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Abstract.   Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric 
nonlinearity of the plate based on the von Karman’s large deformation theory is considered, and the finite element 
method (FEM) is proposed for the present nonlinear modeling. Hamilton’s principle is used to establish the equation 
of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion 
of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration 
frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the 
present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply 
angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal 
plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic 
excitation forces. 
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1. Introduction 
 

Plates are the main parts of the instruments, mechanical equipments and all kinds of 
engineering structures. Owing to the unique properties, the composite materials have been 
extensively used in various engineering fields. The vibration characteristics of composite 
laminated plates have received considerable attention. In the case of linear vibration, some 
literatures have studied rectangular plates. Reddy and Kuppusamy (1984) researched the free 
vibration properties of laminated anisotropic plates. Civalek (2008) applied a four-node discrete 
singular convolution (DSC) method to analyse the vibration of moderately thick symmetrically 
laminated composite plates based on the first-order shear deformation theory. Li and Song (2013) 
investigated the flutter properties of composite laminated panels under the influence of supersonic 
airflow and thermal effect. 

Until now, many researchers have also studied the dynamic properties of irregular plates. Wang 
et al. (2014) developed the differential quadrature method (DQM) to study the vibration of skew 
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plate. Zhang et al. (2015) analyzed the buckling of FG-CNT reinforced composite thick skew 
plates using an element-free approach. Taj and Chakrabarti (2013) investigated the static and 
dynamic properties of functionally graded skew plates under mechanical load using the finite 
element method (FEM). Ashour (2009) studied the free vibration of fully clamped laminated skew 
plates employing the finite strip transition matrix method. Civalek (2009) used the DSC method to 
investigate the free vibration of arbitrary straightsided quadrilateral plates. Karami et al. (2003) 
employed a DQM to analyse the static properties, free vibration and stability of the skewed and 
trapezoidal composite thin plates. 

Gupta and Sharma (2010, 2013) applied the Rayleigh–Ritz method to analyze the thermal 
effect on the vibration of orthotropic trapezoidal plate and non-homogeneous orthotropic 
trapezoidal plate. Gürses et al. (2009) used the DSC method to research the free vibration 
characteristics of laminated trapezoidal plates. Zamani et al. (2012) investigated the free vibration 
of moderately thick trapezoidal symmetrically laminated plates with various combinations of 
boundary conditions. Quintana and Nallim (2013) studied the free vibration of thick trapezoidal 
and triangular laminated plates resting on elastic supports based on a general Ritz formulation. 
Catania and Sorrentino (2011) adopted a Rayleigh-Ritz approach to analyze the vibration 
properties of Kirchhoff plates with general shapes and non-standard boundary conditions. 

When the plates are subjected to external loads and the deformations of the plates are large, the 
nonlinearity problems should be considered, and the nonlinear vibration characteristics of the 
plates are of great interest to many researchers. Yao and Li (2013) researched the chaotic motion of 
a composite laminated plate with geometric nonlinearity in subsonic flow based on the von 
Karman large deflection theory. Amabili (2004) theoretically and experimentally investigated the 
nonlinear vibrations of rectangular plates with different boundary conditions. Saha et al. (2005) 
analysed the nonlinear free vibration of square plates with various boundary conditions. Tubaldi et 
al. (2014) researched the nonlinear vibrations and stability of a periodically supported rectangular 
plate in axial flow. Alear and Rao (1973) studied the nonlinear behaviors of orthotropic skew 
plates. 

Singha and Daripa (2007) and Singha and Ganapathi (2004) studied the nonlinear vibrations of 
laminated composite skew plates by the FEM. Houmat (2015) analyzed the nonlinear free 
vibration of variable stiffness symmetric skew laminates. Malekzadeh (2007, 2008) presented 
large amplitude free vibration analysis of laminated skew plates using a DQM. Shufrin et al. (2010) 
used a semi-analytical approach to analyse the geometrically nonlinear properties of skew and 
trapezoidal plates subjected to out-of-plane loads. Jaberzadeh et al. (2013) applied the element-
free Galerkin method to study thermal buckling of functionally graded skew and trapezoidal plates 
with different boundary conditions. 

