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Abstract.   This study presents free vibration of beam made of porous material. The mechanical properties of the 
beam is variable in the thickness direction and the beam is investigated in three situations: poro/nonlinear 
nonsymmetric distribution, poro/nonlinear symmetric distribution, and poro/monotonous distribution. First, the 
governing equations of porous beam are derived using principle of virtual work based on Euler-Bernoulli theory. 
Then, the effect of pores compressibility on natural frequencies of the beam is studied by considering clamped-
clamped, clamped-free and hinged-hinged boundary conditions. Moreover, the results are compared with 
homogeneous beam with the same boundary conditions. Finally, the effects of poroelastic parameters such as pores 
compressibility, coefficients of porosity and mass on natural frequencies has been considered separately and 
simultaneously. 
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1. Introduction 
 

Recently, by development of technology in construction and application of pieces such as shell, 
plate and beam in this area the especial properties of these structures have gained particular 
attentions in engineering construction. More than ever the demand for manufacturing lightweight 
components with capabilities and special properties such as flexibility, higher resistance against 
reducing the mass of the material, higher resistance to crack propagation, especial usage of 
mechanical and thermal properties of materials and etc. in the vibration system such as space 
industry application, the transport industry and etc. is felt. Hence, the study of behavior of these 
pieces with functional material is necessary. Functional materials are generally characterized as the 
materials which their mechanical, electrical, thermal and etc. properties vary across one or more 
directions. The properties of these materials may be changed by properties of the layers texture or 
as a result of the existence of pores in material structure which properties and distribution of pores 
affect on functional material properties. In recent years many researchers have investigated 
vibration behavior of beam with the functional properties. For example, Murin et al. (2010) 
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derived a fourth-order differential equation of the functionally graded beam deflection with 
variable material properties across the thickness. The linear beam theory has been used for 
establishing the equilibrium and kinematic equations of the functionally graded beam. The shear 
force deformation effect and the effect of consistent mass distribution and mass inertia moment 
have been taken into account, too. Finally, numerical experiments were performed to calculate the 
eigen frequencies and corresponding eigen modes of one-layer beams and multilayered 
functionally graded material (FGM) sandwich beams. Aminbaghai et al. (2011) investigated 
modelling and simulation of free vibration of the 2D FGM beams with continuous spatial variation 
of material properties. The fourth-order differential equation of the second order beam theory has 
been presented which was used in modal analysis with effect of large axial force. The effect of 
shear force deformation, consistent mass distribution, mass moment of inertia and large axial 
forces was taken into account. Numerical experiments have been done concerning the calculation 
of the eigen-frequencies and eigen-modes of the FGM beams. Murin et al. (2012) studied and 
evaluated the effect of the shear correction function in modal analysis of the FGM beams. Free 
vibration equations and their solutions was presented including the shear correction function. 
Furthermore, second order beam effects and longitudinal varying elastic beam foundations were 
considered. Ziane et al. (2012) investigated free vibration of FGM box beam using formulation of 
an exact dynamic stiffness matrix on the basis of first-order shear deformation theory (FSDT). The 
proposed model was validated by comparison with finite element analysis for various boundary 
conditions. This results showed good conformity between the values of Abaqus Analysis and those 
calculated with the present method. Wei et al. (2011) proposed an analytical method for solving 
free vibration of cracked FGM beams with axial loading using Euler-Bernoulli and Timoshenko 
theory. The discontinuity of rotation caused by the cracks was simulated by means of the rotational 
spring. The main advantage of the proposed method was that the eigenvalue equation for vibrating 
beams with an arbitrary number of cracks can be conveniently determined from a third-order 
determinant. Also, a comprehensive analysis was conducted to investigate the influences of the 
location and total number of cracks, material properties, axial load, inertia and end supports on the 
natural frequencies and vibrational mode shapes of FGM beams. Al-Ansari (2012) calculated the 
natural frequencies of cantilever stepping beam using Rayleigh model, modified Rayleigh model, 
and finite elements model (ANSYS model). The comparison between the three methods was 
presented in this study and the convergence for the three methods was shown. The results showed 
that natural frequencies of stepping beam increased with increasing the width of small and large 
parts of beam. In addition, natural frequencies of the beam is increased with increasing the length 
of large width and decreased when the modified Rayleigh model or ANSYS model was used. 
Wattanasakulpong and Ungbhakorn (2012) applied differential transformation method (DTM) to 
investigate free vibration of FGM beams supported by arbitrary boundary conditions. The main 
advantages of this method are known for its excellence in high accuracy with small computational 
expensiveness. The new frequencies results and mode shapes of FGM beams resting on elastically 
