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Abstracts.  This paper describes the buckling phenomenon of a tubular truss with unsupported length
through a full-scale test and presents a practical computational method for the design of the trusses allowing
for the contribution of torsional stiffness against buckling, of which the effect has never been considered
previously by others. The current practice for the design of a planar truss has largely been based on the linear
elastic approach which cannot allow for the contribution of torsional stiffness and tension members in a
structural system against buckling. The over-simplified analytical technique is unable to provide a realistic
and an economical design to a structure. In this paper the stability theory is applied to the second-order
analysis and design of the structural form, with detailed allowance for the instability and second-order effects
in compliance with design code requirements. Finally, the paper demonstrates the application of the proposed
method to the stability design of a commonly adopted truss system used in support of glass panels in which
lateral bracing members are highly undesirable for economical and aesthetic reasons.

Keywords:  buckling; tubular sections; torsional stiffness; advanced analysis; nonlinear integrated design
and analysis.

1. Introduction

Trusses have been used extensively as load transfer systems for large span structures in facades, ro
and bridges. Apart from the two dimensional type of truss, large span space trusses have become mol
popular than pre-stressed or reinforced concrete structures as coliseum roofs, due to their high capacit
to weight ratio. In reality, structural members of a welded truss are normally subjected to axial forces
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Fig. 1 Bow trusses in support of glazing

and moments. The information on the buckling strength of the structure is essential for production of an
economical and safe design. Fig. 1 shows a common form of truss system with unsupported
compressive chord during wind suction. Note that glass panels fixed to the truss by flexible sealant are
not generally assumed as effective lateral restraining members in Hong Kong.

Current practice for strength checking uses the ultimate limit state design in conjunction with the
first-plastic-hinge concept. In this philosophy, the design capacity of a structure is taken as the load at
which the first plastic hinge is formed. Although methods for large deflection and inelastic analysis are
available and developed (Liew, White and Chen 1992, Chan and Chui 1997 and Clarke 1994), many
important advantages of using the second-order analysis such as contribution of tension members unde
high torsional moment against overall frame inditgbw ere not demonstrated. On the other hand, the
design method used in practice to-date is based on linear analysis with individual member check carriec
out using formulae and charts in the design codes.

One major difficulty in using design codes and linear analysis is the probleccwhte assessment
of the effective length of a structural member. BS5950 (1990) provides some guidelines for the
estimation of effective length, but, like many other national codes such as the LFRD (1993), many
important considerations are ignored. For instance, the effectiveness of restraint, the variation of
member stiffness under axial force and the buckling effect of variable axial forces in a column are not
considered. This ignorance is understandable since charts and design formulae can hardly cover al
possible cases. In summary, the structural system is idealised as a group of isolated members whicl
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cannot reflect the actual behaviour of the frame and, consequently, large errors, either over- or under.
design of the structures, may result.

For simple reference to a national code, the BS5950 (1990) is selected for comparison, but the
concept is equally applicable to other national codes.

2. An illustrative experiment about torsional effect on buckling

Shown in Fig. 2 is the simply supported truss of 4.8m span and under an increasing downward point
load at mid-span, making the top chord in compression and eventually buckle out of the plane of the
truss. This simple truss carries a similar mechanics as a larger span truss in practice. In conventiong
design method, the effective length for this out-of-plane buckling is taken as the distance between the
supports whilst the in-plane effective length is assumed as the distance between connections. The tru
design load will then be based on the smaller failure load calculated from the in-plane and out-of-plane
buckling modes and, in the present study, on the more critical out-of-plane buckling mode.

When using the distance between supports as effective length, it is then taken as the span of the trus
From this effective length, the buckling capacity of the top chord is calculated and the applied load is
determined as 7.8 kN. The tested load was obtained as 34 kN, which is about 4 times of the design loac
This shows an uneconomical result from our conventional design method.

On the other hand, the proposed method based on the performance-based design concept ¢
simulating the actual response of the truss under an increasing load calculates the design load as 32 k
which is equivalent to the conventional method of using half the span of the truss as the effective
length. Whilst details of the theory are given in this paper with this test further elaborated in Example 1,
it can be seen that the complete design process does not require the assumption of effective length. Tt
checking of adequate strength of restraining members and variation of member stiffness under tensior
or compression loads are also included in the proposed method.