Although there are some literatures that have studied the vibration properties of irregular plates, 
most of them are about isotropic skew plates, and very few literatures have studied the composite 
laminated trapezoidal plates. Moreover, the nonlinearity has been seldom considered and few 
results on the nonlinear forced vibration properties of the trapezoidal composite laminated plates 
have been reported. Inspired from these analyses, in the present work, the nonlinear vibration 
characteristics of composite laminated trapezoidal plates are researched. The von Karman’s large 
deflection theory is considered, and the nonlinear ordinary differential equation of motion of the 
composite laminated trapezoidal plate is obtained using the FEM. The effects of the ply angle and 
the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated 
trapezoidal plates are discussed, and the variations of the frequency-response curves with the 
different ply angles and harmonic excitation forces are presented. 
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Fig. 1 The composite laminated trapezoidal plates 
 
 

2. Equation of motion 
 

The composite laminated trapezoidal plate as shown in Fig. 1 is studied. The lengths of the top 
and bottom edges are ua and da, the lengths of the left and right sides are lb and rb, and the 
thickness of single lamina of the composite laminated plate is hk. Fig. 1 also shows the Cartesian 
coordinates of the trapezoidal plate, in which the coordinate origin is located at the left corner and 
the coordinates x and y are located at the mid-plane of the plate. Three variables u, v and w are 
used to denote the displacements of the plate in the x, y and z directions. 

According to the classical laminated plate theory, the displacement fields of the plate are given 
as 
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where u0, v0 and w0 denote the in-plane and transverse displacements in the x, y and z directions of 
the mid-plane, and z is the transverse coordinate of the plate. 

According to the von Karman’s large deformation theory and based on the displacement fields, 
i.e., Eq. (1), the nonlinear strain–displacement relations are obtained as 
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where {ε0} and {εl} represent the membrane strains, and {k} represents the bending strain. 

According to the orthotropic property of the composite material, the constitutive equation of the 
kth lamina in the global coordinate system is given by 
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where [T] is the coordinate transformation matrix, and [Q] is the material elastic constant matrix. 

Because the transverse displacement is assumed to be invariable along the thickness of the plate 
and the triangular plate element is suitable for multiple boundary shapes, the mid-plane of the 
trapezoidal plate can be discretized by using the triangular plate element. Moreover, the 
displacements of the element node can be divided into the bending components (w, φx, φy) and the 
in-plane components (u, v). So the displacements at arbitrary points of the element can be 
expressed as follows 
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in which L1, L2, L3, are the area coordinates of the triangular plate element, and φx and φy are the 
derivatives of the lateral deflection, i.e., φxi = (∂w/∂y)i and φyi = (∂w/∂x)i. 

Because Eq. (4) is expressed in the area coordinates (it may also be called the natural 
coordinates system) and other formulas established are in the physical coordinates system, those 
formulas established should be transformed into the natural coordinates system. The conversion 
relationships are expressed as 
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where J is the Jacobi matrix, and A is the surface area of the plate. 
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Hamilton’s principle is used to formulate the governing equation of motion, and it is expressed 
as 

 2 2

1 1

0
t t

t t
T U dt Wdt     , (6)

 
where T, U and δW are the kinetic energy, the strain energy and the virtual work done by the 
external loads, and they are obtained as 

 

 2 2 21

2 V

T u v w dV     
,    

   1

2
T

V

U dV  
,

(7a)

 

       ( , )
1

i i

N
T T

b w b w ix y
iA

W w H pdA w H F  


  ,
(7b)

 
where V is the volume of the plate, ρ is the mass density of the material, p is the distributed load in 
the z direction, and Fi is the concentrated force which is located at position (xi, yi). 

T, U and δW are calculated by substituting Eqs. (1)-(4) into Eq. (7), and then they are 
substituted into Eq. (6). By performing the variation operation, the equation of motion of the 
element is obtained, and by assembling the element mass and stiffness matrices into the global 
ones, the equation of motion of the composite laminated trapezoidal plates can be obtained as 
follows 

 [ ]{ } [ ]{ } ([ ] [ ]){ }l nlM w C w K K w F     , (8)

 
where {w} = [u1, v1, w1, φx1, φy1…un, vn, wn, φxn, φyn]

T is the nodal displacement vector in which n 
is the number of the node of the trapezoidal plate, [M] is the mass matrix, [C] is the damping 
matrix, [Kl] and [Knl] are the linear and nonlinear stiffness matrices, and {F} is the excitation force 
vector. The elements of the mass and stiffness matrices are listed in the Appendix. 
 
