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Abstract.  A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed 

for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential 

constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse 

shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of 

the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing 

Hamilton‟s principle, and the physical neutral surface concept. Analytical solutions are presented for a simply 

supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko 

beam theory. 
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1. Introduction 
 

Recently, nanoscale structures have attracted considerable attention among the researchers 

community for the future application of nano electro-mechanical systems (NEMS) and atomic 

force microscopy (AFM) (Dai et al. 1996, Lourie et al. 1998). To accomplish the design of 

nanostructures and systems, an essential study of their mechanical behavior seems necessary. Size 

effects are significant in the mechanical behavior of these structures in which dimensions are small 

and comparable to molecular distances. Therefore, size dependent theories of continuum 

mechanics have received increasing attention in recent years due to the need to model and analyze 

very small sized mechanical structures and devices in the rapid developments of micro‐ or 
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nanotechnologies (Amara et al. 2010). 

One of the well-known models is the non-local elasticity theory (Eringen 1972, 1983). Unlike 

the local theories which assume that the stress at a point is a function of strain at that point, the 

nonlocal elasticity theory assumes that the stress at a point is a function of strains at all points in 

the continuum. Non-local elasticity has been extensively applied to analyze the bending, buckling, 

vibration and wave propagation of beam-like elements in micro- or nanoelectromechanical devices 

(Peddieson et al. 2003, Lu et al. 2006, Wang and Varadan 2006, Reddy and Pang 2008, Benzair et 

al. 2008, Murmu and Pradhan 2009a, b, c, Adda Bedia et al. 2015, Aissani et al. 2015, Besseghier 

et al. 2015). Sudak (2003) studied infinitesimal column buckling of carbon nanotubes (CNTs), 

incorporating the van der Waals (vdW) forces and small scale effect, and showed that the critical 

axial strain decreases compared with the results of classical beams. Wang (2005) discussed the 

molecular dispersion relationships for CNTs by taking into account the small scale effect. Wang 

and Hu (2005) studied flexural wave propagation in a SWCNT by using the continuum mechanics 

and dynamic simulation. Lu et al. (2007) investigated the wave propagation and vibration 

properties of single- or multi-walled CNTs based on nonlocal beam model. More recently, Tounsi 

and his co-workers (Heireche et al. 2008) investigated the sound wave propagation in single- and 

double-walled CNTs taking into account the nonlocal effect, temperature and initial axial stress. 

Roque et al. (2011) used the nonlocal elasticity theory of Eringen to study bending, buckling and 

free vibration of Timoshenko nanobeams by using a meshless method. Nami and Janghorban 

(2013) studied the static response of rectangular nanoplates using trigonometric shear deformation 

theory based on nanolocal elasticity theory. Pour et al. (2015) presented a nonlocal sinusoidal 

shear deformation beam theory for the nonlinear vibration of single walled carbon nanotubes. By 

utilizing Euler–Bernoulli beam theory, Hajnayeb and Khadem (2015) studied free vibrations of a 

clamped-clamped double-walled carbon nanotube (DWNT) under axial force. Bagdatli (2015) 

investigated nonlinear transverse vibrations of tensioned Euler-Bernoulli nanobeams using 

nonlocal beam theory. 

Developments in the field of materials engineering lead to a new type of materials with smooth 

and continuous variation of the material properties that called functionally graded materials 

(FGMs) (Attia et al. 2015, Bouchafa et al. 2015, Bennai et al. 2015, Ebrahimi and Dashti 2015, 

Kar and Panda 2015, Darılmaz 2015). Nanotechnology is also concerned with fabrication of 

functionally graded (FG) materials and engineering structures at a nanoscale, which enables a new 

generation of materials with revolutionary properties and devices with enhanced functionality. 

Recently, the application of FG materials has broadly been spread in micro- and nano-structures 

such as micro- and nano-electromechanical systems (MEMS and NEMS) (Witvrouw and Mehta 

2005, Lee et al. 2006, Hasanyan et al. 2008, Mohammadi-Alasti et al. 2011, Zhang and Fu 2012), 

thin films in the form of shape memory alloys (Fu et al. 2003, Lu et al. 2011), and atomic force 

microscopes (AFMs) to achieve high sensitivity and desired performance (Rahaeifard et al. 2009). 

