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Abstract.   Due to creep and shrinkage of the concrete core, concrete-filled steel tubular (CFST) arches continue to 
deform in the long-term under sustained loads. This paper presents analytical investigations of the effects of 
geometric nonlinearity on the long-term in-plane structural performance and stability of three-pinned CFST circular 
arches under a sustained uniform radial load. Non-linear long-term analysis is conducted and compared with its linear 
counterpart. It is found that the linear analysis predicts long-term increases of deformations of the CFST arches, but 
does not predict any long-term changes of the internal actions. However, non-linear analysis predicts not only more 
significant long-term increases of deformations, but also significant long-term increases of internal actions under the 
same sustained load. As a result, a three-pinned CFST arch satisfying the serviceability limit state predicted by the 
linear analysis may violate the serviceability requirement when its geometric nonlinearity is considered. It is also 
shown that the geometric nonlinearity greatly reduces the long-term in-plane stability of three-pinned CFST arches 
under the sustained load. A three-pinned CFST arch satisfying the stability limit state predicted by linear analysis in 
the long-term may lose its stability because of its geometric nonlinearity. Hence, non-linear analysis is needed for 
correctly predicting the long-term structural behaviour and stability of three-pinned CFST arches under the sustained 
load. The non-linear long-term behaviour and stability of three-pinned CFST arches are compared with those of two-
pinned counterparts. The linear and non-linear analyses for the long-term behaviour and stability are validated by the 
finite element method. 
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1. Introduction 
 

Concrete-filled steel tubular (CFST) arches are widely used in engineering structures, 
particularly in the bridge construction (Geng et al. 2012, Sundarraja and Ganesh Prabhu 2013, Han 
et al. 2014). The creep of the concrete core of a CFST arch occurs when a CFST arch is subjected 
to a sustained load and the shrinkage of the concrete core develops throughout the lifetime of the 
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Fig. 1 Three-pinned arch with CFST section 
 
 

arch even if it is not subjected to the external load. Owing to shrinkage and creep of the concrete 
core, deformations of a CFST arch under the sustained load continue to increase with time (Ma et 
al. 2011, Wang et al. 2011, Ma and Wang 2013, Mias et al. 2013). It is shown that creep and 
shrinkage have significant influence on structural behaviour of composite structures (Han et al. 
2014, Al-Deen et al. 2015). In some cases, for construction convenience, arches are fabricated as 
two separate segments to reduce the arch size to meet transport requirements and then the two 
segments are joined together in the construction site (Fig. 1). The wet concrete is then placed into 
the steel tubes by high pressure pumping and it forms the concrete core after curing. The crown 
joint is often significantly weaker compared to the CFST arch-rib, and so it can be simplified 
structurally as a pin. The crown-pin is able to transfer shear forces and normal forces but is unable 
to resist bending moments, leading to free rotation of the arch segments about the pin, which 
makes the three-pinned arch statically determinate. Because of this, three-pinned arches are 
considered to be insensitive to environmental changes such as temperature and moisture, 
fabrication errors and support settlements. 

Also because three-pinned CFST arches are statically determinate, it is conventionally thought 
that the linear analysis is sufficiently accurate in predicting their long-term structural behaviour, 
and it can be expected that linear analysis predicts the long-term deformations of three-pinned 
CFST arches, but does not predict the long-term changes of their internal actions (Gilbert and 
Ranzi 2011). However, it has been shown (Pi et al. 2011, Luo et al. 2013, 2015) that the long-term 
structural behaviour of CFST arches may be quite non-linear even under working loads. Because 
of the pin at the crown, the internal actions produced by the external loads in three-pinned CFST 
arches are quite different from those in two-pinned and fixed CFST arches, which may lead to 
quite different non-linear long-term structural behaviour and stability for three-pinned CFST 
arches. It has also been shown that to predict the in-plane structural behaviour and buckling load 
of three-pinned circular arches correctly, non-linear analysis is required. Therefore, in addition to 
the long-term linear analysis, knowledge about the non-linear long-term behaviour and stability of 
three-pinned CFST arches under sustained external loading is much needed. 

