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Abstract. In the present investigation the experimental and theoretical flexural and compressive beh
of short tubular steel columns filled with plain concrete and fiber-reinforced concrete (FRC) was exam
For a given length of the members, the effects of different geometry and dimensions of the transverse 
section (square and circular) were investigated. Constituent materials were characterized through direct 
tests on steel coupons and through compressive and split tension tests on concrete cylinders. Loa
shortening and load-deflection curves were recorded for unfilled and composite members. Finally, simp
expressions for the calculus of the load-deflection curves based on the cross-section analysis were giv
the ultimate load of short columns was predicted.

Key words: compressive tests; flexural tests; composite members; fiber-reinforced concrete; ultim
load; load-deflection curves.

1. Introduction

In the field of composite members interesting and very common examples are the concrete fille
tubes (CFT) utilized e.g., for columns in high rise building. Several European and international 
(Eurocode 4 1994, LRFD 1994, CSA 1994) allow one to use composite columns in which the co
is external to the steel profile (W-shapes partially or fully encased) or the concrete is inside th
profile (circular, rectangular or square steel tubes filled with plain concrete).

For these structural members the main aspects to take into account (Cosenza and Pecce 200
and Saadeghvaziri 1997) are: - local and global buckling phenomena; - shape and mechanical charact
the steel transverse cross-section; - bond condition between concrete and steel; - out of straigh
steel profile and presence of residual stresses; - mechanical characteristics of concrete core in the
hardened state (compressive and tensile strength, modulus of elasticity); - properties of concret
fresh state (shrinkage, creep etc). Further analytical and experimental researches (Schneider 1988, 
have focused on the influence of some of the above mentioned aspects and also highlighted interest 
of advanced filling materials, e.g., high strength concrete of fiber reinforced concrete (FRC).

In the case of using FCR as filling material, although the addition of fiber does not produce variati
in the maximum bearing capacity of composite members (columns or beams), their use is more 
than an increase in the thickness of the steel wall because: - it increases the ductility and the post-peak
resources (Campione et al. 2001); - it significantly increases the fire resistance of composite mem
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(Kodur and Lie 1995), in particular when high strength concrete (HSC) is utilized (HSC being partic
sensitive to fire as shown in Felicetti and Gambarova 1998).

The present research regards the experimental behavior of composite members made of stee
filled with plain or fiber-reinforced concrete tested in uniaxial compression and in flexure. The a
the research was to study the compressive and flexural behavior of composite members consti
steel tubes filled with plain concrete or fiber-reinforced concrete.

In particular, in the present paper the variables investigated were the influence of the sha
dimensions of the transverse cross- section. Finally, a comparison is proposed between expe
and analytical values obtained through a simplified analytical model. 

2. Experimental investigation

The experimental investigation was carried out by testing in axial compression and in flexur
formed hollow steel tubes welded along their length and having circular and square cross-se
Composite members tested in compression were stub-columns having length Lc = 400 mm. Some of
these had a circular cross-section with external diameter D = 127 and 113 mm and correspondin
thickness t = 3 and 4 mm. Other members had a square cross-section with external side H = 100 and
120 mm and thickness t = 3 mm. In the cases of members with a circular cross-section the diamet
thickness ratios, defined as D/t, were 42 and 28 and the Lc/r ratios (with r = D/2) were 6.3 and 7.0
respectively. In the cases of square sections the analogous ratios were H/t = 33 and 40, with Lc/r (r = H /2)
equal to 8 and 6.7.

Steel members having the same transverse cross-section, but with length L = 800 mm, were also
tested in four-point bending tests. Some of these were unfilled, while others were filled with 
concrete or FRC. Hooked steel fibers having length Lf = 30 mm and diameter φ = 0.5 mm were utilized
in FRC in a volume percentage of 1% corresponding to 80 kg/m3. 

Referring to compressive tests on composite members, it has to be mentioned that the end po
steel tubes were stiffened (see Fig. 1) by welding steel plates on them, thus avoiding premat
dangerous failure at the end portions of the specimens during the test.