In such applications, size effects have been experimentally observed (Fleck et al. 1994, Stolken 

and Evans 1998, Chong et al. 2001, Lam et al. 2003). Since the dimension of these structural 

devices typically falls below micron- or nano-scale in at least one direction, an essential feature 

triggered in these devices is that their mechanical properties such as Young‟s modulus, flexural 

rigidity, and so on are size-dependent. So far, only a few works have been reported for FG 

nanobeams based on the nonlocal elasticity theory. Janghorban and Zare (2011) investigated 

nonlocal free vibration axially FG nanobeams by using differential quadrature method. Eltaher et 

al. (2012) studied free vibration of FG nanobeam based on the nonlocal Euler-Bernoulli beam 

theory. Recently, Larbi Chaht et al. (2015) studied the static bending and buckling of a FG 
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nanobeam using the nonlocal sinusoidal beam theory. Sobhy (2015) investigated the bending 

response, free vibration, mechanical buckling and thermal buckling of FG nanoplates embedded in 

an elastic medium. The four-unknown shear deformation theory incorporated in Eringen‟s nonlocal 

elasticity theory is employed for this end. Kolahchi et al. (2015) studied the bending behavior of 

FG nanoplates based on a new sinusoidal shear deformation theory. Zenkour and Abouelregal 

(2015) investigated the vibration phenomenon of a FG nanobeam subjected to a time-dependent 

heat flux. Based on a refined nonlocal shear deformation theory beam theory, Zemri et al. (2015) 

discussed the mechanical response of FG nanoscale beam. Belkorissat et al. (2015) investigated 

the vibration properties of FG nano-plate using a new nonlocal refined four variable theory. Al-

Basyouni et al. (2015) studied the size dependent bending and vibration response of FG micro 

beams based on modified couple stress theory and neutral surface position. Tagrara et al. (2015) 

investigated the bending, buckling and free vibration analysis of carbon nanotube-reinforced 

composite beams resting on elastic foundation using a trigonometric refined beam theory. 

Bounouara et al. (2016) used a nonlocal zeroth-order shear deformation theory for free vibration 

analysis of FG nanoscale plates resting on elastic foundation. 

As one may note, the most cited references deal the modeling of micro/nano-beams are based 

on the assumptions that the material is homogeneous. A very limited literature is available for 

micro/nano-scale structures use FGM. That gives us a potential to investigate the bending, 

buckling and dynamic behavior of functionally graded nanobeams. 

In this paper, a nonlocal trigonometric beam theory is proposed for bending, buckling, and 

vibration of FG nanobeams. This theory is based on assumption that the in-plane and transverse 

displacements consist of bending and shear parts. In addition, it is also based on the assumption 

that the transverse shear stress vanishes on the top and bottom surfaces of the beam and is nonzero 

elsewhere. Thus there is no need to use shear correction factors as in the case of Timoshenko beam 

theory (TBT). Material properties of FG nanobeam are assumed to vary according to power law 

distribution of the volume fraction of the constituents. In addition, the small scale effect is taken 

into account by using the nonlocal constitutive relations of Eringen. To simplify the governing 

equations for the FG nanobeam, the coordinate system is located at the physical neutral surface of 

the beam. This is due to the fact that the stretching – bending coupling in the constitutive equations 

of an FG nanobeam does not exist when the physical neutral surface is considered as a coordinate 

system (Ould Larbi et al. 2013, Yahoobi and Feraidoon 2010). Thus, the present nonlocal 

trigonometric theory based on the exact position of neutral surface together with Hamilton 

principle are employed to extract the motion equations of the FG nanobeam. Analytical solutions 

for the deflection, buckling load, and natural frequency are presented for simply supported FG 

nanobeams, and the obtained results are compared with those available in literature to verify the 

accuracy of the present solution. The effects of nonlocal parameter, aspect ratio and power law 

index on the static, stability and dynamic responses of the FG nanobeam are discussed. 
 

