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Abstract.  The energy absorption characteristics of diamond core sandwich cylindrical columns under axial 

crushing process depend greatly on the amount of material which participates in the plastic deformation. Both the 

single-objective and multi-objective optimizations are performed for columns under axial crushing load with core 

thickness and helix pitch of the honeycomb core as design variables. Models are optimized by multi-objective 

particle swarm optimization (MOPSO) algorithm to achieve maximum specific energy absorption (SEA) capacity 

and minimum peak crushing force (PCF). Results show that optimization improves the energy absorption 

characteristics with constrained and unconstrained peak crashing load. Also, it is concluded that the aluminum tube 

has a better energy absorption capability rather than steel tube at a certain peak crushing force. The results justify that 

the interaction effects between the honeycomb and column walls greatly improve the energy absorption efficiency. A 

ranking technique for order preference (TOPSIS) is then used to sort the non-dominated solutions by the preference 

of decision makers. That is, a multi-criteria decision which consists of MOPSO and TOPSIS is presented to find out a 

compromise solution for decision makers. Furthermore, local and global sensitivity analyses are performed to assess 

the effect of design variable values on the SEA and PCF functions in design domain. Based on the sensitivity analysis 

results, it is concluded that for both models, the helix pitch of the honeycomb core has greater effect on the sensitivity 

of SEA, while, the core thickness has greater effect on the sensitivity of PCF. 
 

Keywords:  diamond core; honeycomb columns; optimization; sensitivity analysis; crashworthiness; 

energy absorption; response surface method 

 
 
1. Introduction 
 

In the crashworthiness analysis of engineering applications such as vehicle engineering, 

shipbuilding, civil engineering and other industries, the energy absorption characteristics of the 

honeycomb sandwich columns have found great attention. The demanded level of safety in such 

applications is achieved by maximizing the specific energy absorption capacity and minimizing 

the peak crushing force. This important issue is treated by absorbing the initial kinetic energy 

during impact, keeping the force levels adequately low and passing damage to the system. 

One of the most important applications of the energy absorbers can be addressed in automotive 

engineering. Different criteria are being used to assess crashworthiness, including the deformation 
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shape of car structure, the acceleration experienced by the vehicle during an impact, and the 

possibility of hurt predicted by human body models. When designing an energy absorber for a 

structure like a car, different factors such as the energy absorption per unit mass, the maximum 

crushing force, etc., can be used to evaluate its performance. Reduction of mass and increasing 

safety are usually desired in the design of energy absorbing elements of a car. Therefore, higher 

specific energy absorption (SEA) is often considered as an important factor in this context. 

A chief contest remains how to seek an optimal structure for the energy absorbing components 

such that the highest crashworthiness efficiency can be achieved. An optimization problem 

contains high nonlinearities of material and shape, which have not been effectively addressed 

except some empirical closed form solutions or surrogate model techniques were adopted (Yang et 

al. 2005, Wang and Shan 2007, Lu and Yu 2003). Abramowicz and Jones (1984a, b) made static 

and dynamic experiments on square and circular steel cylinders and compared the outcomes with 

conceptual computation. 

The Response Surface Method (RSM) has been widely used to solve complicated design 

optimization issues including contact, material and geometrical nonlinearities. The RSM and its 

applications in crashworthiness design have been utilized by a large number of researchers, e.g., 

Lee et al. (2002), Chiandussi and Avalle (2002), Avalle et al. (2002), Kim (2002), and Lanzi et al. 

(2004). Lanzi et al. (2004) applied radial basis functions (RBF) to the optimal shape design of 

composite absorbers. Fang et al. (2005) also used RBF to achieve crashworthiness optimization 

using a vehicle model. Kodiyalam et al. (2004) studied multidisciplinary design of vehicles based 

on approximation models by the Kriging method. 

Multi-objective optimization, as a more practical design methodology, directs at addressing a 

number of design principles, which has become an attractive research topic in crashworthiness 

design lately (Zarei and Kroger 2006, Sinha 2007). A multi-objective optimization procedure 

normally generates a group of solutions in a Pareto sense. As such, a more insight of the optimal 

design space may be provided to allow creation of a better design result (Liao et al. 2007). 

Acar et al. (2011) performed multi-objective crashworthiness optimization of tapered circular 

thin-walled tubes with axisymmetric indentations for maximum crush force efficiency and 

maximum SEA. Sun et al. (2010a) first used the particle swarm optimization (PSO) in honeycomb 

crashworthiness design based on a two-stage multi-fidelity method for surrogate models. The 

multi-objective particle swarm optimization (MOPSO) algorithm was also adopted by Sun et al. 

(2010b) to seek optimal crashworthiness designs for functionally graded foam (FGF) structures. 

Multicriteria design is formulated as both constrained single-objective and multiple-objective 

optimization problems for thin-walled aluminum structures, where cross sectional sizes of single-, 

double-, triple- and quadruple-cell columns were taken (Hou et al. 2008). Yin et al. (2014) 

analyzed foam-filled multi-cell thin-walled structure (FMTS) to achieve the most excellent 

crashworthiness characteristics. A robust design methodology was used to investigate the effects of 

parametric uncertainties of foam-filled thin-walled structures on the design optimization (Sun et al. 

2014). Their approach is well-suited to overcome the less-meaningful or even unacceptable results 

of conventional deterministic optimization approaches when considering the perturbations of 

design variables and noises of system parameters. Yin et al. (2011) investigated the energy 

absorption characteristics of honeycomb-filled single and bi-tubular polygonal tubes (HSBPT). 

They adopted multi-objective optimization algorithm to achieve maximum SEA capacity and 

minimum PCF. Energy absorption properties of metal square honeycombs and size optimization 

were studied by Li et al. (2014). The preprocessing software Patran was used to build FE models, 

and the explicit solver LSDYNA was employed to perform the crashworthiness analyses. 
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The preconception to increase the plastic deformation zones of thin-walled columns through 

buckling of different honeycomb sandwich lattices is based on the fact that more tube walls are 

folded locally. This interaction strengthening effect between honeycomb core and tubes is used to 

improve the crush resistant force and increase the energy absorption. The use of lightweight 

materials as honeycomb cores affects the bending mode of thin-walled hollow cylinder, shortens 

bending lengths and increases number of lobes. Furthermore, the interaction effects due to the 

multi-axial compression of the filling cores increase the energy absorption of the filling thin-

walled columns. However, in the compressed foam-filled tubes, a considerable amount of material 

does not participate in the plastic deformation which in turn reduces the energy absorption 

efficiency of the column (Zhang et al. 2010 and 2011). 