Fig. 1  Arrangements of square specimens before testing
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To carry out flexure tests a four-point bending scheme was adopted and special end suppo
arranged for cylindrical and prismatic specimens (see Fig. 2).

2.1. Mechanical characteristics of materials

The concrete utilized, having the characteristics and composition mentioned in other investigations
by the authors (Campione et al. 2000), had compressive strength fc measured on 100×200 mm cylinder
at 28 days = 24 MPa, and splitting tensile strength ft measured at 28 days on 100×200 mm cylinde
= 2.84 MPa. The addition of fibers at 1% by volume did not change the compressive strength
increased the tensile strength up to 3.29 MPa. The comparison of results relative to plain concrete and
FRC showed that the addition of fibers produces: (a) modification of the post-peak response
material; (b) no variations in maximum strength; (c) significant increases in compressive and sile
toughness and in maximum strain values (e.g., one order higher than for plain concrete was obta
Campione et al. 1999).

To characterize the mechanical properties of the steel forming the tubes, steel coupons were e
from the wall and tested in direct tension. The following average values were obtained: - yielding
fy = 338 MPa, - ultimate stress fu = 421 MPa, - strain at failure εu (measured on a gauge length of 5
mm) equal to 34%. Tests in compression on unfilled stub-columns have shown a slight reduc
yielding load with respect to the values determined through the tensile test, highlighting the role 
initial stresses due to tube fabrication.

2.2. Test set-up 

Compressive tests on short columns were carried out using a stiff universal testing machine 
3000 kN bearing capacity and equipped with spherical joints at the top allowing adjustments during th
tests. Perfect adhesion between specimens and the steel end plates of the machine was cre
specimens were directly loaded in both steel tubes and concrete core by means of a stiff steel pl
results are inevitably affected by this particular loading procedure, as recently shown (Johansson an
Kent 2001).

During the tests axial-shortening values were recorded by means of three linear voltage displa

Fig. 2  Details of supports for circular steel tubes in flexure
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transducer (LVDTs) placed on a gauge length equal to the entire length of the members (see Fi
this way the results are affected in the ascending branch of the response by local effects and th
modulus of elasticity values are underestimated.

To perform flexural tests the test set-up shown in Fig. 4 was adopted. All the beams with 80
length were loaded in a four-point bending test, with a span of 690 mm between the supports. T
between the shear span a and the height of the beams was equal to 1.8 and 2.3 respectively for cir
and square sections. Deformations were recorded by using LVDTS. One LVDT was placed in the
part of the beams and recorded deflections; two other LVDTs were placed on the upper part
beams in line with the supported sections. They were utilized to record settlements or local crushing of
concrete or ovalization of the end steel cross-section of the beams. In this way it was possible to record
the net deflection of the beams, purging the readings given by the middle LVDT of the settleme
the supports (these effects are significant in short members).

Fig. 3  Testing procedure of axially loaded columns

Fig. 4  Testing procedure of beam in flexure
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3. Experimental results

In this section experimental results of compressive and flexural tests on unfilled member
composite members are shown. Two tests for each type are presented.

Referring to compressive tests, in all the graphs in the ordinate there is the load Pv (recorded by the
load cell) and in the abscissa the axial-shortening δv.

Referring to flexural tests, in all the graphs in the ordinate there is the full load P (recorded by the
load cell) and in the abscissa the net deflections δ. For both the tests, because of the load-controlled 
procedure, only the ascending branch of the response was recorded. Moreover, because of the s
and of the high thickness of the steel wall compared to the transverse dimensions, no strain gaug
utilized during the tests.

3.1. Compressive behavior

Figs. 5(a) and (b) show load-shortening curves for columns of length 400 mm and having a c
cross-section of diameter 127 and 113 mm with wall thickness 3 and 4 mm, respectively. The
graphs presents results relating to unfilled columns and columns filled with plain concrete or FRC. 