end constraints were presented. For elastically end constraints, some available results of special 
cases for isotropic beams was used to validate the present results. Li et al. (2013) derived bending 
solutions of FGM Timoshenko beams in terms of the homogenous Euler-Bernoulli beams. The 
deflection, rotational angle, bending moment and shear force of FGM Timoshenko beams was 
expressed in terms of the deflection of the corresponding homogenous Euler-Bernoulli beams. 
Consequently, solutions of bending of the FGM Timoshenko beams were simplified as the 
calculation of the transition coefficients and the geometry of the beams. Aydin (2013) studied free 
vibration of beams made of FGM containing any arbitrary number of open edge cracks. The study 
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was based on Euler-Bernoulli beam and massless rotational springs connecting two intact 
segments of the beam. The frequencies equation for a damaged FGM beam with any kind of two 
end supports and any arbitrary number of cracks was established through a third order determinant. 
Compared to previous studies, this decrease in the determinant order can lead to significant 
advantages in the computational time. Rong and Liang (2014) investigated free vibration of FGM 
beams with a through-width delamination.The beam was subdivided into three regions and four 
elements. Then governing equations of the beam segments was derived based on the Timoshenko 
beam theory and the assumption of constrained mode. By using the differential quadrature element 
method the natural frequencies of the beam were obtained. They also examined effects of 
parameters of material gradients, the size and location of delamination on the natural frequencies. 
Komijani et al. (2014) investigated buckling and post-buckling analysis and small amplitude 
vibrations in the pre/post-buckling regimes of FGM beams resting on a nonlinear elastic 
foundation and subjected to in-plane thermal loads. Thermo-mechanical properties of the FGM 
beams were assumed to be functions of both temperature and thickness. The solution was 
determined in two different regimes. Eventually, influences of nonlinear elastic foundation 
parameters, thermal load type, different types of boundary conditions, microstructural length scale 
on equilibrium paths, critical buckling load, and fundamental frequencies were studied. Porous 
materials with functional properties such as foams have been widely used in industry. Biot (1964), 
the leader of expression of porous material behavior, studied the fluid-saturated porous plate under 
the axial force and uniform thermal field. He assumed that pores distributed in all direction 
uniformly and they had uniform effect on mechanical properties of plate. Buckling of porous 
beams with varying properties were described by Magnucki and Stasiewicz (2004). They used 
shear deformation theory for solving the critical load. In this study the effect of porosity on the 
strength and buckling load of the beam was investigated, too. Magnucki et al. (2006) investigated 
bending and buckling of rectangular plate made of foam material. He obtained the result for a 
poro/nonlinear symmetric distribution plate. Magnucki et al. (2014) investigated on theoretical and 
experimental study of a sandwich circular plate under pure bending. Buckling of circular porous 
plate with varying properties and simply supported boundary conditions were described by 
Magnucka-Blandzi (2008). The researchers obtained the critical buckling load for a poro/nonlinear 
symmetric distribution plate. He also studied the circular plate without of pore pressure. Dynamic 
stability of a metal foam circular plate with varying properties were described by Magnucka-
Blandzi (2009). Magnucka-Blandzi (2011) obtained the critical buckling load for rectangular plate 
made of foam with two layers of perfect material. The core was made of a metal foam with 
properties varying across thickness. Jasion et al. (2012) investigated on the analytical, numerical 
and experimental critical buckling load for plate and beam made of foam with two layers of 
perfect material. They obtained global and local buckling-wrinkling of the face sheets of sandwich 
beams and sandwich circular plates. They also compared values of the critical load obtained by 
analytical, numerical (FEM), and experimental methods. Zimmerman (2000) studied on 
thermoelastic and poroelastic coupling parameters for a linear poroelastic saturated rock. He 
concluded that poroelastic coupling parameter has a stronger influence than thermoelastic one. 
Ghassemi and Zhang (2004) showed the effects of temperature gradients on pore pressure and 
stress distribution by using an one-isothermal poroelasticity theory. Thereafter Ghassemi (2007) 
investigated the influence of cooling on pore pressure and stresses distribution by displacement 
discontinuity method. Jabbari et al. (2014a, b) investigated the poroelastic circular plate under the 
mechanical and thermal forces. They studied the effects of distribution and properties of pores that 
saturated by fluid on stability of plate. Jabbari et al. (2014c, d) considered the stability of sandwich 
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plate with piezoelectric layers and poroelastc core under uniform thermal and electrical field. 
Moreover, they achieved their results in higher-order and first-order theory and compared with 
classic theory. They explored the effects of mechanical and thermal properties on stability of 
poroelastic plate, too. Mojahedin et al. (2014) studied the buckling of poroelastc plate with 
piezoelectric layers under electrical, thermal and mechanical forces. Jabbari et al. (2014e, f) 
considered the buckling of circular and rectangular poro FGM plate under transverse magnetic 
field. They explained the effects of mechanical and magnetic properties on stability of poro 
magnet plate. 