The present study aims at maximizing the SEA and minimizing the PCF for thin-walled 

diamond core honeycomb cylindrical structures in an explicit finite element framework. By means 

of numerical simulation methods, the crashworthiness of sandwich column under axial crushing 

loads is inspected. Models are optimized by multi-objective particle swarm optimization algorithm 

to achieve maximum SEA capacity and PCF. Furthermore, a local and global sensitivity analysis is 

performed to assess the effect of design variable values on the SEA and PCF functions in design 

domain. Depending on the fields of application, different definitions can be encountered, see e.g., 

Saltelli et al. (2006). 
 

 

2. Theory 
 

2.1 Response surface method 
 

In the multi-objective optimization of crashworthiness, mathematical formulation of the 

objective functions including crushing force and energy absorption is required. Analytical 

formulation of these functions with respect to shape and material parameters may be very difficult. 

In general, substantial data are usually obtained for constructing empirical formulae of these 

relationships through experimental studies. The RSM has been presented by Myers and 

Montgomery (2002) and has been extensively used by other researchers e.g., Oktem et al. 2005. 

This approach uses some simple basic functions such as polynomials to approximate the crash 

behaviour of a structure. This method has been applied to optimize thin-walled structures with 

crashworthiness criterion (Hou et al. 2007, Xiang et al. 2006). 

However, as a typical alternative modeling technique, RSM (Jansson et al. 2003) has been 

widely used for solving complicated design optimization problems including contact, material and 

geometrical nonlinearities. The concept is to express a complex function y(x) in terms of a series of 

simple basis functions βj(x), as 
 

𝑦 𝑥 = 𝑦  𝑥 + 𝑒 =  𝑎𝑗

𝑛

𝑗 =1

𝛽𝑗  𝑥 + 𝑒 (1) 

 

where 𝑦  𝑥  denotes the approximation function of the real response y(x) (including crushing 

force and energy absorption functions) and e denotes the error (Lee and Lee 2005, Forsberg and 

Nilsson 2005 and 2006). Usually, polynomial functions are selected as the basis functions for its 

simplicity. Selection of the type of polynomial functions depends on the required order as well as 

number of sampling points for which the best fitting process can be followed. The unknowns 

𝑎𝑗 (𝑗 = 1, … , 𝑛) are determined based on the 𝑚 sampling points 𝑥𝑖(𝑗 = 1, … , 𝑚, 𝑚 > 𝑛) (Hou S 
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et al. 2009). For generating a response vector 𝑦 = (𝑦1 , … , 𝑦𝑚 )𝑇 , the finite element analysis is 

performed for each sample point. The unknown vector 𝑎 = (𝑎1 , … , 𝑎𝑚 )𝑇  is then determined via 

the least squares of the deviation between the response vector 𝑦 and the approximated function y   

at all sampling points, as 
 

𝐸 𝑎 =  𝑒𝑖
2

𝑚

𝑖=1

=  (𝑦𝑖 − 𝑦 𝑖)
2

𝑚

𝑖=1

=  (𝑦𝑖 −  (𝑎𝑗𝛽𝑗 (𝑥𝑖))

𝑛

𝑗 =1

)2

𝑚

𝑖=1

 (2) 

 

This leads to the linear system of equations in the form of 
 

 

𝑦1

⋮
𝑦𝑚

 =  
𝛽1(𝑥1) … 𝛽𝑛(𝑥𝑛)

⋮ ⋱ ⋮
𝛽1(𝑥𝑚 ) … 𝛽𝑚 (𝑥𝑚 )

  

𝑎1

⋮
𝑎𝑛

 →  𝑦 = 𝛽𝑎 (3) 

 

Solving this system of equations leads to the following result 
 

𝑎 = (𝛽𝑇𝛽)−1𝛽𝑇𝑦 (4) 
 

Metamodels are widely used in the optimization problems. In the following study, metamodels 

of the objective functions are constructed by applying polynomial functions. Based on these 

developed metamodels, we can compute the corresponding objective function values of any design 

variable in the design space. In this study, the multi-objective particle swarm optimization 

(MOPSO) algorithm is utilized to create the Pareto front of the two conflicting objectives of SEA 

and PCF. The Pareto front can supply the designer with a domain of optimal solutions for their 

further decision making. The MOPSO is a population based optimization approach, first developed 

by Kennedy and Eberhart (1995) and has found significant attention lately due to its comparatively 

fast convergence and well-distributed Pareto front, compared with other multi-objective 

optimization algorithms. The PSO shares many similarities with evolutionary computation 

techniques such as Genetic Algorithms (GA). In the PSO, the potential solutions, called particles, 

fly through the problem space by following the current optimum particles. 

In order to evaluate the accuracies of the developed metamodels, the relative error (RE) 

between the FEA result 𝑦(𝑥) and 𝑦  𝑥  is calculated as 
 

𝑅𝐸 =
𝑦 𝑥 − 𝑦  𝑥 

𝑦 𝑥 
 (5) 

 

The accuracies of these metamodels can be evaluated based on the root mean square error 

(RMSE), the maximum absolute error (MAX) and R square value, which are written respectively as 
 

𝑅𝑀𝑆𝐸 =  
𝑆𝑆𝐸

𝑘
 (6) 

 

𝑀𝐴𝑋 = max 𝑦𝑖 − 𝑦 𝑖   ,     𝑖 = 1,2, … , 𝑘 (7) 
 

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
 , (8) 
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where 𝑘 is the number of design points. The smaller the values of 𝑅𝑀𝑆𝐸 and 𝑀𝐴𝑋, or the 

larger the value of 𝑅2, the more accurate the metamodel. The variable 𝑅𝑀𝑆𝐸 is used to measure 

the overall accuracy of the model, while 𝑀𝐴𝑋 is used to gauge the local accuracy of the model. 