From the plots it emerges that the use of concrete inside steel tubes significantly increases the b
capacity of unfilled columns and in the case of short columns complete yielding of materials o
Local buckling effects, visible to the eye, occur only after the peak load is reached. The use of F
filling material does not significantly increase the bearing capacity of composite members filled with
plain concrete, but delays the local effects. Recent studies in the literature (Campione et al. 2000,
Campione et al. 2001) referring to compressive displacement controlled tests on slender comsite
columns having circular cross-sections have shown that there are further advantages in using F
filling material in the post-peak response (more ductility and less slope of the softening branch

Fig. 6(a) and Fig. 6(b) show the analogous load-shortening curves for columns having a 
section of wall thickness 3 mm and sides of 120 and 100 mm respectively. Similar results to th
composite members having a circular cross section were observed, but in the presence of FR
performance, both in term of maximum strength and strain capacities, was observed. This is re
the higher effectiveness of fibers in confining and bridging cracks in square sections with resp
circular cross-sections.

Fig. 5  Axial load-shortening curves for circular columns: a) D = 127 mm; b) D = 113 mm
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Fig. 7 shows the conditions of filled columns having circular and square specimens at the end
test. 

3.2. Flexural behavior 

In this section load-deflection (P-δ ) curves relating to flexural tests on unfilled and filled beams
having circular and square cross-sections are shown.

Fig. 8(a) and Fig. 8(b) show results relating to circular cross-sections of 127 and 113 mm diameter for
unfilled members and beams filled with plain concrete or FRC. For both the cases of 127×3 m
113×4 mm FRC filled tubes benefic effects due to the presence of fibers were observed. 

All the responses were characterized by an initial elastic branch followed by the yielding of steel in
tension governing the response up to failure. The yielding developed gradually due to the pa
shape of the transverse cross-section (circular shape) and a very marked non-linear behav
observed. For this reason it is difficult to define the yielding point accurately.

The contribution due to the presence of FRC was negligible and poorly affects the max
bearing capacity of the composite beams, but higher deflections with no reduction in max

Fig. 6  Axial load-shortening curves for square columns: a) H = 120 mm; b) H = 100 mm

Fig. 7  Failure of columns in compression: a) circular columns; b) square columns
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An analogous consideration can be made for the square cross-sections shown in Fig. 9(a) an

(b), respectively for members with sides of 100 and 120 mm. In this case the yielding point is c
identifiable.

All results for flexural tests showed a good aptitude of composite beams to support bending mo
The presence of concrete prevented local buckling effects, and, despite the low shear span/heig
beam ratio, no reduction in the bearing capacity in pure bending was observed (as instead is g
expected in R/C members for shear-moment interaction).

4. Analytical interpretation of experimental results

In the present section the bearing capacity of the short composite columns is calculated and an
expressions for the moment-curvature relationship of composite beams are given.

Based on plane section analysis, in the hypothesis of perfect bond between concrete and stee
up to failure, by integrating the curvature along the axis of the composite members the load-def
curves are determined and compared with experimental results.

Fig. 8  Load-deflection diagrams for circular columns: a) D = 127 mm; b) D = 113 mm

Fig. 9  Load-deflection diagrams for square columns: a) H = 120 mm; b) H = 100 mm
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4.1. Strength of compressed composite members 

It is well known that if an axially compressed concrete cylinder is subjected to lateral compre
pressure, e.g., that induced by steel tubes filled with plain concrete, the maximum strength in
with respect to that of unconfined concrete. But the increase depends on the geometric
mechanical characteristics of the steel tube and concrete core and also on the shape of the tran
cross-section of the member (Han et al. 2001). The confinement effect in the concrete core due to s
tube arises when the lateral expansion of concrete core exceeds the lateral expansion of the s
When high compressive stresses are achieved in concrete before the yielding of the steel tub
longitudinal direction (the steel tube is in a biaxial stress state) the interaction between ste
concrete is effective. If the cross-sections of the steel pipe are slender no confinement effe
expected and the bearing capacity can at most reach the yielding strength due to the steel tube
compressive strength of the unconfined concrete core. If the ratio D/t (or H/t) is increased, local
buckling may occur before the yielding of steel and a reduction in the effective steel area has to be
considered (Uy 2000).

