Steel and Composite Structures, Vol. 2, No. 3 (2002) 161-170 161
DOI: http://dx.doi.org/10.12989/scs.2002.2.3.161

Comparison of elastic buckling loads for liquid
storage tanks
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Abstract. The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal
earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A
theoretical solution based on the nonlinear Fliigge shell equations is developed, and numerical results are
found using the new differential quadrature method. A second solution is obtained using the finite element
package ADINA. A major motivation of the study was to show that the new method can serve to verify finite
element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a
comparison of buckling results for a number of cases covering a wide range in tank geometry.
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1. Introduction

The problem of the buckling of cylindrical liquid-storage tanks subject to seismic action continues to
be an active concern in structural engineering research (Mirfaldtrakil996, Cheet al 1999, Ishida
et al 1999, Mirfakhraei and Redekop 1999). Horizontal seismic excitation is the major cause of
damage. It serves to accelerate the liquid in the tank, which then exerts a large nonsymmetric pressur
on the tank wall that can lead to buckling.

While the response of the tank is clearly dynamic, experimental and theoretical studies (Mirfakhraei
et al. 1996) have shown that the characteristic tank behavior can be determined through a static
analysis. Such an analysis greatly reduces the size of the computational problem. Crucial to the succes
of the analysis, however, is the acoting for the boundary conditions that apply, and the development
of an appropriate but practical system of equations.

In this study the nonlinear Fliigge theory (Yamaki 1984, Fligge 1973) is used to develop a set of
stability equations for cylindrical shells. The solution is in two steps, in each of which the new
differential quadrature method (DQM) is used. A second solution is found using the ADINA finite
element method (FEM) package. The paper concludes with a comparison of buckling results for a
number of shell cases, covering a wide range of tank geometry.

2. Geometry and loading
A vertical cylindrical tank (Fig. 1) has a lendtha radiusR, a thicknes#$), and is assumed made of
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Fig. 1 Geometry Fig. 2 Equivalent static loading

steel. A loadindP=p g (L - x) arises from hydrostatic pressure, and a loaBiyrg a(x) o R Gcos6

A(t) is assumed to arise from horizontal seismic action. lers the liquid mass densitg the
acceleration of gravity, an@® the acceleration factor. The c@svariation of Py provides outward
compression over one half of the circumference and inward tension over theA@hisra function
dependent on the magnitude of acceleration @&pyl gives the longitudinal variation of the dynamic
pressure, wherg is the longitudinal position variable. This function is given in graphical form by
Malhotra and Veletsos (1994) for some special values of length/rédR)sahd radius/thicknes&(h)
ratios. By curve fitting relations faw(x) have been derived for three sets of ratios as

L/R=0.5; a(x) = 0.0532x% — 0.7129x? + 0.2812x + 0.3799
L/R = 1.0; a(x) = —0.886x3 + 0.0421x2 + 0.2009x + 0.6516
L/R = 3.0; a(X) = —13.4455x° + 26.2304x* — 21.0359%° + 8.108x2 - 0.175x + 0.3239 (1)

A plot of the loading distribution on the shell surface is given in Fig. 2.

3. Nonlinear Flugge shell theory

The nonlinear Fligge equations are used as the basis of the theoretical work. The effects of
prebuckling deformations are accounted in the derivation of equation both in the domain and in the
boundary conditions. The resulting set of stability equations is not restricted tmenesyc loading as
are those in the standard reference by Yamaki (1984). Based on an engineering consideration of the
magnitude of terms, a final linearized set of gitgbequations is obtained,gpmitting the use of
standard eigenvalue procedures. Final stability equaimnénear in terms of buckling variables but
have weighting coefficients from prebuckling terms.

A two-step procedure is used in the stability analysis. In the first stepretirigkling analysis, the
membrane and bending resultants are found for the hydrostatic and equivalent static lateral loadings
using the linear Fligge equations. In the second step, the buckling load analysis, the newly derived
stability equations are used to find the lowest eigenvalie

The governing equations are found by minimizing the total energy through the variational principle
(Yamaki 1984) and are given by
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Fig. 3 Stress and moment resultants

[Nx (1+U, 9]+ [Nyx (1 + ULy + (Ny Upy)y + (Niy Upy)x + px—p W =0

[Ny (1+V, — WIR] ¢ + Ny (1+Vyy = WIR)y = (Myy + My /R + (N Vigdix + (Nyx Vi = Nyx Wi/R + py
~(p+NJR) (W, + VIR =0