In this research free vibration of porous beam is investigated. First, the equations of motions 
were derived using Euler-Bernoulli theory. Then natural frequencies of porous beam have been 
obtained in three different boundary conditions: clamped-clamped, clamped-free and hinged-
hinged support. Finally, the effects of poroelastic parameters (such as stiffness and mass) and pores 
compressibility has been considered separately and simultaneously on the natural frequencies. 
 
 
2. Derivation of the governing equations 
 

Consider a beam made of saturated porous materials with rectangular cross section. It is 
assumed that the length of the beam is L and cross section is b×h. Cartesian coordinates is used 
such that the x axis is at the left side of the beam on its middle surface (Fig. 1). 

The functional relationship between E and z for porous beam is assumed as three different 
types as: 

 
(1) Porous material with nonlinear nonsymmetric distribution (PNND): material which has 

nonlinear asymmetric distribution of porosity in thickness direction and consequently its 
material properties and Young’s modulus are as nonlinear asymmetric form. Here Young’s 
modulus and density are being shown with (Magnucka-Blandzi 2009, Jabbari et al. 2014a) 
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which is a nonlinear asymmetric form of Young’s modulus. 

 
 
 

 

Fig. 1 The geometry and coordinate system of a porous beam 
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(2) Porous material with nonlinear symmetric distribution (PNSD): material which has 
nonlinear symmetric distribution of porosity in thickness direction and consequently its 
material properties and shear modulus are as nonlinear symmetric form. Here Young’s 
modulus and density are being shown with 
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(3) Porous materials with monotonous distribution (PMD): Porous material which has same 

porosity throughout the porous material and therefore Young’s modulus and density are 
constant throughout the material as 

 

][1=)( 0 SeEzE   (3a)
 

][1=)( 0 Mez   (3b)
 

where eS and eM are the coefficient of beam porosity and mass (0 < eS < 1 and 0 < eM < 1), E1 and 
E0 are Young’s modulus of elasticity at z = ‒h / 2 and z = h / 2, respectively. It should be noted that 
the mechanical properties of the porous material vary across the thickness of the beam and E0 is 
Young’s modulus for perfect beam, (E0 ≥ E1). 

 
2.1 Stress-strain equation porous beam 
 
The linear poroelasticity theory of Biot has two characteristics (Biot 1964): 
 

(1) An increase of pore pressure induces a dilation of pore. 
(2) Compression of the pore causes a rise of pore pressure. 
 