If no local effects occur and increases in strength due to confinement effects in concrete c
neglected, it can be assumed that the bearing capacity Pmax is equal to:

(1)

Ac being the gross area of the transverse cross-section, As the area of the steel tube in the cros
section and fc the compressive strength of the unconfined concrete. If the transverse cross-sec
slender, e.g, if D/t > 90 ε2 for a circular section or H/t > 52ε ( ) in accordance with
Eurocode 4 (1994), the longitudinal stress has to be reduced.

Table 1 gives the geometrical and mechanical data of experimental tests recently proposed
literature (Prion and Boheme 1993, Schenaider 1998, Uy 2000, Campione et al. 2000) and refers to
axial compression tests on short composite members having circular or square transverse
sections. In all the tests presented, due to the reduced slenderness of the specimens (stub-colu
reduction in the bearing capacity was observed due to buckling phenomena, as instead can o
slender columns (Eurocode 4 1994). With reference to the axial compressive strength it was ob
that the application of Eq. (1) gives results which are in agreement with the experimental data
correlation factor of 0.91 was obatained.

Tests carried out by Prion and Boehme (1993) on cylindrical steel concrete filled columns have
shown that after the peak load is reached shear failure may occur in the concrete core and an
failure plane forms with a reduction in the load-carrying capacity. As the concrete wedges slid
each other, the steel shell is fully activated as a circumferential tension band, resulting in a tile
failure mode at this secondary load level Pu lower than Pmax. Also, in the case of concrete members d
to the lateral pressure confining compressed members at the maximum load an inclined failure plane
forms in the concrete core and it is laterally restrained by the transverse steel (Issa and Toba
Cusson and Paultre 1995).

Based on these considerations an analytical model is developed for predicting the load Pu, based on
the rigid body equilibrium shown in Fig. 10.

When the failure plane in the concrete core forms, there act a force Fn and a friction force Ft, Ft = µ Fn

where µ is the friction coefficient. The horizontal force Fh, supposing the steel tubes to have yielded
the transverse direction, proves to be Fh = D t fy /  tan β, β being the angle that the failure plane form

Pmax As fy Ac fc⋅+⋅=

ε = 235 fy⁄
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Table 1 Comparison of experimental data to predicted axial capacity

Ref.
(n°)

Shape
Lc

(mm)
H; D
(mm)

t
(mm)

ρs=
4 t / D

fc
(MPa)

fy
(MPa)

Pmax (kN)
(exp)

Pmax

Eq. (1)

(16) circular 500 152 1.7 0.044 73 270 1548 1509

" circular 500 152 1.7 0.044 73 270 1448 1509

" circular 500 152 1.7 0.044 75 270 1545 1543

" circular 900 152 1.7 0.044 75 270 1587 1543

" circular 900 152 1.7 0.044 75 270 1458 1543
(18) circular 602 140 3.0 0.070 28 285 881 761

" circular 602 140 6.5 0.174 23 313 1825 1143

" square 609 140 6.7 0.174 28 537 2715 2366

" square 609 127 3.1 0.105 30 356 917 968

" square 609 127 4.3 0.148 26 357 1095 1117

" square 609 127 4.5 0.156 23 322 1113 1030

" square 609 127 5.7 0.216 23 312 1207 1169
(19) square 450 126 3.0 0.100 50 300 1114 1162

" square 540 156 3.0 0.080 50 300 1708 1675

" square 720 186 3.0 0.060 32 300 1555 1694

" square 900 246 3.0 0.050 38 300 3095 3062
Present research circular 400 127 3.0 0.094 24 338 1150 669

" circular 400 113 4.0 0.141 24 338 975 566

" square 400 100 3.0 0.120 24 338 590 605

" square 400 120 3.0 0.100 24 338 720 642

(16) Prion and Boheme (1993); (18) Schenaider (1998); (19) Uy (2000).