Fig. 2 Set-up of the 4.8 m steel truss under point load at mid-span of bottom chord
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3. Comments on the methods of buckling analysis and design

Geometrical nonlinearity and member instability can be considered ByAtandP-9 effects shown
in Fig. 3. TheP-A effect accounts for the gross change in structural geometry and it is included in BS5950
(1990) through the amplification factor in clause 5.6.3 for sway frame only or the limited frame method
in Appendix E for both sway and no-sway frames. In computer analysis, this effect can be included by
adding the displacements to nodal co-ordinates at every iteration for equilibriun®-d leffect is
referred to as the additional moment of axial force and deflection along an element. Both the element
stiffness and stress will be varied by tRi® effect. The use of the buckling strength curve in design
codes allows for th®-9 effect for some simplified and idealised conditions.

This elastic critical loadactor Q) is frequently used by various codes as a parameter for design
against instability. The eigenvalue method seeks for the condition of vanishing of the determinant of the
tangent stiffness for detmination ofA. as follows.

KL+ AgKg| = 0 (1)

in which K. andKg are respectively the linear and the geometric stiffness mathigds, the load
factor causing the determinant to vanish. Simplified methods for determinafigrfafregular frames
are available, but computer analysis is needed for more general and irregular framework. The recen
book by Task Committee of Effective Length of AS@E97) provides the most widely used linear and
geometric stiffness matrices of a beam-column element.

The current checking against instability is mostly based on the eigenvalue typedatimfuanalysis
like clause 5.6 for elastic and plastic design of rigid frames. The bifurcation or eigenvalue type of
analysis is noted to be simple for program developers, but deficient in design of most practical skeletal
structures. These deficiencies are hgitted as follows.

\J

Fig. 3 TheP-J andP-A effects
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1. The eigenvalue method is insensitivartember iitial imperfection, which is unreadtic and not
consistent with member design in codes which specify a mandatory value of initial imperfection of, for
example, 0.001 of member length of hot-rolled tubular sections.

2. The result is an upper bound solution and the required factor of safety is unknown. Its application to
special structures like snap-through buckling in domes and stability check of scaffolding requires
additional consideration. The margin of over-estimation is problem-dependent and cannot be generalised
Merchant (1954) proposed the well-knowteractive formula in Eq. (2) for computation of collapse
load capacity, which does not consider initial imperfection and gives an empiriggdrsol

1 1 1
—_— = = 2
Ault Acr Ap ( )

in which Ay, Ar and A, are the ultimate, elastic buckling and rigid plastic collapse load factors
respectively.

3. Deflections cannot be computed in the method. A separated check for deflection is tedious and
inconsistent.

As the bifurcation type of eigenvalue analysis does not update the element stiffness according to the
deformed geometry, or mathematically, it ignores the large deflection matrix (see Equation 19.9, p.503,
Zienkiewics 1997), it cannot handle any structure exhibiting large deflection behaviour leading to a
considerable secondary moment in the analysis part of a design procedure.

In this paper, a performance-based second-order analysis and design procedure, which can be utilise
with a typical second-order analysis computer program, with the developed software, is described. The
method is compared against analytical result of columns with different boundary conditions and test
results of the unbraced truss discussed previously described in this paper. The application of the metho
to the design of a 13.2 m span truss with supports at two ends is further used to illustrate the practicality
of the method. The proposed technique allows for various complex and subjective checking required in
a design code which includes assumption of effective length, snap-through instability, change of
element stiffness due to axial force, required strength of restraining members etc. destingly, the
contribution and interactive behaviour of tension members and compressive members against systen
buckling through the torsional stiffness of the constitutive members is considered rigorously. This point
appears to have been ignored in the design codes, but represents an important structural phenoment
for design of steel frames and trusses, as indicated in the example for testing of the 4.8 m span trus:
This torsional stiffening effect in members leads to a substantial saving in design, which, to the authors
best knowledge, is not covered in the design codes. Recognising this important structural behaviour, the
engineer can design and scheme structures more efficiently and economically.

4. Interactive member behaviour in trusses

When loaded, a force distribution process is activated in a truss system. To predict the structural
response accurately, it is necessary to establish the interactive behaviour of the structural system. Fc
instability, the response becomes complex since the contributory member stiffness will be combined as
a system and instability is normally in the form of a system instability since a member is seldom
completely isolated.