Parameters 𝑆𝑆𝐸 and 𝑆𝑆𝑇 are sum of the squared errors and total sum of squares in the following 

forms, respectively 

𝑆𝑆𝐸 =  (𝑦𝑖 − 𝑦 𝑖)
2

𝑘

𝑖=1

, (9) 

 

𝑆𝑆𝑇 =  (𝑦𝑖 − 𝑦 )2

𝑘

𝑖=1

, (10) 

 

where 𝑦  is the mean value of 𝑦𝑖 . 

 

2.2 Crashworthiness 
 

The study on the crashworthiness of thin-walled structures and optimization of their 

performance is usually started from the definition of the crashworthiness indicator. The force 

displacement curves of a typical thin-walled structure, as demonstrated in Fig. 1, can measure the 

impact characteristics to a certain extent. The absorbed energy E is equivalent to the mechanical 

work done by the impact force during the crush distance d (Fig. 1) and therefore, is calculated as 
 

𝐸 𝑑 =  𝐹(𝑥)𝑑𝑥
𝑑

0

 (11) 

 

The average force (Favg) for a given deformation can be calculated as 
 

𝐹𝑎𝑣𝑔 =
𝐸 𝑑 

𝑑
 (12) 

 

To specifically define the energy absorption capabilities of different materials and weights, the 

specific energy absorbed per unit mass M is defined by 
 

𝑆𝐸𝐴 =  
𝐸

𝑀
 (13) 

 

Obviously, a higher SEA value indicates a higher capability of energy absorption capability. 

As it is basically very difficult to measure the crashworthiness in terms of a unique physical 

quantity or mathematical formula, the crashworthiness optimization is consequently served to seek 

the best possible design of structure for a desirable crashing performance. Before to proceed to the 

main part of the article, some preliminary materials are briefly discussed in the next sections to 

establish the required background. 
 

2.3 Optimization 
 

Multi-objective optimization, which is also known as multicriteria optimization or vector 

optimization, is generally defined as finding a vector of design parameters satisfying constraints to 
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Fig. 1 The impact model with lumped Mass 

 

 

give satisfactory values to all objective functions. In such problems, there are a number of 

objectives or cost functions to be optimized (minimized or maximized) simultaneously. These 

objectives may conflict with each other so that improving one of them will deteriorate another. As 

a result, no single optimal solution can be found as the best with respect to all of the objective 

functions. In such case, a set of optimal solutions, known as Pareto optimal solutions or Pareto 

front is to be found for multi-objective optimization problems. These optimal solutions are non-

dominated to each other and could not lead to the improvement of all objectives simultaneously 

but are superior to the rest of solutions in the search space (Ebrahimi S and Vahdat azad N 2015). 
 

2.4 MCDM Method 
 

Decision-making problem is the process of finding the best option from all of the feasible 

alternatives. In almost all such problems, the multiplicity of criteria for judging the alternatives is 

pervasive. That is, for many such problems, the decision maker wants to solve a multiple criteria 

decision making (MCDM) problem. In classical MCDM methods, the ratings and the weights of 

the criteria are known precisely. In this paper, a ranking process called TOPSIS (technique for 

order preference by similarity to an ideal solution) is used for solving this kind of MCDM problem 

in order to rank the solutions in Pareto frontier and choose the best possible compromise. TOPSIS 

is based on the concept that the best alternative should have the shortest distance from the positive-

ideal solution and the longest distance from the negative-ideal solution (Hwang and Yoon 1981). 

The reasons of using TOPSIS are the concept behind TOPSIS which is rational and 

comprehensible, and the computation involved is simple (Deng et al. 2000). The TOPSIS method 

is expressed in a succession of six steps as follows: 
 

Step 1: Calculate the normalized decision matrix. The decision matrix collects m alternatives 

for n attributes (criteria). The normalized value 𝑟𝑖𝑗  is calculated from the components 

𝑥𝑖𝑗  of the decision matrix as follows 
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𝑟 𝑖𝑗 = 𝑥𝑖𝑗 /  𝑥𝑖𝑗
2𝑚

𝑖=1    i =1, 2, ..., m  and   j = 1, 2, ..., n. (14) 

 

Step 2: Calculate the weighted normalized decision matrix. The weighted normalized value 𝑣𝑖𝑗   

is calculated as follows 
 

𝑣𝑖𝑗 = 𝑟𝑖𝑗 × 𝑤𝑖𝑗            i =1, 2,..., m and j = 1, 2, ..., n. (15) 
 

where 𝑤𝑖𝑗  is the weight of the 𝑗𝑡𝑕  criterion or attribute and  𝑤𝑗
𝑛
𝑗 =1 = 1. In this 

study, the weights are determined using the entropy method (Lin C.T et al 2006). 

Step 3: Determine the ideal (𝐴∗) and the negative ideal (𝐴−) solutions. 
 

𝐴∗ =  ( 𝑚𝑎𝑥𝑖  
 𝑣𝑖𝑗  𝑗 ∈ 𝐶𝑏), (𝑚𝑖𝑛𝑖 

 𝑣𝑖𝑗  𝑗 ∈ 𝐶𝑐
 ) =   𝑣𝑗

∗   𝑗 = 1,2, … ,  𝑚  (16) 
 

𝐴− =  ( 𝑚𝑖𝑛𝑖 
 𝑣𝑖𝑗  𝑗 ∈ 𝐶𝑏), (𝑚𝑎𝑥𝑖 

 𝑣𝑖𝑗  𝑗 ∈ 𝐶𝑐
 ) =   𝑣𝑗

−   𝑗 = 1,2, … ,  𝑚  (17) 
 

Step 4: Calculate the separation measures using the m-dimensional Euclidean distance. The 

separation measures of each alternative from the positive ideal solution and the 

negative ideal solution, respectively, are as follows 
 

𝑆𝑖
∗ =   (𝑣𝑖𝑗 − 𝑣𝑗

∗)2

𝑚

𝑗 =1

, 𝑗 = 1,2, … , 𝑚 (18) 

 

 𝑆𝑖
− =   (𝑣𝑖𝑗 − 𝑣𝑗

−)2

𝑚

𝑗 =1

, 𝑗 = 1,2, … , 𝑚 (19) 

 

Step 5: Calculate the relative closeness to the ideal solution. The relative closeness of the 

alternative 𝐴𝑖  with respect to 𝐴∗ is defined as follows: 
 

𝑅𝐶𝑖
∗ =

𝑆𝑖
−

𝑆𝑖
∗ + 𝑆𝑖

− , 𝑖 = 1,2, … , 𝑚 (20) 

 

Step 6: Rank the preference order. As a result, this method is considered to be able to acquire a 

satisfactory compromise solution for a MCDM problem (Chen and Tzeng 2004). 

