponding energy distributions of the 
frequency bands of ASGWPT are obvious different from each other and can separate the various 
aging states to a certain degree. That is to say, the eight energy features extracted on the basis of 
ASGWPT are effective to recognize the different aging states of the experimental VSS. 
Nevertheless, supposing that the different structural aging states are recognized by the operator 
according to the extracted eight energy features, the tedious recognition process and inaccurate 
recognition result are difficult to be accepted. Therefore, an intelligent technique is needed to 
implement the accurate and automated recognition of the different structural aging states. 

 
 

Table 2 The optimal prediction operators and update operators of the thirteen structural aging states 

State Prediction operator Update operator 

AS1 [0.4699, -0.3854, 0.4155, 0.4155, -0.3854, 0.4699] [0.0999, -0.0613, 0.2115, 0.2115, -0.0613, 0.0999] 

AS2 [0.5193, -0.3785, 0.3592, 0.3592, -0.3785, 0.5193] [0.0659, -0.0705, 0.2546, 0.2546, -0.0705, 0.0659] 

AS3 [0.2479, -0.2649, 0.5170, 0.5170, -0.2649, 0.2479] [0.2415, -0.0573, 0.0658, 0.0658, -0.0573, 0.2415] 

AS4 [0.1804, -0.5708, 0.8905, 0.8905, -0.5708, 0.1804] [0.0785, -0.0630, 0.2344, 0.2344, -0.0630, 0.0785] 

AS5 [0.2008, -0.1688, 0.4680, 0.4680, -0.1688, 0.2008] [0.2445, -0.0687, 0.0742, 0.0742, -0.0687, 0.2445] 

AS6 [0.4154, -0.3303, 0.4148, 0.4148, -0.3303, 0.4154] [0.1267, -0.0738, 0.1972, 0.1972, -0.0738, 0.1267] 

AS7 [0.1106, -0.4165, 0.8060, 0.8060, -0.4165, 0.1106] [0.1617, -0.0755, 0.1638, 0.1638, -0.0755, 0.1617] 

AS8 [0.1268, -0.3322, 0.7054, 0.7054, -0.3322, 0.1268] [0.1652, -0.0878, 0.1726, 0.1726, -0.0878, 0.1652] 

AS9 [0.0847, -0.2815, 0.6968, 0.6968, -0.2815, 0.0847] [0.2489, -0.0925, 0.0936, 0.0936, -0.0925, 0.2489] 

AS10 [-0.3031, 0.0387, 0.7644, 0.7644, 0.0387, -0.3031] [0.3492, -0.0500, -0.0491, -0.0491, -0.0500, 0.3492]

AS11 [-0.2353, -0.0156, 0.7509, 0.7509, -0.0156, -0.2353] [0.3578, -0.0468, -0.0610, -0.0610, -0.0468, 0.3578]

AS12 [-0.1186, -0.1019, 0.7204, 0.7204, -0.1019, -0.1186] [0.3240, -0.0242, -0.0498, -0.0498, -0.0242, 0.3240]

AS13 [-0.6740, 0.2340, 0.9400, 0.9400, 0.2340, -0.6740] [0.3307, -0.0711, -0.0096, -0.0096, -0.0711, 0.3307]
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Fig. 15 The energy distributions of the frequency bands of ASGWPT for thirteen aging states 

 
 

Finally, the developed MWSVM is applied to achieve the accurate and automated aging state 
recognition of the experimental VSS. Using the extracted eight energy features as the input 
features, the multi-class MWSVM classifier is respectively trained and tested to classify the 
thirteen structural aging states. The testing results are presented in Table 3. 

It can be seen from the testing results in Table 3 that, in the case of MWSVM1, the recognition 
accuracy of AS5 is 93.33% (there are only 2 incorrectly recognized testing samples), the 
recognition accuracies of the other aging states are all 100% (for each of these aging states, there 
no incorrectly recognized testing samples), and the average recognition accuracy reaches to 
99.49%. In the case of MWSVM2, the recognition accuracies of AS3 and AS5 are all 96.67% (for 
each of the two aging states, there is only 1 incorrectly recognized testing samples), the 
recognition accuracies of the other aging states are all 100% (for each of these aging states, there 
no incorrectly recognized testing samples), and the average recognition accuracy as well reaches to 
99.49%. All the above analysis results show that the proposed method can accurately and 
automatically recognize the different aging states of the experimental VSS, and can act as a 
promising approach to aging state recognition of VSSs. 
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Table 3 The performance analysis of the proposed method 

State 

MWSVM1 (C = 28, a = 4) MWSVM2 (C = 29, a = 4) 

Recognized 
number* 

Recognition accuracy* 
(%) 

Recognized 
number 

Recognition accuracy 
(%) 