This paper therefore presents a non-linear analysis of long-term structural behaviour and 
stability of three-pinned CFST circular arches under a sustained uniform radial load. The non-
linear analysis is compared with its linear counterpart in predicting the long-term deformations, 
internal actions, and stability of three-pinned CFST arches. The effects of the crown-pin on the 
long-term structural behaviour and stability of three-pinned CFST arches will also be 
demonstrated by comparing with those of two-pinned CFST arches. This will provide an in-depth 
understanding of the non-linear long-term structural response and stability of three-pinned CFST 
arches. 

A number of studies on long-term structural behaviour of straight CFST members have been 
reported (Uy 2001, Han et al. 2004, Wang et al. 2011, Chung et al. 2013, Ranzi et al. 2013). It is 
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known (Bazant and Cedolin 2003, Naguib and Mirmiran 2003, Wang et al. 2005, Shao et al. 2010, 
Gilbert and Ranzi 2011, Geng et al. 2012, Au and Si 2012, Ma and Wang 2013, Aslani 2015) that 
several methods can be used to model the creep and shrinkage of the concrete and have been used 
in investigations of the long-term responses of straight CFST members. It has been shown 
(Bradford et al. 2011, Pi et al. 2011) that the age-adjusted effective modulus method is effective 
and efficient in modeling the creep behaviour of the concrete core and it provides concise 
formulation in the non-linear analyses of statically indeterminate CFST structures such as two-
pinned and fixed CFST arches. The age-adjusted effective modulus method is also recommended 
by ACI committee 209 (ACI 1982) and Australia Standard for Concrete Structures (AS3600 2009) 
and has been shown to be effective and feasible for the creep of concrete (Bazant and Cedolin 
2003, Wang et al. 2005, Gilbert and Ranzi 2011). Hence, the age-adjusted effective modulus 
method is utilized in the present paper. 

The linear and non-linear long-term analyses of CFST arches presented in this paper are based 
on the following common assumptions: (1) The Euler-Bernoulli hypothesis is adopted for the long-
term deformations of the arch; (2) In consistence with the full bonding requirement of the 
construction specification for CFST arch bridges, the concrete core and the steel tube are assumed 
to be fully bonded so that no slip is allowed along their interface; (3) Arches are slender and the 
dimension of the cross-section is much smaller than the length and radius of the arch. 
 
 
2. Linear analysis 
 

In the design practice, linear analysis is usually thought to be sufficiently accurate for 
predicting the long-term structural responses of CFST structures. To facilitate the linear long-term 
analysis for three-pinned CFST arches under a uniform radial load q, the virtual work principle can 
be used to derive the differential equations of equilibrium for the long-term deformations. Because 
the arch and load system are symmetric, the statement of the virtual work principle for half of a 
CFST circular arch can be used for the derivation and it can be written as 

 

2

0
d d 0 , , , , ,

s c
s cV V

W V V qR vd v v v w w            


                (1)

 

where Vs and Vc are the volume of half of a CFST arch, wwvvv  ~,~,~,~,~  are kinematically 
admissible variation of deformations, δε is the variation of the compatible strain ε, θ is the angular 
coordinate, R is the radius of the circular arch, Θ is half of the included angle of the arch, and v~  
 
 

Fig. 2 Arch profile and the external load 
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and w~  are dimensionless radial and axial displacements respectively, and are defined as v~ = v/R 
and w~ = w/R, and ( )’ ≡ d( )/dθ and ( )” ≡ d2( )/dθ 2. For linear analysis, the linear strain εL can be 
used and it is given by (Pi et al. 2011, Luo et al. 2013, 2015) 

 
 

L

y v w
w v

R


 
  

 
 

. 
(2)

 
Although the strain expression εL given by Eq. (2) is the same for the steel tube and concrete 

core, stresses σs in the steel tube and σc in the concrete core are different due to effects of creep and 
shrinkage of the concrete core, which can be expressed as (Pi et al. 2011, Luo et al. 2013, 2015) 

 

  s s LE   and ( )c ec L shE    ,   (3)
 

where the shrinkage strain εsh is a function of time t and is given by 
 

  *,sh sh

t
t d

t d
     

 (4)

 
with the final shrinkage strain *

sh  depending on the curing condition of the concrete and d = 
35 days for the moist curing core concrete; and Eec is the age-adjusted effective modulus of the 
concrete core given by 