MCDM model, which integrates the techniques of order preference by similarity to 

ideal solution (TOPSIS) with gray relation analysis (GRA), is implemented to find a 

best compromise optimum from the Pareto set (Fang et al. 2015). 

 

2.5 Sensitivity analysis 
 

Sensitivity analysis is the complementary tool used to study how the uncertainty in the model 

output can be apportioned to different sources of uncertainty. In the sensitivity analysis, it is 

basically intended to investigate how any uncertainty in the system output can be related to 
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different sources of uncertainty in its inputs (Saltelli et al. 2008). Sensitivity analysis methods can 

be classified as either local or global. 

 

2.5.1 Local sensitivity 
Local sensitivity analysis falls generally in the class of the so-called One-A-Time method, as 

each factor is perturbed in turn while keeping all other factors fixed at their nominal value. In the 

present study, this normalized sensitivity formulation is used to assess the effect of design variable 

values on the specific energy absorption and peak crushing force function in design domain. 

 

2.5.2 Global sensitivity 
Global sensitivity analysis studies the effect of input variations on the outputs in the entire 

allowable ranges of the input space. Global sensitivity analysis methods are variance-based 

methods which use variance as an indicator of the importance of an input parameter and 

consequently, rely closely on sampling methods and input parameter distribution. The importance 

of the given input parameter can be measured by a term defined as the sensitivity measure, which 

is often defined as the fractional contribution to the output variance due to uncertainties in the 

inputs. In this context, the Method of Sobol uses decomposition of variance to calculate the so-

called Sobol’s sensitivity indices. Using combinations of input parameters in increasing 

dimensionality, the model output function 𝑦 = 𝑓(𝑥) is basically decomposed into summands of 

variance. This method is one of the most established and widely used methods which is capable of 

computing the Total Sensitivity Indices (TSI). Based on the TSI, the main effects of a given 

parameter and all the interactions (of any order) involving that parameter can be measured 

(Ebrahimi and Vahdatazad 2015). 
 

2.6 Finite element model 
 

Diamond core types of honeycomb sandwich columns are investigated numerically by 

ABAQUS, which are aluminium core with two different materials in inner and outer tubes 

containing steel and aluminium, as shown in Fig. 2. The length (L) of the column is 317.42 mm. 

The inner and outer radiuses (Ri, Ro) of the circular tubes are 30 and 50 mm, respectively. The wall 

thickness of core t is the first design variable. The pitch of the honeycomb core (as shown in Fig. 3) 

that is defined in Eq. (21) is the second design variable. 
 

𝐾 =
core pitch 

length (L) of the column
 (21) 

 

Fig. 3 illustrates definition of the honeycomb core pitch. Based on this figure, it is seen that the 

core pitch is the length of that part of column for which one cycle of the diamond honeycomb core 

is created. 

In addition, it is noticeable that according to Eq. (21), parameter K is actually obtained from the 

distance between the start and end points of one pitch divided by the column length. In other 

words, for example, for K = 2 the distance between the start and end points of one column pitch 

extrude would be twice of the column length, and so on. 

The cell number of honeycomb sandwich columns in circumferential direction is six. In this 

paper, two models are investigated: the first model contains two steel cylindrical tubes with 

aluminium core and the second model contains two aluminium cylindrical tubes with aluminium 

core that are listed in Table 1. Four-node quadrilateral shell elements were created. Contact was 
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+ 

 

= 

 

 

Outer and inner tubes  Diamond honeycomb  Sandwich column 

Fig. 2 Geometrical configuration of sandwich column 
 

 

    

Pitch of helix = L Pitch of helix = 1.5 L Pitch of helix = 2 L Pitch of helix = 4 L 

K = 1 K = 1.5 K = 2 K = 4 
 

 

Fig. 3 Definition of honeycomb core pitch K 

 

 

defined between the rigid wall and the top of the cylinder by creating surfaces in ABAQUS. The 

contact between the rigid body and the specimen is modelled with a node-to-surface contact with 

the dynamic and static friction coefficient of 0.2. 
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Table 1 Properties of the honeycomb columns 

Model 
Material properties Inner and outer tube 

thickness (mm) Inner tube Outer tube Core 

Steel tube Mild steel Mild steel Aluminum alloy 0.4 

Aluminum tube Aluminum alloy Aluminum alloy Aluminum alloy 1 

 

 

  

Fig. 4 Deformation profiles of the diamond honeycomb sandwich column 

 

 

The full sections are modeled using the quadrilateral Belytschko-Tsay four-node shell element 

and five integration points are used throughout the thickness. The total number of elements used 

for FEA is 26000. Prescribed velocity 10 m/s is applied to the honeycomb sandwich column and 

lumped mass to crush the rigid wall. The analysis time is set to 0.01 s, which is enough for 

presenting an entire force curve. To more clearly show the energy absorption behavior, an extra 

lumped mass of 500 kg was attached to the free end of the column. FEM simulations of axial 

crushing were performed and a successive folding pattern was formed as shown in Fig. 4. Some 

cutting views of the deformation profiles of the square sandwich column are also shown in Fig. 4. 
 

2.7 Material properties 
 

Aluminum and its alloys signify one class of favorable energy-absorbing materials due to their 

relative high ratio of functionality to weight, which have been widely adopted in the structural 

design of vehicles. Aluminum is of very good formability and almost any realistically shaped 

multiply-connected cross-sectional can be produced by an extrusion process, which provides a 

considerable possibility to economically implement a specific design of sectional configuration. 