AS1 30 (30+0) 100 30 (30+0) 100 

AS2 30 (30+0) 100 30 (30+0) 100 
AS3 32 (30+2) 100 30 (29+1) 96.67 

AS4 30 (30+0) 100 30 (30+0) 100 

AS5 28 (28+0) 93.33 30 (29+1) 96.67 
AS6 30 (30+0) 100 30 (30+0) 100 

AS7 30 (30+0) 100 30 (30+0) 100 

AS8 30 (30+0) 100 30 (30+0) 100 
AS9 30 (30+0) 100 30 (30+0) 100 

AS10 30 (30+0) 100 30 (30+0) 100 

AS11 30 (30+0) 100 30 (30+0) 100 
AS12 30 (30+0) 100 30 (30+0) 100 

AS13 30 (30+0) 100 30 (30+0) 100 

Average  99.49  99.49 

* Recognized number includes two parts: the former is the correctly recognized testing sample number and 
the latter is the incorrectly recognized number 

* Recognition accuracy is defined as the percentage of the correctly recognized testing sample number from 
the total 

 
 
5.5 Performance comparison analysis of the proposed method 
 
5.5.1 Comparison of ASGWPT with SGWPT for feature extraction 
In order to validate the superiority of ASGWPT in processing the strong non-stationary 

vibration response signals for feature extraction, the commonly used SGWPT is applied for 
comparison. For SGWPT, the decomposition level, the number of prediction coefficients and the 
number of update coefficients are all same with ASGWPT. The difference is that, the prediction 
and update operators of SGWPT are irrelevant to the vibration response signals, and are gained 
through the equivalent filter method presented in the publication (Claypoole et al. 2003). The same 
vibration response signals are processed by using SGWPT, and eight energy features are extracted 
from the frequency bands of reconstructed wavelet packet coefficients to reflect the different 
structural aging states. For the thirteen structural aging states, with one sample, for example, the 
energy distributions of the frequency bands of SGWPT are shown in Fig. 16. It can be seen from 
Fig. 16 that, when the experimental VSS is in different aging states, the energy distributions of the 
frequency bands of SGWPT are basically the same. In other words, on the basis of the energy 
features extracted by using SGWPT, it is difficult to accurately recognize the thirteen aging states 
of the experimental VSS. Furthermore, taking these features as the input features, the multi-class 
MWSVM classifier is respectively trained and tested to classify the thirteen structural aging states. 
The testing results are listed in Table 4. 

Examining the testing results in Table 4, a number of things can be seen. First, for MWSVM1, 
taking the energy features extracted by using SGWPT as the input features, there are a total of 188 
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Fig. 16 The energy distributions of the frequency bands of SGWPT for thirteen aging states 

 
 

incorrectly recognized testing samples and the average recognition accuracy is 51.79%. Moreover, 
for MWSVM2, taking the energy features extracted by using SGWPT as the input features, there 
are a total of 190 incorrectly recognized testing samples and the average recognition accuracy is 
51.28%. Compared with those taking the energy features extracted by using ASGWPT as the input 
features, the MWSVM1 classifier decreases the average recognition accuracy by 47.7%, and the 
MWSVM2 classifier decreases the average recognition accuracy by 48.21%. 

Based on all the above analysis and comparison results, it can be validated that, since the 
wavelet function of ASGWPT can adaptively match the frequency spectrum characteristics of the 
inspected vibration response signal, the developed ASGWPT is a more effective method in 
processing the complex vibration response signals for feature extraction than the traditional 
SGWPT, and hence the extracted energy features by using ASGWPT are more powerful in 
recognizing the different aging states of the experimental VSS than those by using SGWPT. 

Moreover, the energy entropy is analyzed to further validate effectiveness of ASGWPT for 
structural health monitoring. The energy entropy using ASGWPT of every sample for thirteen 
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Fig. 17 The energy entropy using ASGWPT of every sample for thirteen aging states 
 
 

 

Fig. 18 The energy entropy using SGWPT of every sample for thirteen aging states 
 
 

aging states is shown in Fig. 17, and the energy entropy using SGWPT of every sample for thirteen 
aging states is shown in Fig. 18. 

By comparing Figs. 17 and 18, it can be seen that, the energy entropy using ASGWPT can 
better separate the thirteen structural aging states than the energy entropy using SGWPT. It also 
demonstrates that ASGWPT is more effectiveness than SGWPT for structural health monitoring. 

 
5.5.2 Comparison of MWSVM with WSVM for state classification 
In order to validate the performance of MWSVM in classifying the different aging states of 

VSSs, the recently developed WSVM is chosen as reference. As with MWSVM, the adopted 
multi-class classification strategy of WSVM is also one-against-one, and the parameters C and a of 
WSVM are also selected by using the cross validation method in the same ranges. Taking the eight 
energy features extracted by using ASGWPT as the input features, the multi-class WSVM 
classifier is respectively trained and tested to classify the thirteen aging states of the experimental 
VSS. The testing results are displayed in Table 4. 