     0
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E
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(5)

 
in which t0 is the time of initial loading, Ec is the elastic modulus of the concrete, ϕ(t,t0) is the 
creep coefficient and χ(t, t0) is the aging coefficient, which can be expressed (Gilbert and Ranzi 
2011) as 
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where the final creep coefficient ϕu and aging coefficient χ* are given by 
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By integrating the virtue work statement given by Eq. (1) by parts, linear differential equations 

of equilibrium in the radial and axial directions can be derived as 
 

   
2 3

2 2 0iv c ec sh
e

s s c ec

A E R qR
r v w R w v

A E A E

      


     (9)
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and 
   2 2 0er v w R w v          , (10)

 
and the static boundary conditions can be derived at the same time as 

 

0 at 0 andv w         . (11)
 
In Eqs. (9) and (10), re is the time-dependent radius of gyration of the effective cross-section 

about its major principle axis and is defined as 
 

s s ec c
e

s s c ec

E I E I
r

A E A E





. (12)

 
The solutions of the differential equations of equilibrium given by Eqs. (9) and (10) need to 

satisfy the static boundary conditions given by Eq. (11) and the essential kinematic boundary 
conditions for three-pinned arches given by 

 

0 at   and  0 at 0,  v w        . (13)
 

The solutions for the dimensionless linear radial displacement v~ and axial displacement w~  can 
then be obtained as 

sin sin
1 cos H( )

1 cos
c ec sh

s s c ec

qR A E
v

A E A E

          
  (14)

 

and 
 

(1 cos ) sin
sin H( )

1 cos
c ec sh

s s c ec

qR A E
w

A E A E

          
 , (15)

 

where H(θ) is the step function defined by 
 

  1 when 0
H    

1 when 0





 

  
. (16)

 

The typical distributions of the long-term radial displacements given by Eq. (14) are shown in 
Fig. 3 for a three-pinned CSFT arch with a span L = 15m consisting of the circular steel tube and 
concrete core with the steel tube having inner and outer radii ri = 0.24 m and ro = 0.25 m. In the 
calculation of the long-term displacements, proper values for the final creep coefficient and final 
shrinkage strain need to be determined first. Although several experimental investigations on the 
final creep coefficient and final shrinkage strain have been reported (Terrey et al. 1994, Uy 2001, 
Ichinose et al. 2001, Han et al. 2004), the test results depend upon the quality of concrete and the 
environmental conditions and have large discrepancies among these investigations (Mirza and Uy 
2010, Ahmed and Sobuz 2011). For convenience of calculation, the results derived from the 
experimental results of Uy (2001) viz. final creep coefficient ϕu = 2.27 (ϕ∞,7 = 2.5) and the final 
shrinkage strain 

*
sh = 340 × 10-6 are adopted in the present investigation. 

The arches are assumed to be subjected to a uniform radial load qR = 0.5Ncr, where Ncr is the 
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Fig. 3 Distributions of long-term radial displacements 
 
 

second mode flexural buckling load of pin-ended CFST columns with the same cross-section and 
the same span of L = 15 m under uniform axial compression at time t0 = 15 days and given by 

 
2

2

( )

( / 2)
s s ec c

cr

E I E I
N

L

 
 . (17)

 

It can be seen from Fig. 3 that linear analysis predicts significant increases of the radial 
displacements from time t = 15 days to time t = 200 days for both arches with the rise-to-span ratio 
f/L = 1/4 and f/L = 1/8. This indicates that the serviceability limit state of a three-pinned CFST 
arch that is satisfied in the short-term (v < L/1000, where deflection limit L/1000 is assumed) may 
be violated in the long-term (v > L/1000 for the arch with f/L = 1/8). 

By substituting the solutions of the dimensionless linear radial and axial displacements, the 
linear axial force N and bending moment M can be obtained as 

 

( )( )s s c ec sh c ecN A E A E w v A E qR        (18)
and 

( ) 0s s ec c

v w
M E I E I

R

 
   

 
. (19)

 
Eqs. (18) and (19) show that linear analysis does not predict long-term changes of the internal 

forces, which indicates that the creep and shrinkage of the concrete core do not influence the 
internal forces in the long-term because three-pinned CFST arches are statically determinate. This 
is consistent with Gilbert and Ranzi (2011). 