A typical load versus stress curve is shown in Fig. 4. At the early loading stage where buckling is
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Fig. 4 The load vs. stress plot

remote, the stress is proportional to load. However, after a certain deflectiéhotatect becomes
significant and the curve becomes non-linear so that the same load increment does not produce th
same increase in stress when first loaded.

To allow for the effect of member instability and second-order stress, the permissible ragiah fo
each structural member must be checked against axial force and deflection along member, generall;
termed as th®-9 effect. The well-known Perry Robertson formula is employed for determination of
the design strength of an imperfect strut under the action of compression (see, for example, Appendix
C, BS5950, 1990). The rationale behind this formula is the coincidence of design strength with the first
yield load of the strut. The Perry’'s constant was further modified to allow for the effect of residual
stress and to better fit experimental results.

In addition to the second-order moment described above, the gross change of geometry for the
complete structure will generate an additional moment which is catered for in a design code like the
BS5950 (1990) by a moment amplification formula for sway frames. Alternatively, this effect can be
considered by using the modified effective length for sway and non-sway frames. These formulae are
only applicable to simple structures with regular layout and therefore, for more complex structures,
resort must be made from other methods.

In many occasions, the load factor causing instability in a truss needs to be calculated and the strengt
of individual members has to be checked as well. The assessment of ttieedtfagth for anember
is essential in the design procedure. This important process, however, is normally carried out by manua
judgement which is subjective and controversial, leading to argument between checking and the desigr
engineers. Furthermore, checking against snap-through buckling of the whole structure may be
complicated by the conventional method.

This paper uses the same strength criterion of a design code such as the BS5950 (1990) for the desic
of struts under compression. Therefore, the first yield load will be taken as the load capacity calculated
from the Perry formula specified in BS5950 (1990). Consequently, whefféotve length i®bvious,
such as the case of a simple column, the present method gives the same result as in the design coc
However, for cases where the manual assessment of effective length is uncertain, the present metho
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can still compute the design strengtiturately by tracing the second-order non-linear equilibrium path
which automatically allows for the effect of effective length. Using this concept, the important system
buckling check in place of the member check is considered in the design process.

5. Finite element for beam-columns

An accurate element is essential in a second-order analysis since divergence or incorrect answer ma
be resulted when an inferior element is used. This section is devoted to the investigation of the
performance of the most widely used cubic Hermite and the newly proposed pointwise equilibrium
polynomial (PEP) element in a buckling analysis. The study here assists the practicing engineers in
selection of a suitablmember for his buckling check. The deficiency of the widely used cubic element
has been reported by a numerical study by Le¢wal. (1992), and will be confirmed analytically here.

In the finite element context using the most widely adopted cubic Hermite element, the geometric
stiffness is used to allow for the effect of axial on the element stiffness (see, for examples, Appendix A
in ASCE 1977). The corresponding rotation stiffness matrix for the simple column with both ends
pinned is given by the following expression.

2PL2 PL?

M _ 0

ot IsEL 27308 | -
M Ll pL 4+2PL2 0

2 30EI 15EI || 2

in whichM; andM, are moments about the two enBss the Young's modulus of elasticityis the
second moment of areh,is the member lengtlR is the axial force and, and & are the nodal
rotations.

Similar to Eqg. (1), the eigenvalue equation will then be obtained by setting #rentheint of the
above stiffness equation to zero as,

4+ 2PL° ”_ PL?
15El 30EI|_ g @)
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Solving for the axial forc®, we obtain the buckling loal,, as,

12EI

P. =
cr |_2

()

This buckling load is larger than the Euler’s buckling loBd (= % ) by 21.6%.

Using an improved finite element stiffness, named as the pointwise equilibrium polynomial (PEP)
element in Chan and Zhou (1995), and ignoring initial imperfection for simplicity, the stiffness equation
is given by,
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Solving forqg under the condition of vanishing demninant in Eq. (6), we have the buckling Idagd
as which is the same as the Euler’s buckling load. Although the fieiteeat in Eq. (6) appears to
be more complicated, the computational effort in computer in minimal and we just need to input the
value of P and the accurate stiffness equation can then be determined.