Fig. 10  Short column failure mode and model
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By considering the equilibrium of internal forces it is possible to obtain:

(2)

Cusson and Paultre (1995) have shown that, for high strength concrete (HSC) compressed m
having a square section and confined with steel stirrups, the failure plane angle β depends on the
effective confinement pressure. Similar effects were also observed by Prion and Boehme (19
composite members having circular cross-sections and filled with high strength concrete. If we a
β = 45o and µ = 0.5 a value of Pu ≈ 3 D×fy×t  is obtained.

4.2. Moment-curvature and load-deflection curves for members in flexure

Referring to the cases examined in the previous section the moment-curvature relationsh
determined. The first case examined (see Fig. 11) was that of unfilled steel tubes having squ
circular cross-sections. For the steel constituting the tube only longitudinal stresses were considered
and it was assumed that the behavior was linear-elastic up to the yielding point (at stress fy) and that
afterwards a linear strain-hardening phase followed with a reduced slope (the initial stiffness wafy /εy

and the reduced stiffness was (fu − fy) / (εu−εy ). This phase was extinguished at the ultimate strainεu

(determined by uniaxial tests on coupons). Consequently, in the case of a circular cross-sec
moment-curvature relationship was linear up to the yielding moment My = fy × W (W being the elastic
modulus of the cross-section) and then expressed through the following relationship (M−θ0):

(3) 

with θ0 being the angle (see Fig. 11) corresponding to the end of the elastic range in the 

section linked to the curvature χ by the following expression  and .

Analogously, in the case of a square section after the yielding point the moment-cur
relationship was:

Pu
D

βtan
----------- t fy

µ cosβ sinβ+⋅
cosβ µsinβ–

---------------------------------- 
 ⋅ ⋅ ⋅=

M
2fyr

2t

cosθ0

------------- π
2
--- θ0– sin θ0cos θ0⋅ ⋅– 

  2
fu fy–

1 cos θ0
*⋅–( )

-----------------------------r 2t θ0 sin θ0cos θ0⋅ ⋅–( )+=

χ
εy

r cosθ0⋅
-------------------= θ0

* arcos
εy

εu

---- 
 ⋅=

Fig. 11  Analytical model for section analysis of steel profile
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where 
 and (5)

Similar expressions can also be utilized when local effects are expected, but as suggeste
literature (Sohal and Chen 1987, Sohal and Chen 1988) the ultimate strain values have to be r
depending on the steel grade and on the slenderness of the transverse cross-section.

For the determination of load-deflection curves based on the given moment-curvature relatio
and referring to the equivalent beam of Fig. 12 and to the equilibrium conditions it is possible to obtain:

M < My (6)

M > My (7)

M  
f4  

4
------ H3 h3

–( )  
fy  

3
-----

εy 

χ
----- 

 
2

H h–( )
fu fy  –

12H*
--------------- H4 h4

–( ) +–=

 
fu fy  –

4H*
---------------+

εy

χ
---- 

  H3 h3–( )  
fu fy–

3H*
------------

εy

χ
---- 

 
3

H h–( )+

χ
εy

y
----= H* H 2⁄ 1

εy  

εu

------– 
 ⋅=

δ L
2
--- 

  P a⋅
2 E J⋅ ⋅
---------------- a2

3
----- b2

8
----- ab

2
------+ +=

δ L 
2
----- 

  χy 
6

------ a2 a xy⋅+( )
χmax  

24
------------ 8a2 3b2 4xy

2 12ab 4a xy⋅–+–+( )⋅+=

Fig. 12  Analytical model for load-deflection prediction

Fig. 13  Experimental and analytical comparisons of flexure tests for circular unfilled members
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4) the
where  is the deflection of the beams, P the external load, a and b the geometrical characteristics o
the beams, J the moment of inertia of the beam, E the modulus of elasticity of the steel, χy and χmax

the curvature at yielding and at the ultimate state and finally xy, xmax the corresponding abscissas.
In Fig. 13 there are plotted the experimental and analytical load-deflection curves for unfilled b

showing the good agreement obtained.
In the case of composite members it is possible to obtain numerically the moment-cur

relationships by using a computer program based on non-linear analysis. In a simplified way the
relationships are obtained here (see Fig. 14) referring to the plane section hypothesis of cross-sect
subjected to axial forces and bending moment in three fundamental states: (a) I - first crack
concrete in tension, (b) II - yielding of steel in tension and (c) III - ultimate condition. To reach 
three states only increases in bending moment and constant axial force were considered. 