The three-pinned CFST arch may buckle in the long-term if the sustained uniform radial load is 
sufficiently high and the time is sufficiently long. Based on the short-term linear buckling load 
proposed by Schmidt (1979), the long-term linear buckling load qcr of three-pinned CFST arches 
can be expressed as 
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Table 1 Coefficient K 

2Θ 30° 60° 90° 120° 150° 180° 

K 108.36 27.077 12.025 6.758 4.322 3.000 
 
 

Table 2 Linear long-term buckling loads of three-pinned CFST arches 

Time t (days) Included angle 2Θ 
Linear buckling qcr R

 / Ncr 

Analytical solutions Finite element results 

15 

30 0.753 0.744 

60 0.752 0.751 

90 0.752 0.751 

120 0.751 0.751 

150 0.750 0.750 

180 0.750 0.750 

400 

30 0.551 0.544 

60 0.551 0.550 

90 0.550 0.550 

120 0.550 0.550 

150 0.549 0.550 

180 0.549 0.549 

 
 

(20)

 

where the factor K is given in Table 1. 
The linear long-term buckling loads of a group of three-pinned CFST arches given by Eq. (20) 

are listed in Table 2. It can be seen that although the linear analysis does not predict any changes 
of the internal forces for three-pinned CFST arches, it predicts that three-pinned CFST arches may 
buckle in the long-term and that the linear long-term buckling loads vary little with the included 
angle. The finite element (FE) results for the linear long-term buckling loads obtained from a FE 
program for the time-dependent analysis of CFST structures in association with ANSYS (2006) 
developed by authors elsewhere (Luo et al. 2013, 2015) are also shown in Table 2. The 
agreements between the analytical solutions given by Eq. (20) and the FE results are very good. 
 
 
3. Non-linear analysis 
 

It has been shown that the linear analysis is not adequate in predicting the short-term structural 
behaviour and stability of three-pinned arches and non-linear analysis is required for correct 
predictions. Hence, geometric nonlinearity may also need to be considered in the long-term 
analysis of three-pinned CFST arches. For non-linear long-term analysis, the strain ε needs to 
account for the non-linear term (ṽ’)2/2 and can be expressed as (Pi et al. 2002, Luo et al. 2015) 

3
s s ec c

cr

E I E I
q K

R
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21

2

yv
w v v

R



    


   . (21)

 
By substituting Eq. (21) into Eq. (1) and integrating it by parts, the differential equations of 

equilibrium in the axial and radial directions for non-linear long-term analysis can be derived as 
 

  and  , (22)

 
and at the same time, the static boundary conditions can also be derived as 

 
0 at 0 andv       (23)

and 
2 0 at 0ev v       (24)

 
In Eqs. (22) and (24), μe is a time-dependent dimensionless axial force parameter and P is a 

dimensionless load and they are defined as 
 

2
2
e

s s ec c

NR

E I E I
 


  and   1

qR
P

N
  , (25)

 
where N is the axial compressive force and given by 

 

   21

2s s c ec c ec shA
N dA A E A E w v v A E                . (26)

 
In addition, the essential kinematic boundary conditions given by 

 

  at  θ = 0  and  θ = Θ, and   at  θ = Θ (27)
 

also need to be satisfied. 
Solving the second equation of Eq. (22) under the boundary conditions given by Eqs. (23), (24) 

and (27) leads to the dimensionless long-term radial displacement ṽ as 
 

   
2

2 2 2
2

1
cos 1 H sin tan

2 2
e

e e e e
e

P
v

       


 
     

 
  (28)

 
where the new time-dependent axial force parameter βe is defined by βe = μeΘ. 