Aluminum becomes more and more important to optimize the sectional parameters to achieve the 

best possible crashworthiness when impact occurs. The thin-walled column and honeycomb core 

are made of the aluminum alloy AA6060-T4 with density 2.7 × 103 kg/m3, Young’s modulus E = 

68.20 GPa, Poisson’s ratio = 0.28, initial yielding stress Sy = 80 MPa, ultimate stress Su = 173 

MPa and elongation 17.4%. To take strain hardening effects into account, the energy equivalent 

flow stress can be calculated by using (Wierzbicki 1998) 
 

𝑆0 =  
𝑆𝑦𝑆𝑢

1 + 𝑛
 (22) 

 

where n = 0.23 is the strain hardening exponent of the material, and the flow stress for AA6060-T4 
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Table 2 True stress-plastic strain data points used for mild steel in the numerical simulations 

Stress (MPa) 304.6 344.19 385.51 424.88 450.39 470.28 

Strain (%) 0 0.0244 0.0485 0.0951 0.1384 0.1910 

 

 

 

Fig. 5 Tensile stress–strain curve of AA6060-T4 
 

 

     

(a) (b) (c) 

Fig. 6 Crush pattern of axial impact on tube: (a) experimental dynamic test by Zarei and Kroger; 

(b) dynamic simulation by Zarei and Krgoer; (c) dynamic simulation in our work 
 

 

 

Fig. 7 Crash load-displacement curves of axial impact on tube 

 

 

adopted here is 106 MPa. The complete stress–strain relation for this material is shown in Fig. 5. 

The Diamond core is made of the aluminum alloy. The inner and outer tubes are made of the 

mild steel for first model and the aluminum alloy for second model. The mild steel considered 
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with density 7830 kg/m3, Young’s modulus 207 GPa, Poisson’s ratio 0.3. The true static stress–

strain ratio of the mild steel was obtained using a standard tensile test, from which approximated 

true stress-plastic strain data points were used in the models, as shown in Table 2. 
 

 

3. Results and discussion 
 

3.1 RSM Validation results 
 

Crush process of aluminum columns has been experimentally investigated by Zarei and Kroger 

(2007). Axial impact tests have been conducted on empty aluminum square tubes. The outer 

diameter of the aluminum tubes is 55 mm, while the wall thickness is 2 mm. Tubes with length of 

270 mm are used. Numerical simulations of these crush tests have also been performed in our 

work to approve the accuracy of the RSM model. Results in Figs. 6 and 7 show that numerical 

simulation presented in this paper has good agreement with experimental data. 
 

3.2 Finite element and RSM 
 

In order to derive the response functions of SEA and PCF, a series of sampling points (based on 

K and t) are selected in the design domain to provide sampling designs for FEM. These design 

points with different K and t values are listed in Table 3. Thus, for each model, 16 honeycomb 

sandwich columns are obtained resulting in total 32 crash tests. The response functions of SEA and 

PCF are therefore derived from the finite element analysis results based on the 32 crash tests. After 

obtaining the FEM results, the required relations of the metamodels based on the RSM can be 
 

 

Table 3 Design matrix of diamond core sandwich cylindrical columns for crashworthiness 

n Model K T (mm) M (kg) PCF (kN) E/M (kJ/kg) Energy absorption (kJ) 

1 

Steel tube 

1 .5 .64 116.7 6.407 4.101 

2 1 1 .79 159.1 6.603 5.217 

3 1 1.5 .93 212.9 6.040 5.618 

4 1 2 1.08 331.7 9.592 10.36 

5 2 .5 .62 105.8 7.904 4.901 

6 2 1 .75 129.7 6.981 5.236 

7 2 1.5 .87 180.8 6.444 5.607 

8 2 2 .99 288 10.444 10.34 

9 3 .5 .62 88.45 4.554 2.824 

10 3 1 .74 124.7 6.108 4.52 

11 3 1.5 .86 183.4 5.015 4.313 

12 3 2 .98 228.5 6.236 6.112 

13 4 .5 .62 94.12 4.8451 3.004 

14 4 1 .73 117.5 4.6726 3.411 

15 4 1.5 .85 144.2 4.9047 4.169 

16 4 2 .97 207.5 7.659 7.43 
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Table 3 Continued 

n Model K T (mm) M (kg) PCF (kN) E/M (kJ/kg) Energy absorption (kJ) 

1 

Aluminum 

tube 

1 .5 .36 62.81 8.522 3.068 

2 1 1 .50 87.43 10.802 5.401 

3 1 1.5 .65 141.9 13.649 8.872 

4 1 2 .79 258.9 17.253 13.63 

5 2 .5 .34 67.29 5.205 1.77 

6 2 1 .46 91.74 8.141 3.745 

7 2 1.5 .59 121.4 6.789 4.006 

8 2 2 .93 243 11.924 11.09 

9 3 .5 .34 71.47 4.585 1.559 

10 3 1 .46 70.87 5.967 2.745 

11 3 1.5 .58 99.38 4.834 2.804 

12 3 2 .69 133.2 5.834 4.026 

13 4 .5 .33 55.67 4.709 1.554 

14 4 1 .45 67.49 4.802 2.161 

15 4 1.5 .57 92.57 4.405 2.511 

16 4 2 .69 128.5 4.636 3.199 

 

 

 
Table 4 Accuracies of the metamodels for diamond core sandwich cylindrical columns 

Polynomial Function Models RMSE MAX R2
 RE% 

Linear 

SEA (kJ/kg) 
Steel tube 1.1863 2.4728 0.4850 [-32.320, 26.384] 

Aluminum tube 1.8168 3.7855 1.8168 [-43.325, 61.994] 

PCF (kN) 
Steel tube 21.2378 49.9076 0.9020 [-18.288, 39.076] 

Aluminum tube 28.7222 59.1570 0.7596 [-37.5117, 62.033] 

Quadratic 

SEA (kJ/kg) 
Steel tube 0.9532 1.8307 0.6675 [-31.210,15.832] 

Aluminum tube 0.7699 1.8751 0.9577 [-27.620, 20.034] 

PCF (kN) 
Steel tube 8.6932 16.9012 0.9836 [-9.2090,9.2155] 

Aluminum tube 14.6189 35.5613 0.9377 [-27.7362,17.116] 

Cubic 

SEA (kJ/kg) 
Steel tube 0.4736 0.8893 0.9179 [-13.44 , 14.55] 

Aluminum tube 0.5529 1.1150 0.9782 [-16.421, 10.152] 

PCF (kN) 
Steel tube 6.6183 16.7312 0.9905 [-5.8404, 9.1228] 

Aluminum tube 9.7982 22.7882 0.9720 [-17.6984, 18.158] 

Quartic 

SEA (kJ/kg) 
Steel tube 16.0359 31.5520 -93.100 [15.304,505.254] 

Aluminum tube 18.0397 35.0785 -22.250 [14.520,756.654] 

PCF (kN) 
Steel tube 466.077 925.6016 -46.210 [23.291, 625.106] 

Aluminum tube 310.1477 615.4601 -27.032 [29.2796, 731.858] 
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developed. As mentioned earlier, the polynomials are usually used as the basis functions in 

generating these metamodels. In order to find which polynomial best fits the data of Table 3, four 

different polynomial functions with orders ranging from 1 to 4 (in the form of linear, quadratic, 

cubic and quartic polynomials) using the results of FEM analysis and based on the RSM are 

constructed. Then, according to the methodology already described in Section 2.1 for error 

analysis, the accuracies of these polynomial functions for the honeycomb columns are obtained 

and summarized in Table 4. From Table 4, it can be found that the cubic polynomial function is the 

most accurate one in all cases. Thus, the cubic polynomial function is used in RSM models in the 

following optimization design process. 