 

2. Theoretical formulations 
 

Consider a uniform FG nanobeam of thickness h, length L, and width b made by mixing two 

distinct materials (metal and ceramic) is studied here. The coordinate x is along the longitudinal 

direction and z is along the thickness direction. For such beams, the neutral surface may not 

coincide with its geometric mid-surface (Ould Larbi et al. 2013, Yahoobi and Feraidoon 2010). 

The applied compressive force may be assumed to act at the mid-surface of the beam for all the 
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Fig. 1 The position of middle surface and neutral surface for a functionally graded beam 

 

 

practical purposes, but the in-plane stress resultants act along the neutral surface. The 

noncoincidence of line of action of stress resultant and applied compressive force results in a 

couple as schematically shown in Fig. 1. The present study attempts to investigate the position of 

neutral surface and the deflection characteristics under in-plane loads. 

Here, two different datum planes are considered for the measurement of z, namely, zms and zns 

measured from the middle surface, and the neutral surface of the beam, respectively (Fig. 1). The 

volume-fraction of ceramic VC is expressed based on zms and zns coordinates (Fig. 1) as 
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where k is the material distribution parameter which takes the value greater or equal to zero and C 

is the distance of neutral surface from the mid-surface. Material non-homogeneous properties of a 

functionally graded material beam may be obtained by means of the Voigt rule of mixture (Eltaher 

et al. 2012, Bourada et al. 2012, Larbi Chaht et al. 2015, Tounsi et al. 2013a, Bouderba et al. 2013, 

Hebali et al. 2014, Zidi et al. 2014, Bakora and Tounsi 2015, Hamidi et al. 2015, Mahi et al. 2015, 

Akbaş, 2015, Bennoun et al. 2016, Salima et al. 2016). Thus, using Eq. (1), the material non-

homogeneous properties of FG nanobeam P, such as Young‟s modulus (E), Poisson‟s ratio (v), the 

shear modulus (G), and the mass density (ρ), can be described by 
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where Pt and Pb are the corresponding material property at the top and bottom surfaces of the 

nanobeam. 

The position of the neutral surface of the FG nanobeam is determined to satisfy the first 

moment with respect to Young‟s modulus being zero as follows (Ould Larbi et al. 2013, Bousahla 

et al. 2014, Fekrar et al. 2014, Bourada et al. 2015) 
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Consequently, the position of neutral surface can be obtained as 
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2.1 Basic assumptions 
 

The displacement field of the proposed theory is chosen based on the following assumptions: 
 

(i) The origin of the Cartesian coordinate system is taken at the neutral surface of the FG 

nanobeam. 

(ii) The displacements are small in comparison with the nanobeam thickness and, therefore, 

strains involved are infinitesimal. 

(iii) The transverse displacement w includes two components of bending wb, and shear ws. 

These components are functions of coordinate x only. 
 

)()(),( xwxwzxw sbns   (5) 
 

(iv) The transverse normal stress σz is negligible in comparison with in-plane stresses σx. 

(v) The displacement u in x-direction consists of extension, bending, and shears components. 
 

,0 sb uuuu   (6) 
 

The bending component ub is assumed to be similar to the displacement given by the classical 

beam theory. Therefore, the expression for ub can be given as 
 

,
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The shear component us gives rise, in conjunction with ws, to a sinusoidal variations of shear 

strain γxz and hence to shear stress τxz through the thickness of the nanobeam in such a way that 

shear stress τxz is zero at the top and bottom faces of the nanobeam. Consequently, the expression 

for us can be given as 
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2.2 Kinematics 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (5)-(9) as 
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),(),(),,( txwtxwtzxw sbns   (10b) 
 

The strains associated with the displacements in Eq. (10) are 
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2.3 Constitutive relations 
 

Response of materials at the nanoscale is different from those of their bulk counterparts. In the 

theory of nonlocal elasticity Eringen (1972, 1983), the stress at a reference point x is considered to 

be a functional of the strain field at every point in the body. For example, in the non – local 

elasticity, the uniaxial constitutive law is expressed as elasticity Eringen (1983). 
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and μ = (e0a)2 is a nonlocal parameter revealing the nanoscale effect on the response of nanobeams, 

e0 is a constant appropriate to each material and a is an internal characteristic length. In general, a 

conservative estimate of the nonlocal parameter is e0a < 2.0 nm for a single wall carbon nanotube 

(Wang 2005, Heireche et al. 2008, Tounsi et al. 2013b, c, Berrabah et al. 2013, Benguediab et al. 