It can be seen from Eqs. (25) and (28) that the long-term radial displacements ṽ is a function of 
the dimensionless load P and the time-dependent axial force parameter μe(βe). Hence, to evaluate 
the long-term radial displacement, the relationship of the dimensionless load P with the time-
dependent parameters βe(μe) need to be established. From the first equation of Eq. (22), the axial 
compressive force N is a constant along the arch. Considering this and substituting Eq. (28) into 
Eq. (26) and integrating its both sides over the entire arch (from –Θ to Θ) leads to a quadratic 
equation of equilibrium between P and βe as 

0N  
2

iv

e

v
v P


 




0~ w 0~ v
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2
1 1 1 0A P B P C    (29)

 
where the coefficients A1, B1, and C1 are given as 

 

1 2

5sin1 1
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e e
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, (32)

 
with the time-dependent geometric parameter λe being defined as 

 

. (33)

 
The non-linear long-term bending moment M can then be obtained as 

 

     1 cos H sin tan
2

s s ec c s s ec c e
e e

E I E I v P E I E I
M

R R

    
          


. (34)

 
 
4. Non-linear long-term analysis 
 

4.1 Long-term non-linear deformations 
 
From Eq. (29), the long-term axial compressive force N (through the parameter βe) of a CFST 

arch is a non-linear function of the dimensionless load P. For a given CFST arch under a given 
dimensionless sustained load P at a given time t, solving Eq. (29) can produce the dimensionless 
long-term axial force parameter βe. Subsequently, substituting the obtained βe(μe) and P into Eq. 
(28) results in the long-term radial displacement v, and substituting βe(μe) and P into Eq. (34) 
results in the long-term bending moment M. 

Typical distributions of the non-linear long-term radial displacements v/f and bending moments 
8M/qS2 along the length of the arch so obtained are shown in Figs. 4a and 4b for the same arches 
used in the linear analysis but with a sustained uniform radial load qR = 0.3Ncr, where S is the 
length of the arch. For comparison, the distributions of the dimensionless linear long-term radial 
displacements given by Eq. (14) under the same load are also shown in Fig. 4(a). 

It can be seen from Fig. 4(a) that non-linear analysis predicts much larger short and long-term 
radial displacements than the linear analysis. This indicates that when the geometric nonlinearity is 
considered, the serviceability limit state of a three-pinned CFST arch that is satisfied in the short-
term may be violated in the long-term. It can also be seen from Fig. 4(b) that linear analysis 
predicts zero bending moment while the non-linear analysis predicts significant short-term and 

2

e
e

R

r
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(a) Distributions of radial displacements (b) Distributions of bending moments 

Fig. 4 Distributions of non-linear long-term radial displacements and bending moments 
 
 

long-term bending moments. The increase of the bending moment may also influence the in-plane 
stability of the three-pinned CFST arch in the long-term. 

The influence of geometric nonlinearity on the long-term deformations of three-pinned CFST 
arches is also shown in Fig. 5 as the history of the dimensionless long-term central radial 
displacement vc/vc,15 where vc,15 is the central radial displacement at t0 = 15 days and the arch is 
subjected to a sustained uniform load qR = 0.2 ,s

crN  where 
s
crN  is the second mode flexural 

buckling load of pin-ended CFST columns with the same cross-section and the same length S 
under uniform axial compression at time t0 = 15 days and given by 

 
2

2

( )

( / 2)
s s s ec c
cr

E I E I
N

S

 
 . (35)

 
 

Fig. 5 Dimensionless long-term central radial displacement vc / vc,15 
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It can be seen that at time t = 50 days, the linear long-term central displacement is vc ≈ 1.44vc,15 , 

while the non-linear long-term central displacement is vc ≈ 1.74vc,15. At the time t =400 days, the 
linear long-term central displacement is vc ≈ 1.63vc,15, while the non-linear long-term radial 
displacement vc ≈ 2.30vc,15. This shows again that the influence of geometric nonlinearity on the 
long-term radial displacements of three-pinned CFST arches is significant and needs to be 
considered in the long-term analysis. 