 
3. Numerical simulations and discussions 
 

3.1 Validations of the formulations and codes 
 
The numerical simulations are performed by the MATLAB software. In order to verify the 

correctness of the governing equation of motion and the MATLAB programs, the static responses 
of the anisotropic plates obtained by the present method are compared with those of Reddy (2004) 
as shown in Table 1. The geometrical sizes and material properties of the composite laminated 
rectangular plate used in the calculation are: the length and width are a = b = 12 in, the thickness is 
h = 0.138 in, E1 = 3×106 psi, E2 = 1.28×106

 psi, μ12 = 0.32, μ21 = 0.1365, G12 = 0.37×106
 psi. The 

boundary conditions considered here are: 
 

(a) Simply supported condition:  u0 = v0 = w0 = 0, at x = 0, a and y = 0, b. 
(b) All edges clamped condition:  u0 = v0 = w0 = φx = φy = 0 

 

Furthermore, the variations of the nonlinear frequency ratio NL/L with respect to the 
maximum amplitude of the plate wmax are computed for simply supported square plates, in which 
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Table 1 The static responses of all edges clamped anisotropic rectangular plates under uniform load 

 q0/psi 0.5 1.0 4.0 8.0 12.0 16.0 20.0 
Reddy (2004) w0/in 0.0294 0.0552 0.1456 0.2054 0.2450 0.2754 0.3006

Present results w0/in 0.0326 0.0592 0.1424 0.1958 0.2313 0.2587 0.2816

 
 

Table 2 Comparison of nonlinear frequency ratios (NL /L) of simply supported anisotropic plates 

w/h 0.2 0.4 0.6 0.8 1.0 
Bhimaraddi (1993) 1.0196 1.0761 1.1642 1.2774 1.4097 

Mei and Decha-Umphai (1985) 1.0134 1.0518 1.1154 1.1946 1.2967 

Singha and Daripa (2007) 1.0190 1.0739 1.1597 1.2699 1.3987 

Present results 1.0137 1.054 1.1182 1.2034 1.3063 

 
 
the subscripts NL and L represent the nonlinear and linear cases. The present results are compared 
with those in the open literatures as shown in Table 2. The material properties and geometrical 
sizes of the composite square plate used in the calculation are: E1 = 4×106, E2 = 1×105, ρ = 1, G12 = 
0.5×105, μ12 = 0.25, μ21 = 0.00625, the length and width are a = b = 1000×h, and the thickness is h 
= 0.003. 

It is observed from Tables 1 and 2 that the present results match quite well with those in the 
open literatures, which verifies that the governing equation of motion obtained in this paper and 
the MATLAB programs are correct. 

 
3.2 Nonlinear vibration analysis 
 
In this section, the nonlinear vibration properties of the composite laminated trapezoidal plates 

are investigated. The material properties used in the calculation are: E1 = 40×109 Pa, E2 = 1×109 Pa, 
ρ = 1000kg/m3, G12 = 0.5×109 Pa, μ12 = 0.25, μ21 = 0.00625. The geometrical sizes are da = 0.3 m, 
ua = 0.135 m, lb = 0.21 m, rb = 0.26 m, and the single lamina thickness is h = 0.003 m. The height 
of the trapezoidal plate is denoted by L. The boundary conditions are as follows: 

 

u0 = v0 = w0 = φx = φy = 0, at y = 0, L. 
u0 ≠ 0, v0 ≠ 0, w0 ≠ 0, φx ≠ 0, φy ≠ 0 , at lb and rb edges. 
 
 

Fig. 2 The mid-plane of the composite laminated trapezoidal plates 
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Table 3 The convergence of linear natural frequencies of the composite trapezoidal plate 

Element number 
Linear frequency 

21 40 65 

ω1 1447.4 1474.6 1493.7 

ω2 2754.7 2091.1 2125.4 
 

 

(a) (b) 
  

(c) (d) 
  

(e) (f) 

Fig. 3 The relationship curves of nonlinear frequency ratios and amplitudes at certain ply angles for 
different modes of the trapezoidal plate: (a) [0°/0°]; (b) [30°/−30°]; (c) [45°/−45°]; (d) 
[60°/−60°]; (e) [75°/−75°]; (f) [90°/−90°] 
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First of all, the mid-plane of the trapezoidal plate is discretized to triangular plate elements as 
shown in Fig. 2. It is advantageous to divide the meshes in this way for the theoretical analysis. 
The convergence of the first two linear natural frequencies for all edges clamped composite 
trapezoidal plate is presented in Table 3. Furthermore, the nonlinear free vibration properties of the 
composite laminated trapezoidal plates are analysed. Fig. 3 shows the relationship curves of 
nonlinear vibration frequency ratios and maximum amplitudes at different ply angles for different 
modes. In the figures, the point A represents that the nonlinear frequency cannot be obtained at this 
maximum amplitude, because the vibration of the plate may be affected by the strong nonlinearity 
and this can lead to the vibration being uncertainty. L1 is the linear natural frequency with each 
ply angle. 