It was supposed that the steel forming the pipe behaved in an elastic-plastic manner (strain ha
is here neglected for simplicity) and that the concrete core behaved elastically up to the first cra
Later on, in the case of FRC a constant residual strength in tension fr was considered and it was
assumed, as suggested in Campione et al. (1999), that it varied with the amount and geometric
characteristics of the fibers. For concrete in compression linear behavior was assumed up to
yielding of the steel. At the ultimate state a uniform stress-block was assumed for both  concre
steel. No reduction in the maximum strength fc of the unconfined concrete was made in order to ta
into account the confining action exerted by the steel tubes external to the concrete core. The
performs very well if perfect bond exists up to the ultimate state, but, as observed in Boedleet al.
(1989), if local slippage occurs, a reduction in ultimate moment has to be considered.

In the case of a circular cross-section and referring to the ultimate state (state III of Fig. 1
following simplified expressions of the axial force N and ultimate moment M were obtained in
Campione et al. 2001:

(8)

(9)

δ L
2
--- 

 

N
1
2
--- r2 θ sinθ–( ) fc⋅ ⋅ ⋅ t r

t
2
---+ 

  θ fy⋅ t r
t
2
---+ 

  2π θ–( ) fy
1
2
---– r2 2π θ– sinθ+( ) fr⋅ ⋅ ⋅+⋅ ⋅ ⋅–⋅ ⋅+=

M
1
2
--- r2 θ sinθ–( ) fc xc1⋅ ⋅ ⋅ ⋅ t r

t
2
---+ 

  θ fy xsl⋅ ⋅ t r
t
2
---+ 

  2π θ–( ) fy xs2+⋅ ⋅ ⋅+⋅ ⋅+=

 
1
2
--- r⋅ 2+ 2π θ– sinθ+( ) fr xc2⋅ ⋅ ⋅

Fig. 14 Analytical model for section analysis of composite members
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ction 

10) by

elastic,
xc1 and xs1 being the distance of the centers of the compressed zones from the center of the seG,
having the following expressions:

(10)

xc2 and xs2 being the analogous quantities for the tension zone of steel obtained through Eq. (
using 2π−θ instead of θ.

Table 2 and Table 3 give in an extended form the expressions of equilibrium equations in the 

xc1
4
3
--- r

sin3 θ
2
--- 

 

θ sinθ–( )
-----------------------⋅ ⋅     xs1

2
θ
---= r

t
2
---+ 

  sin
θ
2
--- 

 ⋅=

Table 2 Axial forces and bending moments in state I, II, II for square concrete filled members

Equations

I  Cracking

n = E / Ec ;   