The stress-strain law for the undrained condition poroelastic beam is given by (Jabbari et al. 
2014a) 
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where M  is Biot’s modulus, v is Poisson’s ratio and is assumed to be constant across thickness of 
the beam and existence of pores have negligible effect on Poisson’s ratio. So it can be assumed 
that Poisson’s ratio in discharged state is equal with Poisson’s ratio in homogeneous state. vu is 
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undrained Poisson’s ratio v < vu < 0.5, α is Biot coefficient of effective stress 0 < α < 1, and B is 
Skempton coefficient. 

The analysis of beam is based on the classical beam theory using Euler-Bernoulli assumptions. 
The displacement field for Euler-Bernoulli beam is given as 

 

xtxzwtxutzxu ,),(),(=),,(   (7a)

 
),(=),( txwtxw (7b)

 

where ),,( tzxu  and ),( txw  are displacements of an arbitrary point of the beam along x and z-
directions, respectively. Also, u and w are the displacements of the mid-surface of the beam which 
are functions of x and t. The strain- displacement relations for the beam are given in the form 

 

xxx u,=  (8)
 

where εxx is the axial strain. Substituting Eqs. (7) and (8) into Eq. (4) the axial stress remains along 
the beam, which is equal to 

 

))](2(1)([= ,,
2

xxxuxx zwuMzE    (9)

 
 
3. Free vibration analysis 
 

By employing the principle of virtual displacement, the equations of motion of porous beam 
can be obtained as 
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0
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where the total virtual strain energy of the beam δU can be written as 

 

dVU xxxx
V

 2

1
=  (11)

 
Elastic strain energy for porous materials is comprised of elastic strain energy for solid body 

and fluid in pores. Substituting Eqs. (8) and (9) into Eq. (11) in the undrained condition, strain 
energy is obtained as 
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The kinetic energy δT is presented as well by 
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Substituting Eqs. (12) and (13) into Eq. (10), and using integration by parts in Eq. (10), the 

following expressions are concluded 
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0=: ,2,1 xxxxx wAuAu   (14)
 

0=: ,,3,2 ttxxxxxxx IwwAuAw   (15)
 
Through the integrating process, the natural and essential boundary conditions are achieved as 

 

0==or,= ,2,1 xxx wAuANknownu   (16)
 

0==or,= ,3,2, xxxx wAuAMknownw   (17)
 

0==or,= ,3,2 xxxxx wAuAQknownw   (18)
 

where N is the stress resultants, M is the moment resultants and Q is the shear force resultants 
normal to the mid-plane, and A1, A2 and A3 are stretching, coupling stretching-bending and bending 
stiffness, respectively. Moreover, I is the moment of inertia, which can be defined as 
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In this study three possible types of boundary conditions are investigated: clamped-clamped, 

hinged-hinged and clamped-free. Mathematical expressions for the boundary conditions are: 
 
(1) Clamped-Clamped (C-C) 

 

Lxwwu x 0,=at0,=0,=0,= ,  (20)
 
(2) Clamped-Free (C-F) 

 

0=at0,=0,=0,= , xwwu x  (21a)
 

LxQMN =at0,=0,=0,= (21b)
 
(3) Hinged-Hinged (H-H) 

 

LxMwu 0,=at0,=0,=0,= (22)
 
It should be noted in clamped edge (see Eq. (20)) u, w and wx are independently zero, so 

clamped boundary condition is not function of the coefficients of mechanical properties of the 
beam (A1, A2, A3). Moreover, free edge is function of N, M and Q (see Eq. (21)). To satisfy free 
boundary condition, ux and wxx must be zero independently (see Eqs. (16), (17) and (18)). 
Consequently, this boundary condition is not function of the coefficients of mechanical properties 
of the beam. On the other hands, according to Eq. (22) in hinged-hinged boundary condition, M is 
function of mechanical properties of the beam and, ux and wxx are not zero independently. Hence, 
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the boundary condition is function of the coefficients of mechanical properties of the beam. 
 