It can be seen from the figures that the effects of nonlinearity at each ply angle for the different 
modes can be observed by the gradients of the curves. The nonlinear frequencies between the first 
and fourth, and the second and third are closer with the ply angle increasing. 

It can also be known from Fig. 3 that with the amplitude increasing, the nonlinear frequency 
ratio increases gradually. For every nonlinear frequency, the effect of nonlinearity on the frequency 
depends on the ply angle. It can be seen that the effect of the nonlinearity on the first and fourth 
nonlinear frequencies increases with the ply angle increasing from 0° to 60°, and then it decreases 
with the ply angle increasing from 60° to 90°. The effect of the nonlinearity on the second 
nonlinear frequency increases with the ply angle increasing. For the third nonlinear frequency, the 
effect of the nonlinearity increases with the ply angle increasing from 0° to 30°, decreases with ply 
angle increasing from 30° to 60°, and then increases with the ply angle increasing from 60° to 90°. 

Table 4 shows the variations of the nonlinear vibration frequency ratios (NL1 /L1) with respect 
to the maximum amplitudes under the different ply angles. Here, NL1 / L1 represents the ratio of 
the first nonlinear frequency and the first linear natural frequency. 

The contours of amplitude distribution of the trapezoidal plate at wmax/h = 1.5 is shown in Fig. 4. 
It can be seen that the amplitude distribution shapes are associated with the ply angle. The region 
corresponding to the maximum amplitude becomes narrow with the ply angle increasing, and the 
regional size where the counter appears moves to the right side of the plate with the increase of ply 
the angle. Especially, it can be noted that, for the ply angle [90°/−90°], in a larger area of the 
trapezoidal plate the contour cannot be observed. This is because the amplitude is so small that it is 
negligible. 

Next, the effect of the length-height ratio (da/L) on the nonlinear frequency ratio is studied. The 
nonlinear frequency ratios (NL1 / L1) of two layer composite laminated trapezoidal plates with 

 
 

Table 4 The nonlinear frequency ratios (NL1 /L1) of two layer composite laminated trapezoidal plates 

w/h 
Cross-ply 

0.1 0.3 0.5 0.7 0.9 1.0 1.2 

[0°/0°] 1.00057 1.00517 1.01442 1.02827 1.04651 1.05717 1.08138
[15°/−15°] 1.00036 1.00568 1.02144 1.03437 1.06548 1.07079 1.10152

[30°/−30°] 1.00025 1.01256 1.02313 1.04727 1.09493 1.1153 1.16076

[45°/−45°] 1.00202 1.00868 1.02673 1.05439 1.10209 1.12821 1.16258

[60°/−60°] 1.00101 1.01063 1.03006 1.05887 1.09686 1.12519 -- 

[80°/−80°] 1.00021 1.00667 1.02932 1.05448 1.0865 1.10483 1.12382

[90°/−90°] 1.00077 1.00693 1.01907 1.03684 1.0598 1.07306 1.10279
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(a) (b) 

  

 

(c) (d) 

Fig. 4 The contours of amplitude distribution of the trapezoidal plate at wmax/h = 1.5 under the 
different ply angles, (a) [0°/0°]; (b) [30°/−30°]; (c) [45°/−45°]; and (d) [90°/−90°] 

 
 

Table 5 The nonlinear frequency ratios (NL1 /L1) of two layer composite laminated trapezoidal plates 
with different length-height ratios (da/L) 

 
Ply angle 

w/h 
Cross-ply 

0.1 0.3 0.5 0.7 0.9 1.0 1.2 

[0°/0°] 

1.7141 1.00061 1.00552 1.01523 1.02955 1.04819 1.05902 1.08349

1.4306 1.00057 1.00517 1.01442 1.02827 1.04651 1.05717 1.08138

1.2856 1.00077 1.00693 1.01921 1.03738 1.06107 1.07486 1.106 

[45°/−45°] 

1.7141 1.00113 1.01389 1.03723 1.06576 -- -- -- 

1.4306 1.00202 1.00868 1.02673 1.05439 1.0209 1.12821 1.16258

1.2856 1.00251 1.01313 1.04633 1.07626 1.13863 1.15282 1.23272

[45°/−45°] 