 
4.2 Long-term equilibrium and buckling behaviour 
 
The equation of equilibrium between the dimensionless load P and the axial compressive force 

parameter e given by Eq. (29) in conjunction with the radial displacement v~  given by Eq. (28) 
describes the non-linear equilibrium of a three-pinned CFST arch. Typical non-linear equilibrium 
paths of a three-pinned CFST arch (f/L = 1/20 and L = 15 m) at time t =15, 50, 200, and 400 days 
are shown in Figs. 6(a)-6(d) as variations of the dimensionless uniform radial load 

s
crNqR /  with 

the dimensionless central radial displacement vc/f. 
It can be seen that the radial displacements increase non-linearly with an increase of the 

uniform radial load until a limit point is reached. At the limit point, any further small increase of 
the uniform radial load will cause the arch to lose its stability and snap through to its remote 
equilibrium branch, i.e., limit point (snap-through) buckling occurs. It can also be seen from Figs. 
6a-6d that at different times the CFST arch has different equilibrium paths and the buckling load 
decreases substantially with time because of the creep and shrinkage effects of the concrete core. 
Under the sustained load qR = 0.2095 ,s

crN the arch does not buckle at time t = 15, 50 and 200 days 
(Fig. 6(a)-6(c)), but it buckles at time t = 400 days as shown in Fig. 6(d). This means that when the 
uniform radial load increases to the value qR = 0.2095 s

crN  at time t = 15 days, the CFST arch does 
 
 

 

Fig. 6 Equilibrium and buckling of a three-pinned CFST arch at different times 
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Table 3 Comparison of linear and non-linear buckling load 

qR t = 15 days t = 50 days t = 200 days t = 400 days 

Non-linear 0.3172 s
crN  0.2319 s

crN  0.2141 s
crN  0.2095 s

crN  

Linear 0.6913 s
crN  0.5347 s

crN  0.5055 s
crN  0.4972 s

crN  
 
 

not buckle instantaneously. However, if the load is sustained until t = 400 days, it happens to be 
equal to the limit buckling load at t = 400 days (Fig. 6(d)), the CFST arch will buckle in the snap- 
though mode. The non-linear buckling loads of the CFST arch at different times are also listed in 
the first row of Table 3. 

For comparison, the linear equilibrium paths given by Eq. (14) and buckling loads given by Eq. 
(20) are also shown in Fig. 6 and Table 3. It can be seen from Fig. 6 that the linear radial 
displacements are smaller than their non-linear counterparts under the same load while the linear 
buckling loads are much higher than their non-linear counterparts. It can also be seen from Table 3 
that the three-pinned CFST arch under the sustained load qR = 0.4 s

crN does not buckle in both the 
short-term (t =15 days) and the long-term (t = 400 days) according to the linear predictions, but 
does buckle in both the short-term and the long-term according to the non-linear predictions. 

In order to verify the analytical solutions for the non-linear equilibrium paths given by Eqs. (28) 
and (29), a FE program for the long-term analysis of CFST structures in association with ANSYS 
(2006) developed by authors elsewhere (Luo et al. 2013, 2015) was used in the present paper to 
perform non-linear analyses for three-pinned CFST arches. The FE results for the non-linear 
equilibrium paths at the time t = 15 days, 200 days and 400 days are compared with the analytical 
solutions in Fig. 7 as variations of the dimensionless load 

s
crNqR /  with dimensionless central 

radial displacements vc/f, where the circles represent the FE results and solid line represents the 
analytical solutions. It can be seen that the non-linear analytical solutions for the long-term 
behaviour of three-pinned CFST arches agree with their FE counterparts extremely well. 

 
 

 

Fig. 7 Comparison with finite element results 
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Because the buckling of three-pinned CFST arches occurs at the limit points, the positions of 
these limit points at the non-linear equilibrium paths can be derived by routine calculus. For this, 
from the definition of the dimensionless load P given by Eq. (25) and the equation of equilibrium 
given by Eq. (29), the uniform radial load q can be expressed as an implicit function of the time-
dependent axial force parameter βe as F(q, βe) = 0. The non-linear equation of equilibrium between 
the internal force parameter βe and the dimensionless load P at the limit points needs to satisfy the 
following equation (Pi et al. 2002) 

 

0
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d

e
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qqF

qFq e
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, (36)

 

which leads to the non-linear equation of equilibrium between μe and P at the limit points as 
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where the coefficients A2, B2, and C2 are given by 
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The long-term limit point buckling load of a three-pinned CFST arch at a given time t can be 

obtained by solving Eqs. (29) and (36) simultaneously and the buckling loads so obtained are also 
shown in Figs. 6 and 7. 