My + (M + My sy + Myyy + Ny (14, — WIR/R + [Ny Wi+ Ny (W, + V/R)] ¢
+ [Nyx Wi+ Ny (Wy + VIR)],y + Ny Vi/R+p (1 + U, +V,, ~W/R = 0 (2)

wherep is the normal pressure, apd p, are the load components per unit area in the axial and
circumferential directions. The displacement components and resultants appearing in these equation
are shown in their positive sense in Figs. 1, 3. The stress and moment resultants are found from

N, = J[U,x +0 (Vy= WIR) + &0+ U &, + D W,o/R
Ny = J[Vy- W/R+ U Uy + g0+ U & — D (W,,#W/R)/R
Ny = 01[I(U,y + Vix + Kyo + D(Vi/R + Wio))/R]
Ny = 03[J(U y+ Vit Yoo+ D(U,/R— W, )/R]
My = -D[Wix+ 0 W,y + (Ux+ 0 V,)/R]
My = —D[W,y+ U Wiy + W/R]
My = =(1-U) D [Wiy + V/R]
My= ~(1 - 0) D [Wiy + (Vi = Uy)/2R] 3

whereJ = Eh/(1-0%), D = Eh¥[12(1-0?), E, v are the Young’s modulus and Poisson ratics (1- v)/
2, and the mid-surface nonlinear strain components are given by

£xo = [U %+ Vi + W32
&y0=[U%y + (Vy — WIR? + (W, + VIR)F/2
Vo = Unx Uy + Vi Viy = WIR) + W, (Wy + VIR) (4)

Egs. (2-3) contain 11 relations involving 11 unknowns, requiring reductions to obtain a practical
system. The solution is subject to boundary conditions at the top and bottom edges of the shell.

In the determination of the buahkg load a defamed state adjacent to the equilibrium state is sought.
The displacements and resultants are thus assumed to have the form

(U1 Va W = (U01 \/01 V\é) + (U]_, V]_, Wl)
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(NXl nys NyXa Ny) = (Nxm nyOa Nyxm Nyo) + (NX]_! nyla Nyxla Nyl)
(MXl Mxya MyXa My) = (Mxm MxyOa Myxo: I\/Iyo) + (MX]_! Mxyla Myxla Myl) (5)

where the subscriptsand 1 correspond to prebuckling and infinitesimal incremental states respectively.

The expressions (5) are substituted into the governing Egs. (2) and the expressions for the resultant
(3-4). Simplification leads to the governing system of equations for the buckling problem. Since the
incremental stress resultants include some prebuckling terms there are some nonlinear prebuckling
terms in the final equations. The prebuckling terms are considered small so that the nonlinear
prebuckling terms are dropped from the final equations. The final equations are lengthy and are given
in full by Mirfakhraei (1999).

4. Boundary conditions

The solution defined in the precedingts@tis subject to boundary conditions on the shell edges. For
the present problem clamped conditions apply for the bottom edge and free conditions for the top edge
The clamped conditions enforced at the bottom edge are given simplyas w = w, = 0. The free
boundary conditions enforced at the top edge are

Nx = 0; k= Ny - My/R=0
My = 0; S(= My + (Mxy+Myx) W= 0 (6)

where S, and T, are effective shear forces. The first and third @ are immediately converted
into displacement form using the linear parts of the expressions for the resultants (B).ahdé&,
conditions are converted respectively using;

J[Ulay (1 + UO!X) + VllX (1 + Van - V\UR) + UllX Uo:y + Vlly \/le - Wl VO!X/R + Wlay VV)!X
+ WllX (WOly + VOIR) + Vl VV)!X/R] + 3D (Wlle + VllX/R)/R = 0
W]_!XXX + (2 - U) Wlaxyy + Ulaxx - U Ulayy + 0, Vlle =0 (7)

whereu, = (3- v)/2.

5. DQM solution

The basis of the DQM is the representation of the derivatives of a fuf(@idoy a weighted sum of
trial function values in the domain, i.e.,

di

i J_;Af;)f(xj) (8)

X=X

Here theA{” are the unknown weighting coefficients of thth order derivative at thieth sampling
point in the domain, ani is the number of sampling points in tkeirection. For the current study
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sets of trial functions are required for both of the coordinate directiamnsl 6.
Polynomial test functions are used here in the longitudinal direction. The functions are taken

f(x) = 1,%x, ..., x" ! (9)
For these functions explicit formulas for the weighting coefficients in (8) are given as

AD = &;i,' =1,2 .., M;i#j
j (Xi =) TI(X;) : J

(X)) = |_| (X =%); 1 #]

I=1

The weighting coefficients for higher order derivatives may be obtained through recurrence relationships
(Bert and Malek 1996).