II  Yielding

III  Ultimate

N
nfct

2
--------

2xc t–
H xc– t–
----------------------Ht nfct

xc t–
H xc– t–
----------------------t xc t–( ) nfctt H xc t––( ) nfct 1

H xc–
H xc t––
----------------------+ tH––+⋅=

 
1
2
--- fct

xc t–
H xc t––
--------------------h xc t–( ) fct

h
2
--- H xc– t–( )–+

M
n fct⋅

2
------------

2xc t–
H xc– t–
----------------------Ht xc

t
2
---+ 

  n fct⋅
xc t–( )3

H xc– t–
----------------------t

2
3
---n fctt H xc t––( )2⋅– nfct 1

H xc–
H xc t––
----------------------+ tH+ +⋅=

H xc–
t
2
---– 

  1
3
---fct

xc t–
H xc t––
--------------------h xc t–( )2 fct

3
----h H xc– t–( )2

+ +

χf

fct

Ect H xc t––( )
----------------------------------=

N
fy

2
--- 2

t
xc

----– 
  Ht fy t

xc t–( )2

xc

------------------- fy t
H x– c t–( )2

xc

---------------------------
fy

2
---

2H 2x– c t–( )
xc

-------------------------------tH
1
2
---

fy

n
--- 1

t
xc

----– 
  xc t–( )h fr H xc– t–( )h–+––+=

M
fy

2
--- 2

t
xc

----– 
  Ht xc

t
2
---– 

  2
3
--- f

y
 t

xc t–( )3

xc

------------------- 2
3
--- f

y
 t

H x– c t–( )3

xc

---------------------------
fy

2
---

2H 2x– c t–( )
yc

-------------------------------tH H xc
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alytical
yielding and ultimate states for square and circular cross-sections. In Table 4 are given an
expressions for load-deflection curves for CFT in flexure at the different states examined. 

Table 3 Axial forces and bending moments in state I, II, II for circular CFT

Equations

I - Cracking 

n = Ec /E;  n′′′′ = Ect / Ec ;  xc = R (1-cos θ ) ; εy = fy / E

II - Yielding 

III  Ultimate
See Eq. (8, 9, 10) 
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r filled
Fig. 15 shows, referring, for brevity, only to the cases of square tubes 120×3 mm and circula
tubes 127×3 mm, the acceptable agreement between analytical and experimental results referring to the
composite members tested in the present investigation. 

Table 4 Load-deflection relationships for concrete filled members 

Equations
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Fig. 15 Experimental and analytical comparisons of flexure tests for concrete filled members
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5. Conclusions

Based on experimental tests carried out in compression and in flexure on composite membe
of steel tubes filled with plain concrete or fiber-reinforced concrete the following conclusions can
drawn:

1) in the case of short columns in compression the presence of concrete (plain or FCR) insid
tubes increases the bearing capacity with respect to unfilled columns and this effect is more evident i
the case of a square section;

2) in flexural tests the behavior of composite members is strongly influenced by steel characte
and the presence of FRC does not alter the maximum bearing capacity of beams with respect t
filled with plain concrete; 

3) the presence of FRC inside steel tubes determines higher values of deformation at the maximu
Finally, regarding the analytical contribution it can be observed that:
4) the simplified expression given for the calculus of the maximum bearing capacity (also giv

the most common codes), based on the superposition of contributions by steel yielding and concrete 
furnishes valuable and conservative values of the maximum load for stub-columns;

5) load-deflection curves based on the cross-section analysis in the hypothesis of perfec
between concrete and steel tubes allow acceptable prediction of experimental behavior.
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Notation

a : shear span in the four-point bending test
Ac : area of concrete core in the cross-section
As : area of steel cross-section
b : distance between the loads in four point bending test
D : external diameter of circular cross-section
E : elastic modulus of steel 
Ec : modulus of elasticity of concrete in compression
Ect : modulus of elasticity of concrete in tension
fc : cylindrical compressive strength of concrete at 28 days
fct : tensile strength of plain concrete (or FRC)
fr : post-peak strength in tension of FRC
fy : yielding stress of steel
fu : ultimate stress of steel
H : external length of the side in square cross-section
h : internal length of the side in square cross-section
L : length of the beam
Lc : length of the column
Lf : equivalent length of the fiber
Mu : bending moment at ultimate state
Nu : axial force at ultimate state
n : ratio between Ec and E
n’ : ratio between Ect and Ec

P : load in flexure test
Pv : load in compressive test
Pmax : maximum compressive load
r : radius of circular cross-section in axis
t : thickness of the steel profile
xc : neutral axis depth
β : angle that failure plane forms with the vertical direction 
φ : diameter of the fiber
εu : ultimate strain of steel
εy : yielding strain of steel
σs : axial stress in steel
ε : longitudinal axial strain
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εy : yielding strain of steel
εct : strain of concrete in tension at peak load
δ : deflection of the beam
δv : axial shortening of the column
θ : center angle in circular cross-section
χ : flexural curvature
χy : distance of the first section to yield 
χy : curvature at steel yielding 
χmax : ultimate curvature
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