From this simple comparison, the limitation of the widely used cubic Hermite elementdic ela
buckling analysis is demonstrated. The selected PEP element is more accurate than the convention:
element. Note that, for an effective second-order analysis, the coupling and bdectgyratist also be
determined rigorously and the uncoupiiffness equation in most analyses using either findmeht
or stability function cannot be assumed. The final axial force and moments relationship with the axial
shortening and rotations in the PEP element can be summarised as follows.

_9U _ dUgq
" de dqoe
e Vi f
= EA[[ + bl( 91 + 92)2 + bz( 91 - 92)2 + bvsﬂ)( 61 - 62) + bva]}%OE]]} (7)
_ 90U oU Jq
Mi2 = 6., " 2926, ,
El
- T[cl(e1 +0,)+C,(6, — ez)icog%‘%ﬂ (8)

in which e is the shortening between the two end nodgsis the amplitude omember initial
imperfection andJ is the strain energy function. Other coefficiemts I§,, b,, b,s andb,,) are given by
Chan and Zhou (1995). The last two terms in Eq. (7) and the last term in Eq. (8) are to account for the
initial curvature expressed in terms of member imperfection. The stiffness can be expanded to 3-
dimensional problems by repeating the procedure to the other principal axis (Chan and Zhou 1995).
Note that the axial force in equation does not only depend on the axial shortening, but also on the enc
rotations due to the bowing effect. Similarly, moment along a member depends on the axial force as
well as the end rotations due to & effect. The reason for the accurate expression for the element
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stiffness in EqQ. (6) is due to the satisfaction of equilibrium easland moment at the mid-span of the
element of which the condition is not satisfied by the widely used cumimiteé element under axial
force.

With the expressions in Egs. (7) and (8), we can then formulate the tangent and secant stiffness
equations and employ the Newton-Raphson method for an incremental-iterative analysis. The book by
Livesley (1964) provides a precise introduction of the Newton-Raphson analysis procedure. For conventiona
design, the stress, deflection or the response of a structure are required to be determined at a particul
fixed load level. The conventional or the modified Newton-Raphson method for iteration at a fixed load
level is used in this case. When the complete equilibrium path is sought in both the pre- and the post:
buckling path, the arc-length with minimum residual displacement method (Chan and Chui 2000) is
utilised in order to avoid divergence near limit load.

6. Design strength determination

A criterion must be checked for design strength determination. The section capacity check is utilized
in many design codes for strength checking. This criterion is adopted here for consistency with the
current design requirements so that the results can be directly used for practical design. Therefore, thi
design load capacity of the complete system is achieved when any section in a member of a structura
framework satisfies the following comidn.

P M
= M
pA ST ©

in whichP is the applied axial forcd/ is the resultant moment allowing for b& andP-J effects
(M =/M, + M,) at a sectiorp is the design strength ais the elastic or plastic sectional modulus,
depending on whether an elastic or the first-plastic hinge approach is adopted.

Unlike the conventional second-order analysis (see Chapter 1 in ASCE 1997), the second-order
analysis software is not used to determine the effective length of individual members. Instead, the
complete design process does not require computation or assumption of the effective length for
determination of buckling load of members and the load capacity is assessed by the sectional capacit
check in Eqg. (9).

7. Numerical examples

To illustrate the application of the method for design and buckling analysis of tubular trusses, three
examples are selected and solved. The first problem involves the checking of load capacity of a simple
truss against the tested result. In the second problem, a 13.2 m truss commonly used as a later:
supporting truss in glazing systems is analyzed and designed.

In the analysis oframe structures, the direction as well as the magnitude of initial imperfection
affects the buckling strength, determined as the load causing the satisfaction of maximum sectional
capacity in Eq. (9). Most design codes like the BS5950 (1990) assumes a geometric initial imperfection
of 0.001 of the column and this value is further modified here in order to generate the same design
curve as the design code so that any sectional type and fabrication group such as cold-formed, hot
rolled and welded sections can be handled. In addition, teetidn of initial imperfection is assumed
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to be the same as the deflected shape of the structures composed of perfectly straight members.

In computer analysis, the initial imperfection of 0.1% of the member length is assumed for all
elements. For a member with several elements, the nodal co-ordinates between these elements a
assigned an appropriate value using a half-sine function. Based on this modedimg,satmember,
whether it is modeled by one or several elements, will be described as a curved member based on th
half sine function with mid-span imperfection of 0.1% of its length. For cases where the member is not
pin-supported at two ends, this initial shape before load application is still assumed aedri &ppe
reasonable since the initial and imperfect shape of the structure is not dependent on the boundar
conditions.