A spacing of sampling points that proved successful in the solution of earlier shell problems (Bert and
Malek 1996, Mirfakhraei and Redekop 1998) is used in the axial direction. At each sampling point
either the DQM analogue of a governing equation for the domain is represented, or a boundary
equation. For shells ¢éne are four contions at each boundary, whileette are only three governing
equations. It is necessary to enforce one of the boundary equations at an interior pointnfT lEsdpo
point’, is taken a short distanc& (110 on a unit domain ) from the boundary point. For the present
problem the first three of the conditions (6) replace respectively the first, second and third domain
equations at the sampling pomi while the final condition replaces the third domain equation at the
sampling poinim-1. As the DQM approach is displacement-based these conditions must be converted
into displacement form.

Harmonic test functions (Bert and Malek 1996, Mirfakhraei and Redekop 1998) are used in the
meridional direction in this problem of cyclic periodicity. Continuity conditions acfos860 are
then satisfied identically. The test functions are taken as

f(@)=cos [2k-1)mg; k=1, 2,3,..N2+1

f(8) = sin [X— Ni2-1)7i]; k= N/2+2, N/2+3, ...,N (11)
¥
AN |y, M2
GT\\i_: _]1,1 jV
N |
\\E _//
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Fig. 4 DQM mesh
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whereN is an even number. For equally spaced sampling points the weighting coefficients may readily
be found from the inverse of a Vandermonde matrix. A sample DQM mesh is given in Fig. 4.

5. Pre-buckled state

Prebuckling displacements and stress resultants are present in both the buckling equations and th
boundary conditions. They are found as a preliminary step of the buckling analysis. The weighting
coefficients of the DQM are found at this stage, and these same weighting coefficients are used later fol
the buckling load determination. As it can be assumed that prebuckling displacements are small the
linear equilibrium equations of Fliggee adopted. These are given by

U+ U1 Uy + U3Viy — UWWR + k(U1 Uy + RW— U1 RWyyy) =0
Us U,y + U1 Vit Viy— Wy/R+ k(301 Uxx + U2 RWhyy) =0
OU + Vy = W/R+ KR(U1 U xyy = U xxx = Uz Viwy
— RWx = 2RWyyyy = RWiyyy — 2W/,/R - W/RE) = —P (12)

where u; = (1 + v)/2, k =h%(12R?), andP is the normal pressure. Egs. (12) are used to determine
the prebuckling displacements first for the hydrostatic pressure loading, and then for the equivalent
static loading.

6. Buckling load analysis

The governing equations are enforced at each of the domain mesh points with relations (8) used tc
replace the derivativers. A set of algebraic equations is set up in terms of the displacement
commponents at the mesh points. Considegmesh points in the logitudinal direction, and’
points in the circumferential direction, there will b&8l algebraic equations, including the boundary
equations. There will also be MN unknown displacement components, and the buckling load
parametel. The assembly of the domain and boundary equations yields a matrix equation of the form

(A) O (Ap) O
[Kp + Km]DAb 0= Al[Kpg+ K”Z]E(A:)%

13
144) 0 13)

The matrixK, consists of the terms for the DQM analogue of the buckling equations and the
boundary conditions. MatriX,g includes the displacement terms which have a coefficient of the
buckling load. MatrixK,; includes the prebuckling terms due to hydrostatic pressureKanthe
prebuckling terms due to the equivalent static load arising from unit acceleration. The resultant matrices
on the two sides are full, and thus static condensation, often used in the DQM, is not possible here. Eac
matrix is of size MN. The vectord, contains the displacements corresponding to the boundary points,
while 44 the displacements corresponding to the domain points. The smallest eigeijyainay be
found directly using standard eigenvalue extraction routines.

Based on the procedure outlined in the preceding a M#tdmputer program nameankeq.mvas
developed. The DQM results given in the following are based on this program.
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7. ADINA FEM analysis

The ADINA (Bathe 1996, ADINA 1998) program version 7.3 was used to find FEM results.
Isoparametric eight-noded shell elements were used. A linearized buckling analysis was carried out,
using starting vectors generated using the Lanczos method. The non-uniform load was input using &
tabular form of the spatial functions for the distribution given in Fig. 2.

8. Validation

The validation analysis is for a tank which Has 7.5 m, R=15m, h=15 mm. These data are
representative of short tanks. For this tank and others considered in this study a Poisson i@ of
and a Young's modulus & = 200 GPa was used. The loading considered for the validation was that of
the equivalent static loading. A convergence study was conducted for each of the two methods
considered.