The dimensionless non-linear long-term buckling loads 
s
crNqR / for a group of arches (S = 

14.16 m and S/re = 100) with different included angles 2Θ are compared with their short-term 
counterparts loads in Fig. 8, where the short-term buckling loads were determined at t =15 days 
while the long-term buckling loads were determined at t = 400 days. It can be seen that in the long-
term, non-linear analysis predicts significant reductions of the in-plane buckling loads of three- 

 
 

Fig. 8 Short-term and long-term buckling loads of three-pinned CFST arches 
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pinned CFST arches. Hence, a three-pinned CFST arch that satisfies the stability limit state in the 
short-term may lose its stability in the long-term and fail by creep buckling. 

In order to investigate the importance of geometric nonlinearity in the long-term buckling 
analysis, the linear short-term and long-term buckling loads of these CFST arches given by Eq. (20) 
are also shown in Fig. 8. It can be seen that the non-linear buckling loads buckling loads are much 
lower than their linear counterparts. This shows again that a three-pinned CFST arch that does not 
buckle under a sustained load when predicted by linear analysis may buckle when predicted by 
non-linear analysis. Hence, to predict the long-term buckling loads of three-pinned CFST arches, 
non-linear analysis is required. 

The FE results for the long-term buckling loads obtained from the FE program of Luo et al. 
(2013, 2015) for linear and non-linear buckling loads are also shown in Fig. 8 for verification of 
the analytical solutions. In the FE analyses, the eigenvalue analysis was used for calculating the 
linear buckling load while non-linear analysis associated with the Riks method was used for 
determining the non-linear buckling loads. It can be seen that the agreements between the 
analytical solutions and FE results are excellent. 
 
 
5. Comparison with two-pinned CFST arches 
 

The structural difference of three-pinned CFST arches with their two-pinned counterparts is the 
pin at the crown of the arch. The crown-pin is able to transfer shear forces and normal forces but is 
unable to resist bending moments, leading to free rotation of the arch segments about the pin. 
Because of the free rotation at the crown, the distributions of displacements and bending moments 
along a three-pinned arch are much different from those of its two-pinned counterpart. The typical 
distributions of the dimensionless non-linear short-term (t = 15 days) and long-term (t = 200 days) 
radial displacements v/f along the length θ/Θ for a three-pinned CFST arch are compared with 
those for its two-pinned counterpart in Fig. 9. 

It can be seen that the radial displacements of the three-pinned CFST arch are larger than those 
 
 

Fig. 9 Comparison of distributions of non-linear long-term radial displacements 
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Fig. 10 Comparison of long-term dimensionless central radial displacement vc /vc,15 
 
 
of the two-pinned arch in their central segments, but are smaller than those in the other segments 
of arches. It can also be seen that the slope of the two-pinned arch is smooth and vanish at its 
crown. However, the slope of the three-pinned arch does not continue but has two different limit 
values at its crown (θ = 0), which depends on whether θ approaches to zero from its positive 
values or from its negative values. The two different values of slope produce a sharp kink of the 
radial displacements at the crown, which makes it impossible for the three-pinned arch to bifurcate 
from symmetric radial displacements to anti-symmetric radial displacements. 

In fact, the slope of three-pinned CFST arches can be derived from Eq. (28) as 
 

0

[H( )cos tan sin ] tan
2 2

e e
e e e

e e

P P
v



       
 



      , (39)

 
while the slope of two-pinned arches can be derived from Pi et al. (2011) as 
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The long-term deformation behaviour of a three-pinned CFST arch is compared with that of a 

two-pinned counterpart in Fig. 10 as variations of the long-term dimensionless central radial 
displacement vc/vc,15 with time t. It is clear that the long-term radial displacements of the three-
pinned arch are larger than those of the two-pinned arch over the entire time history, for example, 
at t = 50 days and t = 400 days, vc/vc,15 ≈ 1.74 and 2.30 for the three-pinned arch while vc/vc,15 ≈ 
1.48 and 1.71 for the two-pinned arch. 