1.7141 1.00075 1.00671 1.01843 1.03558 1.05771 1.07049 1.09916

1.4306 1.00077 1.00693 1.01907 1.03684 1.0598 1.07306 1.10279

1.2856 1.00133 1.01182 1.03196 1.06036 1.09542 1.11498 1.15732
 
 

different length-height ratios are shown in Table 5. It can be observed that for any ply angle and 
for any certain amplitude, with the length-height ratio decreasing, the nonlinear frequency ratio 
becomes generally large, which means that with the length-height ratio decreasing, the effect of 
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nonlinearity of the plate is severe. For the given length-height ratios, the nonlinear frequency ratio 
with respect to the maximum amplitude is larger when the ply angle is [45°/−45°]. 

The nonlinear forced vibration properties of the composite laminated trapezoidal plates are also 
studied. In order to research the resonant properties of the plate, the positions of the harmonic 
excitation force and the observation point of frequency-response curve at the trapezoidal plate are 
all at x = 0.09513, y = 0.09532. Assume that the structural damping is c = 0.00125. Fig. 5 shows  

 
 

 
(a) [0°/0°] (b) [30°/−30°] 

  

 

(c) [45°/−45°] (d) [45°/−45°] 
  

 

(e) [65°/−65°] (f) [90°/−90°] 

Fig. 5 The frequency-response curves of trapezoidal plates under different ply angles and different 
external forces, (a) [0°/0°]; (b) [30°/−30°]; (c) [45°/−45°]; (d) [60°/−60°]; (e) [65°/−65°]; 
and (f) [90°/−90°] 
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the frequency-response curves of the trapezoidal plates under different ply angles and different 
external forces. Here, the backbone curves are obtained through linking the peak values of the 
responses for the different excitation forces. The figure shows that the nonlinear resonance 
properties are dependent on the backbone curves. 

Especially, it can be observed from Figs. 5(c)-(f) that the second nonlinear resonance of the 
composite laminated trapezoidal plate also appears. This is because that for the given ply angles 
the first and the second linear natural frequencies are near. With the ply angle increasing, the 
amplitude of the first nonlinear resonance becomes smaller, and the amplitude of the second 
nonlinear resonance becomes larger. Moreover, it is interesting that only the second nonlinear 
resonance can be seen from Fig. 5(f), and the backbone curve in the figure starts from /1 = 1.54 
which is equal to 2/1. Fig. 5 also shows that the amplitude of resonance and the first nonlinear 
resonance frequency all decrease with the ply angle increasing, which means that the effect of the 
nonlinearity is weakened. 
 
 
4. Conclusions 
 

The nonlinear vibration characteristics of the composite laminated trapezoidal plates are 
studied. The equation of motion of the composite laminated trapezoidal plate is established by the 
FEM and Hamilton’s principle. The effects of the ply angle and length-height ratio on the 
nonlinear vibration frequency ratio of the composite laminated trapezoidal plates are discussed, 
and the frequency-response curves are analyzed for the different ply angles and harmonic 
excitation forces. From the numerical simulation, the following conclusions can be drawn: 

 
(1) The nonlinear frequency ratio increases gradually with the maximum amplitude increasing, 

and the effect of nonlinearity on the nonlinear vibration frequency ratio depends on the ply 
angle. 

(2) With the ply angle increasing, the region corresponding to the maximum amplitude of the 
trapezoidal plate is decreased, and the regional size where the counter appears moves to 
the long side (right side) of the composite laminated trapezoidal plate. 

(3) For any ply angle and any certain maximum amplitude, the effect of nonlinearity on the 
plate is severe with the length-height ratio decreasing. For the given length-height ratios, 
the nonlinear frequency ratios with respect to the maximum amplitudes are larger when the 
ply angle is [45°/−45°]. 

(4) The nonlinear resonance is dependent on the backbone curve. With the ply angle 
increasing, the amplitude and the first nonlinear resonance frequency decrease, which 
means that the effect of the nonlinearity is weakened. The second nonlinear resonance of 
the trapezoidal composite laminated plate also appears with the ply angle increasing. 
Especially, it is interesting that when the ply angle is increased to [90°/−90°], only the 
second nonlinear resonance can be seen. 
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Appendix 
 
The mass and stiffness matrices in Eq. (8) are assembled from the element mass and stiffness 

matrices. The element mass and stiffness matrices are written as 
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where zk and zk-1 are the coordinates of the upper and lower surfaces of the kth layer in the z 
direction. 
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