In order to further validate the RSM method, comparison of the results for sample points is 

performed by FE simulations. A FE simulation is performed to obtain the values of SEA and PCF 

in sample points. Then by substituting the sample point values in the cubic polynomial functions 

of the RSM, the SEA and PCF values are obtained. The results of Table 5 justify the accuracy of 

the results based on our approach by RSM method. 

The response polynomials function of SEA and PCF are 
 

𝑃𝐶𝐹𝑠𝑡𝑒𝑒𝑙  𝑡𝑢𝑏𝑒 = 105(1.3575 − 0.5023𝐾 + 0.2585𝑡 + 0.1012𝐾2 + 0.2641𝐾𝑡 

                −0.0157𝑡2 − 0.0081𝐾3 − 0.0055𝑘2𝑡 − 0.1839𝐾𝑡2 + 0.2658𝑡3) 
(23) 

 

𝑆𝐸𝐴𝑠𝑡𝑒𝑒𝑙  𝑡𝑢𝑏𝑒 = 104(−0.8348 + 1.7562𝐾 + 1.4822𝑡 − 0.7793𝐾2 − 0.0105𝐾𝑡 

              −1.5774𝑡2 + 0.959𝐾3 + 0.0332𝑘2𝑡 − 0.0654𝐾𝑡2 + 0.5367𝑡3) 
(24) 

 

𝑃𝐶𝐹Aluminum  tube = 105( −0.6092 + 1.8911𝐾 − 0.0372𝑡 − 0.8203𝐾2 

+0.0712𝐾𝑡 + 0.1240𝑡2 + 0.0995𝐾3 

 +0.0579𝑘2𝑡 − 0.2675𝑡2 + 0.3107𝑡3) 

(25) 

 

𝑆𝐸𝐴Aluminum  tube = 104(0.2466 − 0.2850𝐾 + 2.6894𝑡 + 0.0266𝐾2 − 0.2319𝐾𝑡 

                −1.8556𝑡2 + 0.0035𝐾3 + 0.0350𝑘2𝑡 − 0.0614𝐾𝑡2 + 0.5576𝑡3) 
(26) 

 

The surfaces that were fitted to the SEA and PCF are shown in Figs. 8 and 9. In these figures, 

the 3D contours of SEA and PCF are plotted to gain more insights into these two models. In each 

plot, t and K are set to be in between their minimum and maximum values. It can be seen from the 

response surface that PCF is increasing as wall thickness t and parameter K are increasing for the 

steel and aluminum tube models. However, for aluminum tube it does follow a monotonic pattern. 
 

 

Table 5 Optimal results obtained using RSM for unconstrained problem 

Model 
Sample point RSM result FEM result Accuracies RE% 

K T (mm) SEA PCF SEA PCF SEA PCF 

Steel tube 
1.83 1.24 7.2268 159.00 7.523 154.5 3.937 -2.912 

2.7 1.58 5.3105 182.217 5.573 189.96 4.710 4.076 

Aluminum 

tube 

3.75 1.71 3.8119 95.989 3.694 100.67 -3.191 4.649 

2.25 0.86 6.7703 82.794 6.883 79.924 1.637 -3.590 
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(a) Steel tube (b) Aluminum tube 

Fig. 8 The approximate surfaces PCF 
 

 

  
(a) Steel tube (b) Aluminum tube 

Fig. 9 The approximate surfaces SEA 
 

 

  

(a) K = 1 (b) K = 2 
 

 

 

 

(c) K = 3 (d) K = 4 

Fig. 10 Relationship between mean energy absorbing and honeycomb column thickness vs. time for: 

(a) K = 1; (b) K = 2; (c) K = 3; (d) K = 4 
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(a) K = 1 (b) K = 2 
 

 

 

 

(c) K = 3 (d) K = 4 

Fig. 11 Relationship between crushing force and honeycomb column thickness vs. time for: 

(a) K = 1, (b) K = 2, (c) K = 3, (d) K = 4 

 

 

Honeycomb sandwich columns with two different materials in inner and outer tubs are 

simulated by FEM. The energy absorption curves obtained from the FEM analysis are also shown 

in Fig. 10. It is shown that by increasing the honeycomb thickness t, the energy absorption is also 

increased. Furthermore, the plots show that the energy absorbing for models is decreased by 

increasing K (Figs. 10(a)-(d)). 

The crush force–time curves for two models with different core thickness sizes and K are 

shown in Fig. 11. During the crushing process, the crush force curve shows a periodic fluctuating 

behavior which corresponds to the collapse of honeycomb cells. By increasing the wall thickness, 

 

 

 

Fig. 12 Crushing force of the diamond core sandwich columns (t = 1 mm, K = 1, aluminum core) 
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Fig. 13 Energy absorption of the diamond core sandwich columns (t = 1 mm, K = 1, aluminum core) 

 

 
Table 6 Energy absorption improvement of the honeycomb sandwich columns 

Ecore (J) Etubes (J) Ecore+tubes(J) Esandwich(J) EImprovement(J) % Eimprovement 

151.702 2089.74 2241.442 5425.77 3184.328 142.066 

 

 

PCF is increased. However, by increasing K, the PCF is decreased. Fig. 11 shows that the PCF of 

the steel model is higher than that of the aluminum tube. 
 