3.1 Solution 
 

For harmonic vibrations, the displacements of free vibration of the functionally graded porous 
Euler-Bernoulli beam can be written as 

 
tiexutxu )(=),(  (23)

 
tiexwtxw )(=),(  (24)

 
where ω is the natural frequency of porous beam. Substituting Eqs. (23) and (24) into Eqs. (14) 
and (15) leads to the axial displacement and the deflection solution, respectively. 
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C1, C2, C3, C4, C5 and C6 are constants which depend on boundary conditions on both sides of 

the beam. The characteristic equation obtains by substituting Eqs. (25) and (26) into Eqs. (20), (21) 
and (22) as follow 

{0}=})]{([ FH  (28)
 

where [H(ω)] and {F} are coefficient matrix and unknown matrix, respectively (see Appendix A). 
Considering Eq. (28), a non-trivial solution is obtained by setting the determinant of the coefficient 
matrix equal to zero, which results in finding the bending natural frequencies of the beam. 
 
 
4. Results and discussion 
 

In this study the free vibration of porous beam with functional texture has been studied using 
Euler-Bernoulli theory in various boundary conditions. Because of small deformation of beam, 
characteristics of pores are independent of beam deformation. Also, the characteristics are constant 
during beam deformation and do not vary by changing original characteristics of beam. Moreover, 
the effect of poroelastic material properties on natural frequencies of the beam has been 
investigated. )(  is considered relative natural frequency of the beam which is dimensionless 
parameter as follow 
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Where ω and ωH are natural frequency of porous beam and natural frequency of homogeneous 
beam with the same boundary condition, respectively. Generally, homogeneous beam is a beam 
which is formed of a material with the same mechanical properties in all directions. 

One of the poroelastic properties of porous beam is existence of pores. Increasing the porosity 
causes decrement of the Young’s modulus and stiffness of beam. On the other hands, natural 
frequencies are proportional to the stiffness and conversely proportional with mass of beam. Figs. 
2-4 show the effect of porosity coefficient on natural frequencies of the beam in hinged-hinged, 
clamped-clamped and free-clamped boundary conditions. As be seen in these figures, by growing 
the porosity, stiffness and natural frequencies have declined. In Fig. 2 the first, second and third 
frequencies of poroelastic beam with hinged-hinged boundary condition are shown. According to 

 
 

 
Fig. 2(a) First normalized natural frequency )( 1  vs. coefficient of beam porosity )( Se  for saturated 

porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1], coefficient of 
beam mass eM = 0 and v = 0.3 

 
 

 
Fig. 2(b) Second normalized natural frequency )( 2  vs. coefficient of beam porosity )( Se  for 

saturated porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1], 
coefficie nt of beam mass eM = 0 and v = 0.3 
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Fig. 2(c) Third normalized natural frequency )( 3  vs. coefficient of beam porosity )( Se  for 

saturated porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1], 
coefficient of beam mass eM = 0 and v = 0.3 

 
 

Eq. (22), the boundary condition depends on A2 and A3 and these coefficients depend on properties 
of the beam. As a result, the proportion of natural frequencies of porous beam to the natural 
frequency of homogeneous beam does not change equally. So, the graphs of these frequencies (w1, 
w2, w3) do not coincide to each other. On the other hand, C-C and C-F boundary conditions are not 
dependent on A2 and A3. So, in this case, )(  is equal for all mode shapes and considering only 
one of natural frequency ratio is enough for drawing the relevant diagrams (see Figs. 3-6). 

Figs. 3 and 4 show the poroelastic beam frequencies with clamped-clamped and clamped-free 
boundary condition. As can be observed in these figures, by increasing coefficient of beam 
porosity, the natural frequencies will be decreased. Also, the effect of pores compressibility on 
natural frequencies of poroelastic beam is presented in Figs. 2-4. 