7.1. Experiment of a simple truss of 4.8 m span

The truss of nominal size 4.8 m wide x1 m deep shown in Figs. 2 and 5 was tested. One end of the
truss is allowed to slide freely along the longitudiralxis and to rotate about all axes by simply
placing the member onto the supporting platform. The other supporting end is welded to a flat plate
fixed onto the support so that torsional twist and displacements in all directions are prevented. All
members of the truss are made of 48.3x3.2 Circular Hollow Section (CHS) and grade 43 steel of desigr
strength 275 N/mr

A point load at the mid-span bottom of the truss was applied to the truss until buckling, which was
indicated by an excessive deflection of the top chord. Deflections at several nodal loczgomeasured
against the load. This loading arrangement made the top chord in compression and buckled laterally.

In the design of the truss, a simple question will be raised. What isféutivef length of the top
chord against buckling in out-of-plane direction ? A simple widely used assumption for this effective
length determination is the distance between chord for in-plane buckling and the distance between
support for buckling out-of-plane.

When using this conventional approach of assuming the distance between supports as effective
length, it is then taken as 4.798 m and the slenderness raiigrfdr the tubular sections of 48.3x3.2
CHS of grade 43 steel is 299.9. From BS5950(1990), the permissible stress is Z1awhthe
permissible load in top chord is equalycA or 9.513 kN. The applied load generating this compressive
load is then calculated as 7.8 kN.

In the experiment, the tested buckling load of about 34 kN is much higher than the design load

1198 1199 ‘ 1200 1201

y ! X
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+ Applied Load

All members are 48.3x3.2 CHS
unit in mm

Fig. 5 Geometry of the tested truss
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Fig. 6 Load versus deflection of simple truss

calculated from the conventional method of 7.8 kN by 4.4 times. This shows the uneconomical output
by the conventional design method following strictly to the design code.

The experimental load versus deflection plot for the lateral deflection at mid-span node is also shown
in Fig. 6, together with the computational results. In the theoretical analysis, the nodal co-ordinates are
taken from Fig. 5, with allowance of initial imperfection specified in Eq. (9). For the first case, one end
was assumed free to rotate longitudinally and the second case asisismhetbt is restrained about the
longitudinal x-axis. A 0.5% notional force is further applied in order to fulfil the code requirement.
Nevertheless, it was noted that the notional force is unimportant for buckling analysis when the
member initial imperfection was considered since both of them are disturbances to actikiaig.buc
The objective of this notional force is to simulate the imperfection like the out-of-plumbness in a frame.

It can be seen in Fig. 6 that the theory simulating the actual condition is close to the tested results. The
computed applied force, satisfying Eqg. (9) is 32kN at a lateral displacement of 107 mm. The
calculated buckling strength results is less than the tested load of 34.2 kN. It was difficult to determine
precisely the elastic buckling load of the truss since the elastic load capac#yses expongally
with displacement. This uncertainty is eliminated when using the proposed Eg. (9).

The buckled shape of the truss is plotted in Fig. 6. It can be seen that the bottom tension membe
deflects whilst the top compression member with the complete truss twists, demonstrating the system
buckles simultaneously. This contribution by the torsional stiffness of the tension member stiffens the
compression member against buckling significantly and its consideration will, therefore, make the
design more economical.

When we assume the truss is restrained against twist, the design buckling strength is 39.5 kN. It can be se
in Fig. 6 that the deviation between the two sets of computational results increases when the deflectior
entered the non-linear range, demonstrating the stiffening-tension member effect activated when the structur
behaved non-linearly. Linear analysis cannot therefore reveal this phenomenon for a planar truss.

When we use the concept of effective length, we encounter a problem of varying axial force in the
buckling chord. This effect is not considered in most national codes which consider only the
geometrical and boundary conditions. By conventional analysis using the maximum load in top chord,
we can obtain the same result as our buckling analysis if the effective length is assumed as 2.311 m ©
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the effective length factor is taken as 0.482. In this case, the buckling stress from Table 27a (BS5950
1990) is then equal to 86 N/mnand the permissible buckling load is then 39 kN, which can be
produced by an applied point load of 32 kN.