2014, Zidour et al. 2014, Semmah et al. 2014, Bessaim et al. 2015). 
 

2.4 Equations of motion 
 

Using the dynamic version of principle of virtual work (Belabed et al. 2014, Draiche et al. 

2014, Ait Amar Meziane et al. 2014, Ait Yahia et al. 2015), variationally consistent governing 

differential equations for the FG nanobeam under consideration are obtained. The principle of 

virtual work when applied to the FG nanobeam leads to 
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Collecting the coefficients of δu0, δwb and δws in Eq. (14), equations of motion are obtained as 

(12) 
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where N, Mb, Ms and Q are the stress resultants defined as 
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and (I0, I1, J1, I2, J2, K2) are the mass inertias defined as 
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when the shear deformation effect is neglected (ws = 0), the equilibrium equations in Eq. (15) 

recover those derived from the Euler–Bernoulli beam theory into Eq. (16), the stress resultants are 

obtained as 
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By substituting Eq. (18) into Eq. (15), the nonlocal equations of motion can be expressed in 
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terms of displacements (u0, wb, ws) as 
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The equations of motion of local beam theory can be obtained from Eq. (20) by setting the 

nonlocal parameter μ equal to zero. 
 

 

3. Analytical solution of simply supported FG nanobeam 
 

The above equations of motion are analytically solved for bending, buckling and free vibration 

problems. The Navier solution procedure is used to determine the analytical solutions for a simply 

supported FG nanobeam. The solution is assumed to be of the form 
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where Un, Wbn, and Wsn are arbitrary parameters to be determined, ω is the eigenfrequency 

associated with nth eigenmode, and α = nπ/L. The transverse load q is also expanded in the Fourier 

sine series as 
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The Fourier coefficients Qn associated with some typical loads are given 
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,0qQn    1n    for sinusoidal load, (23a) 

 

,
4 0

n

q
Qn    .....5,3,1n  for uniform load, (23b) 

 

,
2

sin
2 0 n

L

q
Qn   ....3,2,1n  for point load 0Q  at the midspan, (23c) 

 

Substituting the expansions of u0, wb, ws, and q from Eqs. (21) and (22) into Eq. (20), the 

analytical solutions can be obtained from the following equations 
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where 
 

2
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(25) 

 

 

4. Numerical results 
 

In this section, analytical solutions obtained in the previous sections are presented. The 

obtained results are compared with those computed independently based on the Euler–Bernoulli 

beam theory (EBT) and Timoshenko beam theory (TBT) for a wide range of nonlocal parameter 

(e0a), the material distribution parameter (k) and thickness ratio (L/H). In the following analysis, 

two FG nanobeams are investigated. The first FG nanobeam has the following material properties: 

Et = 0.25 TPa, Eb = 1 TPa, vt = vb = 0.3 (Larbi Chaht et al. 2014). The second FG nanobeam is 

composed of steel and alumina (Al2O3). The bottom surface of the beam is pure steel, whereas the 

top surface of the beam is pure alumina. The material properties are as follows: Et = 390 GPa, Eb = 

210 GPa, ρt = 3960 kg/m3, ρb = 7800 kg/m3, vt = vb = 0.3 (Eltaher et al. 2012). The shear correction 

factor is taken as 5/6 for Timoshenko beam theory. For convenience, the following nondimensio- 

nalizations are used: 
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Table 1 Dimensionless transverse deflections  𝑤   of the FG nanobeam for uniform load 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present 

10 

0 5.2083 5.3383 5.3381 5.3333 5.4659 5.4657 5.7083 5.8487 5.8485 6.3333 6.4867 6.4865 7.2083 7.3798 7.3796 

0.3 3.1401 3.2169 3.2181 3.2154 3.2938 3.2945 3.4415 3.5245 3.5257 3.8183 3.9090 3.9103 4.3459 4.4472 4.4487 