 
 

 
Fig. 3 Normalized natural frequency )(  vs. coefficient of beam porosity )( Se  for saturated 

porous beam with C-C edges and for the cases of Skempton [B = 0, 0.5, 1], coefficient of 
beam mass eM = 0 and v = 0.3 

 

1008



 
 
 
 
 
 

Free vibration of functionally graded thin beams made of saturated porous materials 

 
Fig. 4 Normalized natural frequency )(  vs. coefficient of beam porosity )( Se  for saturated 

porous beam with C-F edges and for the cases of Skempton [B = 0, 0.5, 1], coefficient of 
beam mass eM = 0 and v = 0.3 

 
 

Fig. 5 Normalized natural frequency )(  vs. coefficient of beam mass )( Me  for saturated porous 
beam with C-C edges and for the cases of Skempton [B = 0, 0.5, 1], coefficient of beam 
porosity eS = 0.5 and v = 0.3 

 
 
In porous materials the compressibility of pores is introduced by Skempton coefficient. If the 

compressibility of pores is increased Skempton coefficient will be decreased (B → 0), and the 
natural frequencies of the beam will be decreased, too. On the contrary, if the compressibility of 
pores is decreased the Skempton coefficient will be increased (B → 1), and the natural frequencies 
of the beam will be increased. 

The amount of saturation of pores is expressed by (eM). It should be noted that eM differs from 
Skempton coefficient. To express the difference between these coefficient, it is noteworthy that eM 
only considers the pores density, but Skempton coefficient states the pores compressibility. On the 
other hand, the pores maybe saturated by fluids with different density or size of pores are not equal. 
Fig. 5 shows the effect of mass coefficient on natural frequencies. As can be seen in this figure if 
the coefficient of mass increases, density of beam will decrease, and natural frequencies will 
increase, because density is proportional conversely with natural frequencies. Mass and porosity 
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Fig. 6 Normalized natural frequency )(  vs. coefficient of beam mass and porosity (eM, eS) for 
saturated porous beam with C-C edges and for the cases of Skempton [B = 0, 0.5, 1] 

 
 

coefficients are independent together, but in some cases both of them change with a same ratio. In 
Figs. 6 and 7 the effect of both of them on the natural frequencies is shown simultaneously. The 
figures show that by increasing of these coefficients, natural frequencies of poroelastic beam 
increase gradually at first. Then, natural frequencies decrease with sharp slope. Since the influence 
of coefficient of mass is greater than coefficient of porosity, increasing of coefficient of mass rises 
the natural frequencies. Moreover, by increasing the compressibility (B → 0), stiffness declines 
and the graphs are growing by slower slope. In high porosity the effect of stiffness is larger than 
the effect of coefficient of mass and it causes that natural frequencies decline with sharp slope. 

The influence of coefficient of mass is shown in Fig. 7(a) conspicuously. As can be seen, at first, 
natural frequencies of the porous are increasing gradually until high porosities. Also, the figure 
shows that first natural frequencies of hinged-hinged edge are different from other natural 
frequencies and boundary conditions that relationship of natural frequency of hinged-hinged beam 
to mechanical properties of porous material causes this behavior (see Eq. (22)). 

 
 

 

Fig. 7(a) First normalized natural frequency )( 1  vs. coefficients of beam mass and porosity (eM, eS) 
for saturated porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1] 
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Fig. 7(b) Second normalized natural frequency )( 2  vs. coefficients of beam mass and porosity (eM, 
eS) for saturated porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1] 

 
 

 

Fig. 7(c) Third normalized natural frequency )( 3  vs. coefficients of beam mass and porosity (eM, eS) 
for saturated porous beam with H-H edges and for the cases of Skempton [B = 0, 0.5, 1] 

 
 

 
Fig. 8 Normalized natural frequency )(  vs. coefficient of beam mass (eM) for saturated porous beam with 

C-C edges and for the cases of poro/nonlinear nonsymmetric distribution (PNND), poro/nonlinear
symmetric distribution (PNSD) and poro/monotonous distribution ((PMD) whit eS = 0.5, and B = 0, 1
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Fig. 9 Normalized natural frequency )(  vs. coefficient of beam porosity (eS) for saturated porous 

beam with C-C edges and for the cases of poro/nonlinear nonsymmetric distribution (PNND), 
poro/nonlinear symmetric distribution (PNSD) and poro/monotonous distribution ((PMD) whit 
eM = 0, and B = 0, 1 