Observing the testing results in Table 4, it can be seen that, taking the energy features extracted 
by using ASGWPT as the input features of the WSVM classifier, there are a total of 27 incorrectly 
recognized testing samples and the corresponding average recognition accuracy is 93.08%. By 
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Table 4 The performance comparison analysis of the proposed method 

State 

The method using SGWPT for feature extraction 
The method using WSVM for 

state classification 

MWSVM1 (C = 27, a = 1) MWSVM2 (C = 27, a = 1) (C = 26, a = 2) 

Recognized 
number 

Recognition 
accuracy (%)

Recognized 
number 

Recognition 
accuracy (%)

Recognized 
number 

Recognition 
accuracy (%)

AS1 41 (17+24) 56.67 41 (14+27) 46.67 31 (29+2) 96.67 
AS2 32 (13+19) 43.33 34 (13+21) 43.33 29 (28+1) 93.33 

AS3 35 (13+22) 43.33 32 (12+20) 40 24 (16+8) 53.33 

AS4 28 (15+13) 50 31 (17+14) 56.67 30 (30+0) 100 
AS5 34 (16+18) 53.33 35 (16+19) 53.33 36 (22+14) 73.33 

AS6 30 (14+16) 46.67 27 (14+13) 46.67 29 (29+0) 96.67 

AS7 34 (30+4) 100 34 (30+4) 100 30 (30+0) 100 
AS8 20 (12+8) 40 18 (11+7) 36.67 30 (30+0) 100 

AS9 14 (8+6) 26.67 17 (9+8) 30 30 (30+0) 100 

AS10 39 (20+19) 66.67 41 (22+19) 73.33 30 (30+0) 100 
AS11 26 (12+14) 40 24 (11+13) 36.67 32 (30+2) 100 

AS12 22 (10+12) 33.33 21 (9+12) 30 29 (29+0) 96.67 

AS13 35 (22+13) 73.33 35 (22+13) 73.33 30 (30+0) 100 

Average  51.79  51.28  93.08 

*Notations are the same as those used in Table 3 
 
 

using the extracted energy features based on ASGWPT as the input features, MWSVM1 and 
MWSVM2 all improve the average recognition accuracy by 6.41% than WSVM. 

All the above analysis and comparison results validate that, since multiwavelets possess many 
good properties that scalar wavelets do not have, the constructed multiwavelet kernel functions by 
using multiwavelet functions can make the developed MWSVM to possess better performance in 
classify the different aging states of VSSs, and hence MWSVM can achieve higher recognition 
accuracy than WSVM in classifying the different aging states of the experimental VSS. 

 
 

6. Conclusions 
 
By the analysis of vibration response signals, a novel method for aging state recognition of 

viscoelastic sandwich structures (VSSs) is proposed in this paper, which is based on adaptive 
second generation wavelet packet transform (ASGWPT) and multiwavelet support vector machine 
(MWSVM). In order to derive sensitive feature information to different structural aging states 
from the strong non-stationary vibration response signals, the adaptive second generation wavelet 
which can adaptively match the frequency spectrum characteristics of inspected vibration response 
signal is constructed, and then the ASGWPT is developed to process the vibration response signals 
in the whole frequency band and energy features are extracted from the frequency bands of 
reconstructed wavelet packet coefficients to describe the different structural aging states. Moreover, 
in order to improve the generalization ability of SVM and obtain the desired state classification 
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result, based on the kernel method of SVM and multiwavelet theory, multiwavelet kernel functions 
are constructed for SVM, and then the MWSVM is developed for classifying the various structural 
aging states by using the extracted energy features. 

In order to validate the effectiveness of the proposed aging state recognition method, different 
aging states of the experimental VSS are created through the hot oxygen accelerated aging of 
viscoelastic material. The random excitations of the structure in all aging states are carried out and 
the corresponding vibration response signals are measured to be analyzed. The application results 
indicate that, profited from the combination of ASGWPT for feature extraction and MWSVM for 
state classification, the proposed method can recognize the different structural aging states 
accurately and automatically, and can hold significant promise in aging state recognition of VSSs. 
In addition, the developed ASGWPT is more powerful in processing the complex vibration 
response signals for feature extraction than the commonly used SGWPT, and the developed 
MWSVM possesses better performance in classify the different structural aging states compared 
with the recently sprung up WSVM. 

The engineering application of the proposed method is part of future work. Furthermore, in 
engineering practice, the aging of VSSs often occurs along with looseness, these two kinds of 
damage may add together and interfere with each other. This situation will make state recognition 
of VSSs more complicated and difficult. Therefore, the effective method for this task needs to be 
explored in future work. 
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