1 2.3674 2.4194 2.4193 2.4242 2.4772 2.4772 2.5946 2.6508 2.6508 2.8787 2.9401 2.9400 3.2765 3.3451 3.3450 

3 1.8849 1.9249 1.9233 1.9302 1.9710 1.9693 2.0659 2.1091 2.1073 2.2921 2.3393 2.3374 2.6088 2.6615 2.6594 

10 1.5450 1.5799 1.5790 1.5821 1.6176 1.6168 1.6933 1.7310 1.7300 1.8787 1.9190 1.9188 2.1383 2.1843 2.1832 

30 

0 5.2083 5.2227 5.2228 5.2222 5.2366 5.2367 5.2638 5.2784 5.2784 5.3333 5.3480 5.3480 5.4305 5.4455 5.4455 

0.3 3.1401 3.1486 3.1475 3.1484 3.1570 3.1559 3.1736 3.1822 3.1811 3.2154 3.2241 3.2230 3.2740 3.2829 3.2818 

1 2.3674 2.3732 2.3732 2.3737 2.3795 2.3795 2.3926 2.3985 2.3985 2.4242 2.4301 2.4301 2.4684 2.4744 2.4744 

3 1.8849 1.8894 1.8892 1.8900 1.8944 1.8943 1.9050 1.9095 1.9094 1.9302 1.9347 1.9346 1.9654 1.9700 1.9698 

10 1.5450 1.5489 1.5488 1.5491 1.5530 1.5529 1.5615 1.5654 1.5653 1.5821 1.5860 1.5860 1.6109 1.6149 1.6149 

100 

0 5.2083 5.2096 5.2096 5.2095 5.2108 5.2109 5.2133 5.2146 5.2146 5.2195 5.2208 5.2209 5.2283 5.2296 5.2296 

0.3 3.1401 3.1408 3.1395 3.1408 3.1416 3.1402 3.1431 3.1438 3.1425 3.1468 3.1476 3.1463 3.1521 3.1529 3.1516 

1 2.3674 2.3679 2.3679 2.3679 2.3685 2.3685 2.3696 2.3702 2.3702 2.3725 2.3730 2.3731 2.3765 2.3770 2.3770 

3 1.8849 1.8853 1.8854 1.8854 1.8858 1.8858 1.8867 1.8871 1.8872 1.8890 1.8894 1.8894 1.8922 1.8926 1.8926 

10 1.5450 1.5453 1.5454 1.5454 1.5457 1.5457 1.5465 1.5468 1.5469 1.5483 1.5487 1.5487 1.5509 1.5513 1.5513 

(a) Şimşek and Yurtçu (2013) 

 

 

Table 2 Dimensionless critical buckling load  𝑁   of the FG nanobeam 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present EBT(a) TBT(a) Present 

10 

0 2.4674 2.4056 2.4058 2.4079 2.3477 2.3478 2.2457 2.1895 2.1897 2.0190 1.9685 1.9686 1.7690 1.7247 1.7248 

0.3 4.0925 3.9921 3.9906 3.9940 3.8959 3.8946 3.7249 3.6335 3.6322 3.3488 3.2667 3.2655 2.9341 2.8621 2.8611 

1 5.4282 5.3084 5.3086 5.2975 5.1805 5.1808 4.9406 4.8315 4.8317 4.4418 4.3437 4.3440 3.8918 3.8059 3.8061 

3 6.8176 6.6720 6.6780 6.6534 6.5113 6.5172 6.2051 6.0727 6.0781 5.5787 5.4596 5.4645 4.8879 4.7835 4.7879 

10 8.3176 8.1289 8.1338 8.1173 7.9332 7.9379 7.5704 7.3987 7.4031 6.8062 6.6518 6.6558 5.9633 5.8281 5.8316 

30 

0 2.4674 2.4603 2.4604 2.4606 2.4536 2.4537 2.4406 2.4336 2.4337 2.4079 2.4011 2.4012 2.3637 2.3570 2.3570 

0.3 4.0925 4.0811 4.0826 4.0813 4.0699 4.0714 4.0481 4.0368 4.0383 3.9940 3.9828 3.9843 3.9205 3.9096 3.9110 