 
 

 
Fig. 10 Normalized natural frequency )(  vs. coefficients of beam mass and porpsity (eM, eS) for 

saturated porous beam with C-C edges and for the cases of poro/nonlinear nonsymmetric 
distribution (PNND), poro/nonlinear symmetric distribution (PNSD) and poro/monotonous 
distribution ((PMD) whit B = 0, 1 

 
 

Figs. 8-10 show the poro nonlinear distribution in symmetric, nonsymmetric and monotonous. 
At first sight, it can be clearly seen that porous distribution has large effect on natural frequencies 
of the beam. According to Fig. 8 mass coefficient has the most influence on natural frequencies in 
monotonous distribution which has two reasons: (1) decoupled equations and shear forces have no 
effect on natural frequencies of beam. (2) In this case, stiffness of beam is lower than the other 
cases (with the same porosity). Fig. 9 shows saturated porous beam in different porosity 
distributions (eM = 0). As the graph shows the monotonous distribution has the lowest frequency 
and the most variations due to porosity. On the other hand, in symmetric case, natural frequencies 
are larger than two other cases because the stiffness is lager in this case. As can be seen in Fig. 10, 
the results of monotonous and symmetric cases are different from nonsymmetric case, inasmuch as 
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shear forces in uniform and symmetric cases are zero. Furthermore, the coefficient of mass in these 
cases is more effective than porosity and the graphs are increasing thoroughly. In monotonous 
distribution for (B = 0), Poisson’s ratio is constant and since the effect of porosity on Poisson’s 
ratio of beam is assumed negligible, the graph is consistent to homogenous graph. Therefore, in 
this case the natural frequencies of porous beam and homogeneous beam are the same. 
 
 
5. Conclusions 
 

In the present study, the free vibration analysis of beam made of porous material was 
investigated. First, the energy method based on the Euler-Bernoulli beam is used for deriving the 
governing equation of motion. In Euler-Bernoulli theory transverse shear stress and strain is being 
neglected which simplify the problem for thin beams and the results in admissible answer. In free 
vibration analysis the effect of transverse shear stress is considerable but it has been shown that the 
results of Euler-Bernoulli theory are close to Timoshenko theory and higher order shear 
deformation theory for thin beams which can be used as a useful method for analyzing vibrational 
problems. The boundary conditions of the beam were assumed to be clamped-clamped, clamped-
free and hinged-hinged. The porous beam which pores are saturated with fluid. Then, the effect of 
pores distribution and compressibility of pores on the natural frequencies are investigated. The 
effects of porosity on natural frequencies of rectangular beam as closed-form solution are 
presented. It is concluded that: 

 

 Natural frequency ratio )(  has equal value for each beam with special mechanical 
properties, unless the right hand of the Eq. (29) (coefficients A1, A2, A3) would be function 
of mode shapes of the beam. 

 By increasing the coefficient of porosity eS the natural frequency (ω) will be reduced. 
 By increasing the coefficient of mass eM the natural frequency (ω) will be increased. 
 By increasing the compressibility of fluid within the pores, the natural frequency (ω) will 

be reduced. 
 In porous materials method of the pores distribution is impressive on the strength of porous 

beam and natural frequencies (ω). In each case of pores distribution and boundary 
conditions, different results have been achieved. 

 The moment resultants (M) is a function of the Skempton coefficient (B) and porosity 
coefficients (eS). Accordingly, natural frequencies (ω) of hinged-hinged beam is a function 
of them. 

 The behavior of natural frequencies of hinged-hinged beam are different from beam with 
two other boundary conditions. 
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Appendix A 
 
[H(ω)] can be written as follows: 
 

 
 
for the functionally graded porous beams by clamped-clamped boundary condition, and 
 

 
 
for the functionally graded porous beams by clamped-free boundary condition, and 
 

 
 
for the functionally graded porous beams by hinged-hinged boundary condition, where 
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