The long-term bending behaviour of three-pinned CFST arches is also much different from that 
of two-pinned CFST arches. Typical comparisons of the distribution of the dimensionless non-
linear long-term bending moments 8M/qS2 along the length θ/Θ of the three-pinned and two-
pinned arches are shown in Fig. 11. It can be seen that the uniform radial load produces negative 
bending moments in the three-pinned arch because of the crown pin, but positive bending 
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Fig. 11 Distributions of non-linear long-term bending moments 
 
 

moments in the two-pinned arch. The magnitudes of the bending moments in the three-pinned arch 
are smaller than those in the two-pinned arch. The maximum bending moments occur at the 
quarter point of the three-pinned arch, but at the mid-span of the two-pinned arch. 

Furthermore, because of the pin at the crown, the long-term in-plane buckling behaviour of 
three-pinned CFST arches is different from that of two-pinned arches in three aspects. Firstly, two-
pinned CFST arches may buckle in a symmetric limit point buckling (snap-through) mode or in an 
anti-symmetric bifurcation mode as shown by Pi et al. (2011). However, because the radial 
displacements of a three-pinned arch have a sharp kink at its crown (Figs. 4(a) and 9), the sharp 
kink and free rotation at the crown prevent the symmetric radial displacements from bifurcating to 
anti-symmetric ones. Hence, the three-pinned CFST arch can buckle only in a symmetric snap- 

 
 

(a) Buckling modes comparisons (b) Comparison of long-term buckling load 

Fig. 12 Comparisons of long-term buckling between three-pinned and two-pinned CFST arches 
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through mode, but not in an anti-symmetric bifurcation mode as shown in Fig. 12(a). Secondly, the 
non-linear buckling theory can predict the long-term in-plane buckling loads of shallow two-
pinned CFST arches accurately but cannot predict the long-term in-plane buckling loads of deep 
two-pinned CFST arches correctly as shown by Pi et al. (2011). However, the non-linear buckling 
theory can predict the long-term in-plane buckling loads of both shallow and deep three-pinned 
CFST arches accurately as shown in Fig. 8. Finally, under the same sustained load, a three-pinned 
CTST arch may buckle in the long-term, but the corresponding two-pinned CFST arch with the 
same length and included angle cannot buckle as shown in Fig. 12a. For example, under the load 
qR = 0.2095 ,s

crN the three-pinned CFST arch buckles at time t = 400 days, while the two-pinned 
arch does not buckle (Fig. 12(a)). Under the same loading time history, the long-term buckling 
loads of three-pinned CFST arches are smaller than those of two-pinned CFST arches as shown in 
Fig. 12(b). 

 
 

6. Conclusions 
 
Analytical solutions for non-linear long-term deformations and buckling loads of three-pinned 

CFST circular arches under a sustained uniform radial load were derived. For comparison, the 
conventional linear analyses for the long-term structural behaviour and buckling were also carried 
out. It has been found that the geometric nonlinearity influences the long-term behaviour of three-
pinned CFST arches significantly. When the geometric nonlinearity is not considered, much small 
long-term deformations and no long-term internal force changes are predicted. The non-linear 
analysis has shown that the long-term deformations are larger than the short-term deformations, 
which significantly reduces the reserve of serviceability limit state. It has also been found that 
geometric nonlinearity together with the shrinkage and creep of the concrete core reduces the long-
term in-plane buckling load of three-pinned CFST arches and that the non-linear analysis predicts 
much lower long-term in-plane buckling load than the conventional linear analysis. Hence, in the 
long-term, the three-pinned CFST arches are susceptible to the non-linear in-plane buckling if the 
sustained load is sufficiently high. It can be concluded that the conventional linear long-term 
analyses cannot predict the long-term structural behaviour and buckling correctly. To predict the 
long-term structural behaviour of three-pinned CFST arches and to assess their stability correctly 
and accurately, the non-linear analyses are required. The long-term behaviour and stability of 
three-pinned CFST arches were also compared with those of two-pinned CFST arches. It has been 
shown that the pin at the crown has significant influences on the long-term structural responses of 
CFST arches. The long-term deformations, the internal actions, and the buckling modes and loads 
of three-pinned CFST arches are quite different from those of two-pinned CFST arches. This paper 
provides an in-depth understanding of the non-linear long-term structural responses and buckling 
of three-pinned CFST arches. The analytical solutions obtained in this paper are useful for 
structural engineers to assess the non-linear long-term serviceability and stability of three-pinned 
CFST arches. 
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