1 5.4282 5.4146 5.4147 5.4134 5.3998 5.3999 5.3694 5.3559 5.3560 5.2975 5.2843 5.2843 5.2001 5.1871 5.1872 

3 6.8176 6.8011 6.8018 6.7989 6.7825 6.7832 6.7436 6.7273 6.7280 6.6534 6.6373 6.6380 6.5311 6.5153 6.5160 

10 8.3176 8.2962 8.2968 8.2949 8.2735 8.2741 8.2274 8.2062 8.2068 8.1173 8.0964 8.0970 7.9681 7.9476 7.9482 

100 

0 2.4674 2.4667 2.4668 2.4667 2.4661 2.4662 2.4649 2.4643 2.4643 2.4619 2.4613 2.4613 2.4576 2.4570 2.4571 

0.3 4.0925 4.0915 4.0933 4.0915 4.0905 4.0923 4.0885 4.0874 4.0893 4.0834 4.0824 4.0843 4.0764 4.0754 4.0772 

1 5.4282 5.4270 5.4271 5.4269 5.4257 5.4257 5.4229 5.4217 5.4217 5.4162 5.4150 5.4150 5.4069 5.4057 5.4057 

3 6.8176 6.8161 6.8162 6.8159 6.8144 6.8145 6.8108 6.8094 6.8095 6.8025 6.8010 6.8011 6.7908 6.7893 6.7894 

10 8.3176 8.3157 8.3158 8.3155 8.3136 8.3137 8.3094 8.3075 8.3076 8.2992 8.2972 8.2973 8.2849 8.2830 8.2831 

(a) Şimşek and Yurtçu (2013) 
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Table 1 shows the nondimensional maximum deflections w  of a simply supported FG 

nanobeam subjected to uniform load. The calculated values are obtained using 100 terms in series 

in Eqs. (21) and (22). It should be noted that e0a = 0 corresponds to local beam theory. It can be 

seen that the results of the present beam theory based on neutral surface position are in excellent 

agreement with those predicted by TBT (Şimşek and Yurtçu 2013) for all values of thickness ratio 

L/h, material distribution parameter k and nonlocal parameter e0a. A significant change in the 

maximum deflection is observed when varying the material distribution parameter k. One also can 

note that as the nonlocal parameter increases, the maximum deflection increases, which highlight 

the significance of the nonlocal effect. It is noted that there is no effect of thickness ratio on w  

when the local EBT is used. This is due to that the local EBT neglects the transverse shear 

deformation effect. 

Table 2 presents the nondimensional critical buckling loads for different values of thickness 

ratio L/h, material distribution parameter k and nonlocal parameter e0a. As can be noted, the 

obtained results are in good agreement with those of Şimşek and Yurtçu (2013). The critical 

buckling load decreases as the nonlocal parameter increases. This emphasizes the significance of 

the nonlocal effect on the buckling response of beams. The variation of the material distribution 

parameter k leads to a significant change in the buckling load. It is noted that there is no effect of 

thickness ratio on critical buckling loads when the local EBT is used. This is due to that the local 

EBT neglects the transverse shear deformation effect. 

Table 3 presents the fundamental nondimensional frequencies while varying the nonlocal 

parameter and the material distribution for a thickness ratio of 10, 30, and 100, respectively. The 

material properties of the FG nanobeam are according to those used by Eltaher et al. (2012). The 

present results are compared with those computed using both EBT and TBT and an excellent 

 

 
Table 3 Dimensionless fundamental frequency  𝜔   of the FG nanobeam 

L/h k 

Nonlocal parameter, e0a (nm) 

0 0.5 1 1.5 2 

EBT TBT Present EBT TBT Present EBT TBT Present EBT TBT Present EBT TBT Present 

10 

0 9.8293 9.7075 9.7077 9.7102 9.5899 9.5901 9.3774 9.2612 9.2614 8.8915 8.7813 8.7815 8.3228 8.2196 8.2198 

0.3 8.2694 8.1700 8.1710 8.1692 8.0711 8.0720 7.8892 7.7944 7.7954 7.4804 7.3905 7.3914 7.0019 6.9178 6.9187 