3.3 Interaction effect 
 

The interaction effect between the non-filled bitubal tubes and the core is investigated. Figs. 12 

and 13 illustrate the crushing force–time and the energy absorption – time curves for different 

assemblies of the column including core alone, outer and inner tubes, core plus tubes, and 

sandwich column, respectively. According to these figures, due to the interaction effect, the level 

of the crushing force and the energy absorption of the diamond sandwich columns are higher than 

the summation of the corresponding individual effects of the cores and tubes. The light green area 

shows clearly the level increase due to the interaction effect. 

In Table 6, the energy absorption for the column with core alone, outer and inner tubes, core 

plus tubes, and sandwich column is given. It can be seen that due to the interaction effect, the 

energy absorption of the honeycomb sandwich columns is significantly improved when compared 

to the core plus tubes. This situation is considerable, especially for the aluminum core (t = 1 mm, 

K = 1) with the improvement about 142%. 
 

3.4 Optimization result 
 

3.4.1 Constrained optimization 
With the explicit formulation of SEA (K, t) and PCF (K, t), the constrained single-objective 

optimization problems is more specifically defined. The optimization problem is defined as 
 

 

Max.   f = 𝑆𝐸𝐴 𝐾, 𝑡 

𝑠. 𝑡            𝑃𝐶𝐹 𝐾, 𝑡 ≤ 90 kN
. 5 mm ≤ 𝑡 ≤ 2 mm

1 ≤ 𝐾 ≤ 4

  (27) 
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Table 7 Optimal results obtained using RSM models for constrained problem 

Model 
Optimal point SEA (kJ/kg) 

(RSM based) 

SEA (kJ/kg) 

(FEM result) 

Accuracies 

RE K* t* (mm) 

Steel tube 1.968 0.3010 6.7243 6.5331 -2.926% 

Aluminum tube 1.000 1.0979 11.5556 12.1218 4.670% 

 

 

Table 8 Optimal results obtained using RSM for unconstrained problem 

Model 
Optimal point SEA (kJ/kg) 

(RSM based) 

SEA (kJ/kg) 

(FEM result) 

Accuracies 

RE K* t* (mm) 

Steel tube 1.4688 2.000 10.4422 9.9213 -5.250% 

Aluminum tube 1.000 2.000 17.6987 16.8173 -5.241% 

 

 

By using the constrained single-objective particle swarm optimization (SOPSO) approach, the 

optimal results can be obtained as reported in Table 7. From this table, SEA value in the optimal 

point for aluminum tube is higher than that of the steel tube in the constrained problem. Validation 

of the optimums is carried out by performing FE simulations. For this purpose, using the optimum 

values, a FE simulation is performed to obtain the values of SEA. On the other hand, by 

substituting the optimum values in the cubic polynomial functions of the RSM, another set of the 

SEA values is obtained. The results of Table 7 show relatively small deviation between the results 

of RSM and FEM which justifies the accuracy of the results based on our approach. 
 

3.4.2 Unconstrained optimization 
To investigate the effect of the PCF constraint on the optimum, an unconstrained optimization 

problem is also presented herein. In the constrained optimization problem, imposing a constraint 

on the PCF showed an important role on generating the optimum. By removing the PCF constraint 

one can obtain different optimal results. The unconstrained optimization is mathematically 

equivalent to the following problem as 
 

 

Max.   f = 𝑆𝐸𝐴 𝐾, 𝑡 
𝑠. 𝑡  

. 5 mm ≤ 𝑡 ≤ 2 mm
1 ≤ 𝐾 ≤ 4

  (28) 

 

The optimal designs are obtained and given in Table 5. In the optimal point, SEA values for 

aluminum tube model are higher than that of the steel tube. Validation of the optimums is carried 

out by performing FE simulations as seen in Table 8 (similar to Table 7). 
 

3.4.3 Multi-objective optimization 
In order to design an ideal energy absorber with the highest possible performance, the SEA of 

the structure must be maximized as an objective function in the crashworthiness optimization 

problem. On the other hand, it is also very important that the PCF of the structure does not exceed 

a certain acceptable level. Consequently, minimizing the PCF as another objective function is also 

much demanded. To consider these two different design criteria, the optimization problem can be 

written as the following multi-objective optimization forms 
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Minimize     𝑃𝐶𝐹 𝐾, 𝑡 , −𝑆𝐸𝐴 𝐾, 𝑡  

subject to 
. 5 mm ≤ 𝑡 ≤ 2 mm

1 ≤ 𝐾 ≤ 4

  (29) 

 

Multi-objective optimization can be formulated in different ways. One of the typical designs 

account for different criteria in terms of weights to provide different emphasis, as 
 

 
 
 

 
 Minimize    𝐹 = 𝑤

𝑃𝐶𝐹(𝑘, 𝑡)

𝑃𝐶𝐹∗
+ (1 − 𝑤)

𝑆𝐸𝐴(𝑘, 𝑡)

𝑆𝐸𝐴∗

subject to 
𝑤 ∈ [0, 1]

. 5 mm ≤ 𝑡 ≤ 2 mm
1 ≤ 𝐾 ≤ 4

  (30) 

 

where w is a weight factor used to adjust the relative importance PCF and SEA to each other, and 

PCF* and SEA* are the normalization constants for the PCF and SEA, respectively. Here, the 

values of these normalization constants are taken as the maximum PCF and SEA values obtained 

at the training points. In this study, the MOPSO algorithm implemented in MATLAB was utilized 

to generate the Pareto front of the two conflicting objectives of the SEA and PCF. Selection of this 

optimization algorithm is done due to its relatively low computational cost and fast convergence, 

as well as the ability to generate the best set of Pareto solutions close to the true Pareto front. PSO 

is a derivative-free global optimum algorithm and one run could lead to a global optimum. In 

Table 9, the parameters definition for SOPSO and MOPSO are given. 

By using the metamodels and the MOPSO algorithm, the Pareto front of the honeycomb 

sandwich cylindrical columns under axial crushing loads for the problem is obtained and is shown 

in Fig. 14. By varying the weight factor w in Eq. (30), the Pareto sets for these two models are 

obtained. In addition, the results of the SOPSO (from Tables 7 and 8) and MOPSO are shown for 

better comparison. It is clearly observed that the optimums of the SOPSO coincide well with the 

Pareto points. This implies that the optimal solutions obtained from the SOPSO can be considered 

as a solution of the MOPSO for the selected SEA and PCF objectives. It is further concluded that 

the aluminum tube has the best energy absorption capability at a certain peak crushing force. 