Following the conservative assumption of using the distance between support equal to 4.7985 m a¢
the effective length, the buckling stress from BS5@5®0) is 21 N/mrhand the buckling applied load
is only 7.8 kN. It differs from our computer and test result by about 4 times !

This example demonstrates the versatility and accuracy of the computer method in predicting the
buckling load of a tubular truss against out-of-plane buckling. It further illustrates the significance of
the torsional effect in buckling and the stiffening-tensioember effect.

7.2. Design of a 13.2 m span glazing truss with support at top and at bottom

The simply supported truss of 13.5 m span and 1.2 m depth was constructed as a glazing supportin
system. The sections are made of 114.3x6.3 CHS of grade 50 steel with design strength 355 MP«
according to BS595Q1990), since its thickness is less than 16 mm and the section is plastic. All
members are welded with the supports free to rotation in all directions except in the rotation about the
longitudinal axis of the truss. All displacements are restrained with an exception along the longitudinal
axis of the truss in order to allow building and thermal movement. In the analysis, all member
connections are assumed rigid.

The difficulty in the design of the truss is on the assessment of effective length of the back and
compressive chord during wind suction. The architect requires the member size to be the smalles
possible and the task of this example is to determine the maximum design wind load. Only the ultimate
limit state is considered for demonstration purposes.

The equilibrium path of the structure againgr@asing uniformly distributed load, is plotted in
Fig. 7. The condition stipulated in Eq. (9) is met at a design load of 7.52 kN/m. The analysis and design
is completed once the computer analysis is finished, which consumes only a few seconds of compute
time. If we take the maximum load in this compressive chord for back-analysis, the effective length is

.
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Fig. 7 Analysis and design of 13.2 m span truss
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determined as 6.8 m. This pifes that we will obtain theasne result if we assume the effective length

ratio of 0.515 for the compressive chord and use the BS5950 (1990) for determination of load capacity
of the chord member. Undoubtedly, the value can hardly be assessed by inspection and manual judgement.
fact, owing to the variation of geometrical properties, the effective length ratio may change from one

structure to another (Chan, Koon and 3089).

It is interesting to note that the truss is considerably strengthened by the use of hollow sections stiff in
torsion. If we replace the CHS sections by an open section of same cross-sectional properties but with :
torsional moment of area of 1% of the CHS (an approximate order of reduction for an open and a closec
section of the same weight per metre), the truss buckles at a load of only 1.5 kN/m. The reason for the
large difference between the buckling resistance of closed and open sections is due to the effectivenes
of torsional restraint against movement of the compression chord. When this torsional stiffness is large,
the chord is restrained from lateral movement during buckling whilst a small torsiifimalss allows
this movement to occur, in a way similar to the buckling of a column with roller supports at ends. The
judgement of effective length for members with this type of semi-movable supports is complicated and
unreliable. This contribution of member torsiosgifness is seldom considered in conventional design
and the computer method demonstrates its importance in full. The tremendous increase in buckling
resistance is also due to the restraint provided by tension member through the torsional stiffness. The
buckling of the compressive member forces the tension member to deform simultaneously as a unique
system through the transfer of moment by torsion, which significantly improves the buckling resistance
of the structural system.

8. Conclusions

A computer method for determining the buckling load of a structural system with allowance for the
stiffening-tension member effect is presented. With the use of a second-order analysis software, the
buckling load of an unbraced steel truss composed of circular hollow section is computed and
compared with the experimental result. The computer method is further applied to the design of a 13.2
m truss used as a glazing supporting truss under wind pressure. Unlike the conventional second-orde
analysis assisting the engineer to assess the effective length of indim&tabkrs, the effective length
is not needed to be assumed in the present method and, therefore, the inconvenience or uncertainty
assuming an effective length is eliminated. Also, design is complete simultaneously with analysis,
leading to an efficient practical design procedure.

When instability occurs in a structural system, both the compression and the tension members will
deform significantly as a unique single system. This process will utilise the flexural and torsional
stiffness of the tension member against the system buckling and therefore significant saving in material
can be resulted. However, this interestinig@fis seldom considered in practical design. This paper
studies this effect by a computer procedure which was further verified by a test of a simple truss.
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