1 6.9650 6.8814 6.8816 6.8807 6.7981 6.7982 6.6448 6.5651 6.5652 6.3005 6.2249 6.2250 5.8975 5.8267 5.8268 

3 6.1575 6.0784 6.0755 6.0829 6.0048 6.0019 5.8744 5.7990 5.7962 5.5700 5.4985 5.4958 5.2137 5.1468 5.1443 

10 5.6544 5.5794 5.5769 5.5859 5.5118 5.5093 5.3945 5.3229 5.3205 5.1150 5.0470 5.0448 4.7878 4.7242 4.7221 

30 

0 9.8651 9.8511 9.8511 9.8516 9.8376 9.8376 9.8114 9.7975 9.7975 9.7456 9.7318 9.7318 9.6556 9.6419 9.6419 

0.3 8.3015 8.2901 8.2902 8.2902 8.2787 8.2789 8.2564 8.2450 8.2451 8.2010 8.1897 8.1898 8.1252 8.1140 8.1141 

1 6.9929 6.9832 6.9833 6.9833 6.9737 6.9737 6.9548 6.9453 6.9453 6.9082 6.8987 6.8987 6.8444 6.8349 6.8350 

3 6.1806 6.1715 6.1712 6.1722 6.1631 6.1627 6.1470 6.1380 6.1376 6.1058 6.0968 6.0964 6.0494 6.0405 6.0401 

10 5.6744 5.6658 5.6655 5.6667 5.6581 5.6578 5.6436 5.6350 5.6347 5.6057 5.5972 5.5969 5.5540 5.5455 5.5452 

100 

0 9.8692 9.8679 9.8679 9.8680 9.8667 9.8667 9.8643 9.8631 9.8631 9.8583 9.8570 9.8570 9.8498 9.8485 9.8485 

0.3 8.3052 8.3042 8.3042 8.3042 8.3031 8.3032 8.3011 8.3001 8.3001 8.2960 8.2950 8.2950 8.2889 8.2878 8.2878 

1 6.9961 6.9952 6.9952 6.9952 6.9943 6.9943 6.9926 6.9917 6.9917 6.9883 6.9874 6.9874 6.9823 6.9814 6.9814 

3 6.1833 6.1825 6.1824 6.1825 6.1817 6.1817 6.1802 6.1794 6.1794 6.1764 6.1756 6.1756 6.1711 6.1703 6.1703 

10 5.6767 5.6760 5.6759 5.6761 5.6753 5.6752 5.6740 5.6732 5.6731 5.6705 5.6697 5.6697 5.6656 5.6648 5.6648 
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agreement is observed with TBT. From obtained results, it can be seen that the fundamental 

nondimensional frequency is reduced with the increase of the nonlocal parameter and the material 

distribution parameter. 

In general, the effect of transverse shear deformations and the nonlocal parameter is to increase 

the deflections and reduce the buckling loads as well as natural frequencies, as can be seen from 

the results presented in Tables 1-3. The increase of the material distribution parameter leads to a 

decrease of both the dimensionless deflections and fundamental frequencies contrary to the 

dimensionless buckling load. This is due to the fact that an increase in the material distribution 

parameter yields an increase in the stiffness of the FG nanobeam. 

Numerical results are plotted in Figs. 2-7 using the present theory and the material properties of 

the FG nanobeam are according to those used by Eltaher et al. (2012). Fig. 2 depicts the nonlocal 

scale parameter effects on the nondimensional deflection of FG nanobeam for different thickness 

ratios. wNL and wL represent the nonlocal and local deflection, respectively. It can also be seen that 

the deflection increases with the nonlocal scale parameter. Also, it can be found from the results 
 

 

 

Fig. 2 The effect of nonlocal parameter on deflection for uniform load with different thickness ratios (k = 1) 
 

 

 

Fig. 3 The effect of nonlocal parameter on deflection for uniform load with different thickness ratios (k = 1) 
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Fig. 4 The effect of nonlocal parameter on fundamental frequency for FG nanobeam with different 

thickness ratios (k = 1) 
 

 

that the effect of nonlocality is more significant for lower values of thickness ratio (L/h), and this 

effect is very negligible for long FG nanobeams. 