 

3.4.4 Application of the multi-criteria decision making method 
Having used MOPSO to synthesize a range of solutions, a single solution must be selected by 

the decision maker. Ranking methods can be used to reduce the non-dominated solution set to a 

single design. According to the weights reflecting the preference on each objective which is listed 

in Table 10, TOPSIS is used to rank the non-dominated generated solutions. We can tune up our 

preference to find the compromise solution that we are satisfied most (Fig. 14). Based on the 

weights chosen, we finally reach to a specific solution for each design. It is notable that some 

solutions (designs 2 and 3 of Table 10) distribute in one small region rather than spread over the 

Pareto space uniformly. It can also be seen that the optimal solution selected by TOPSIS provides 

a proper compromise between SEA and PCF compared with other Pareto points. To further 

validate the obtained solutions, we use the corresponding optimal variables t and K in our crush 

model to find the SEA and PCF values. Table 10 shows that the simulation results agree well with 

the MCDM results. 
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(a) Steel tube (b) Aluminum tube 

Fig. 14 Pareto front of – SEA and PCF for the diamond core sandwich column 
 

 

Table 10 Decision making process, SEA in (kJ/kg) and PCF in (kN) 

Model  
Weight MCDM Simulation 

SEA PCF SEA PCF SEA PCF 

Aluminum  

tube 

Design 1 0.75 0.25 17.22 256.68 17.31 260.1 

Design 2 0.5 0.5 11 77.69 10.94 78.35 

Design 3 0.25 0.75 10.25 69.03 10.41 67.74 

Design 4 Entropy method 8.37 61.28 8.43 60.61 

Steel tube 

Design 1 0.75 0.25 10.35 297.99 10.72 301.43 

Design 2 0.5 0.5 7.98 106.26 7.84 103.98 

Design 3 0.25 0.75 7.73 103.16 7.76 101.12 

Design 4 Entropy method 5.22 94.28 5.19 93.87 

 

 

Table 9 Parameters definition for PSO optimization 

Parameter MOPSO SOPSO 

Number of particles 100 24 

Maximum number of generations 100 100 

Self-acceleration constant 0.5 0.5 

Social acceleration constant 1 1 

Inertia constant 0.8 0.7 

Velocity band 1.3 1 

 

 

3.5 Sensitivity results 
 

3.5.1 Local sensitivity 
In this section, we investigate the sensitivity of SEA and PCF with respect to the design 

variables K and t. Fig. 15 shows the normalized local sensitivity measures of SEA and PCF for the 

design domain. The sensitivity measure with respect to each variable is illustrated in the form of a 

surface. As it can clearly be observed for aluminum tube, in the majority of the design domain, the 

SEA is more sensitive to the variations of t compared to K as the corresponding sensitivity surface 
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of t is above the other surface. This implies that variations of t show greater influence on the 

variations of SEA compared to the variations of K. The points located on the intersection of two 

sensitivity surfaces represent regions of the design domain for which the sensitivity of the SEA is 

equal with respect to both K and t. From Figs. 15(b), (c), sensitivity surfaces have two intersection 

curves while for Fig. 15(d), only one intersection curve is obtained. 

 

3.5.2 Global sensitivity analysis 
The trial function was calculated and the sensitivity measures considering first order and total 

effects of the parameters are obtained and shown in Table 11. From the presented results, it is seen 

that the design variable K has greater effect on the sensitivity of SEA functions for two models. 

Also, the design variable t has greater effect on the sensitivity of PCF functions for two models. 

 

 

  

(a) PCF steel tube (b) SEA steel tube 

 

 

 

 

(c) PCF aluminum tube (d) SEA aluminum tube 

Fig. 15 Normalized sensitivity for SEA and PCF 
 

 

Table 11 Sobol’s method of sensitivity analysis 

Function Models 
First order effects Total effects 

Respect to K Respect to t Respect to K Respect to t 

SEA(kJ/kg) 
Steel tube 0.8123 0.1744 0.8256 0.1877 

Aluminum tube 0.8307 0.0707 0.9293 0.1693 

PCF(kN) 
Steel tube 0.1185 0.8593 0.1407 0.8815 

Aluminum tube 0.2389 0.6679 0.3321 0.7611 
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By considering the first order and total effects, the sensitivity measure of the SEA with respect to 

K has its higher values for the aluminum tube. In addition, with respect the first order and total 

effects, the sensitivity measures of the PCF with respect to t is higher for the steel tube model. 
 

 

4. Conclusions 
 

This paper studied the single-objective and multi-objective optimizations of diamond core 

honeycomb sandwich cylindrical columns for two models by nonlinear finite element analysis 

under axial crushing loads. These two models differed in materials of inner or outer tubes that 

contain steel or aluminum. After validation of the RSM approach and the dynamic model, a multi-

objective problem was formulated to maximize the SEA and minimize the PCF with respect to the 

pitch of honeycomb core K and core thickness t. The MOPSO algorithm was applied to generate 

the Pareto fronts for different multi-objective problems using the metamodels constructed from the 

RSM and FEM results. The constrained single-objective particle swarm optimization (SOPSO) 

was applied to find the optimal design variables for each model by maximizing the SEA for a 

certain PCF as constraint. Optimization results showed that the energy absorption characteristics 

with constrained and unconstrained peak crashing load were improved. Also, it was concluded that 

the aluminum tube has a better energy absorption capability compared to the steel tube at a certain 

peak crushing force. The results justified that the interaction effects between the honeycomb and 

column walls greatly improve the energy absorption efficiency. 

Furthermore, the TOPSIS method was used for solving MCDM problem. According to the 

weights reflecting the preference on each objective, TOPSIS was used to rank the non-dominated 

solutions generated. It was notable that some solutions distributed in one small region rather than 

spread over the Pareto space uniformly. It could also be seen that the optimal solution selected by 

TOPSIS provided a proper compromise between SEA and PCF compared with other Pareto points. 

Finally, based on a normalized local sensitivity analysis of aluminum tube, it was observed that 

in the majority of the design domain, the SEA is more sensitive to the variations of t compared to 

K. This implies that variations of the design variable t show greater influence on the variations of 

SEA compared to the variations of K. From the global sensitivity results, it was seen that the 

design variable K has greater effect on the sensitivity of SEA for two models. Also, the design 

variable t has greater effect on the sensitivity of PCF functions for two models. 
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