The effect of the nonlocal scale parameter on the buckling and dynamic responses of FG 

nanobeam is demonstrated in Figs. 3 and 4, respectively. These figures show that the responses 

vary nonlinearly with the nonlocal scale parameter. It can be observed that the nonlocal scale 

parameter strongly affects the nondimensional buckling loads and natural frequencies. 

Furthermore, it can be observed that when the thickness ratio is small, the scale effects are 

significant. However, the scale effects on the both critical buckling load and fundamental 

frequency will diminish with the ratio (i.e., L/h) increasing. It implies that the scale effects on the 

buckling and dynamic properties are not obvious for slender FG nanobeam but should be taken 

into account for short FG nanobeam. 

The influence of the material distribution parameter on the dimensionless deflection, buckling 
 

 

 

Fig. 5 Effect of the material distribution parameter on dimensionless deflection  𝑤   for 

uniform load with L/h = 10 
 

975



 

 

 

 

 

 

Mama Ahouel, Mohammed Sid Ahmed Houari, E.A. Adda Bedia and Abdelouahed Tounsi 

 

Fig. 6 Effect of the material distribution parameter on dimensionless buckling load  𝑁   with 

L/h = 10 
 

 

 

Fig. 7 Effect of the material distribution parameter on dimensionless fundamental frequency 
 𝜔   with L/h = 10 

 

 

load and fundamental frequency of FG nanobeam is presented in Figs. 5 to 7 for various values of 

the nonlocal parameter with L/h = 10. It can be observed that both the dimensionless buckling load 

and fundamental frequencies decrease whereas the dimensionless deflection increases as the 

material distribution parameter increases. This is due to the fact that an increase in the material 

distribution parameter yields a decrease in the stiffness of the FG nanobeam. 

Finally, the mechanical response of FG nanobeam is carried out using the present and other 

nonlocal beam theories because in these theories, the interaction of atoms with each other is 

incorporated into the equations of motion via the so-called, small-scale parameter. Indeed, the 

effect of inter-atomic bonds on the vibration behavior of beam-like nanostructures is taken into 

account by a small-scale parameter without serious difficulty in solving the governing equations 

(Peddieson et al. 2003). In addition, the applicability and the reliability of these nonlocal beam 

theories are justified by several authors such as Wang and Hu (2005), Harik (2001, 2002) and 

Tounsi et al. (2013b). Harik (2001, 2002) reported ranges of applicability for the continuum beam 
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model in the mechanics of carbon nanotubes and nanorods. Wang and Hu (2005) present a 

rigorous study, in which they check the validity of the beam model in studying the flexural waves, 

simulated by the molecular dynamics (MD), in a single – walled carbon nanotube. Tounsi et al. 

(2013b) investigated the critical buckling strain and the obtained results are compared with those 

obtained from MD simulations 
 

 

5. Conclusions 
 

A nonlocal trigonometric shear deformation beam theory based on neutral surface position is 

proposed for bending, buckling, and free vibration of FG nanobeams. The present model is capable 

of capturing both small scale and shear deformation effects of FG nanobeams, and does not require 

shear correction factors. In addition, the displacement field proposed in the present theory is based 

on the assumption that the transverse displacements consist of bending and shear components in 

which the bending components do not contribute toward shear forces and, likewise, the shear 

components do not contribute toward bending moments. Based on the nonlocal differential 

constitutive relation of Eringen and the neutral surface concept, the nonlocal equations of motion 

of the proposed theory are derived from Hamilton‟s principle. There is no stretching–bending 

coupling effect in the neutral surface-based formulation, and consequently, the governing 

equations and boundary conditions of FG nanobeams based on neutral surface have the simple 

forms as those of isotropic nanobeams. Numerical examples show that the present theory gives 

solutions which are almost identical with those generated by TBT. The obtained results show that, 

the material-distribution parameter may be manipulated to change the maximum deflection, to 

select a specific design frequency and maximize the critical buckling load. It is also shown that, 

the nonlocal parameter has a notable effect on the deflection, the fundamental frequencies and 

buckling of FG nanobeams. This model can be used in the analysis and design of nanobeams, such 

as nanosensors and nanoactuators. 
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