The validation results are presented in Tables 1-2. Table 1 gives the results in the DQM analysis,
while Table 2 the results for the FEM analysiseféhis a steady convergence for both methods,

Table 1 Convergence of DQM results

Solution N:M 12 14 16
1 30 5.4724 5.4835 5.4919
2 34 3.7383 3.7905 3.7997
3 38 3.1311 3.1765 3.1849
4 40 2.9942 3.0360 3.0439
5 42 2.9130 2.9514 2.9587
6 46 2.8389 2.8721 2.8784

Table 2 Convergence of ADINA results

Solution Mesh Amin
1 60x20 2.920
2 80x30 2.841
3 100x40 2.817

Fig. 5 DQM buckling mode Fig. 6 FEM buckling mode
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although for the DQM analysis the convergence is not as fast as was reported for the one-dimensiona
DQM (Mirfakhraei 1999). The converged results of the two methods show close agreement.

Figs. 5 and 6 show the buckling modes for the tank as determined by the DQM and FEM methods. As
expected buckling occurs on the side where the load produces an inward pressure. The deformation fo
the tank in the axial direction resembles a quarter sine wave in the buckled part. Buckling is seen to be
due to excessive circumferential stress.

9. Parametric study

Results were computed for a number of tanks covering a wide range of the geometric parameters
Two loading cases were considered for each tank. The first loading case (Set 1) consists of the
equivalent static load. The second loading case (Set 2) consists of the hydrostatic pressure of the liqui
(water) together with the equivalent static load. The hydrostatic pressure causes a prestress in the tan
and the equivalent static load causes buckling.

Table 3 gives results for the Set 1 loading case, while Table 4 gives results for the Set 2 loading case
For each load case rdtsuare given for tteeL/R ratios, thredR/hratios, and three values of the shell
radius. Both DQM and FEM results are given for each tank, but only DQM solutions are given for the
Set 2 loading case. A blank entry in Table 4 indicates that acceptable convergence was not obtained fo
that geometric case.

In Table 3 there are three parameters that determine the bucklingLlBadR/hand R. In each
instance when the/R andR/h parameters are kept constant the buckling load decreses with an increase
of R. There is a nearly linear trend in the reduction of the buckling load. WherRhedR parameters
are kept constant the buckling load decreases nonlinearly with an incrédkefonally when theR/h
andR parameters are kept constant the buckling load decreases nonlinearly with an indréageoof
the most part the DQM and FEM results of Table 3 agree within 5% although a maximum difference of
16% is observed. Except for one instance the FEM results are more conservative than the DQM results

The stabilizing effect of internal hydrostatic pressure on buckling is evident on comparing the results
of Tables 3 and 4. The effect is small for short tanks of small redius, but significant for long tanks of

Table 3 Comparison of results for set 1 loading case

R=1m R=5m R=10 m
L/R R/h
DQM FEM DQM FEM DQM FEM
750 85.58 83.08 17.65 16.92 8.77 8.26
0.5 1000 42.78 40.88 8.52 8.15 4.23 4.08
1500 15.67 14.94 3.13 2.97 1.76 1.48
750 23.46 21.84 459 4.40 2.30 2.18
1.0 1000 11.35 10.68 2.21 2.13 1.10 1.07
1500 3.89 3.86 0.78 0.69 0.39 0.39
750 4.24 4.06 0.85 0.83 0.43 0.41
3.0 1000 1.98 1.98 0.40 0.40 0.20 0.20

1500 0.66 0.71 0.14 0.14 0.07 0.07
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Table 4DQM results for set 2 loading case

L/R R/h R=1m R=5m R=10m
750 95.08 24.42 16.13
0.5 1000 50.31 15.42 10.91
1500 23.15 9.93 8.18
750 30.12 10.84 8.56
1.0 1000 18.16 8.27 7.12
1500 9.80 6.78 -
750 11.22 7.00 5.50

3.0 1000 9.04 5.94 -
1500 6.66 - 4.75

large radius. The increase in buckling load due to internal pressure is seen to vary from 1.11 to 67 times
The issue of the relative efficiency of the DQM and FEM approaches was not addressed
comprehensively in this study. Analyses using the two methods were carried out on the same computelr
with the FEM generally requring somewhat shorter calculation times. Howere there was no dedicated
effort to optimize the DQM calculation process, and the M&flauilt-in computational routine
intended for relatively small matrices was used to extract the eigenvalues. It is believed that the curren
study demonstrates sufficiently the usefulness of the DQM as a supportive computational resource. The
definitive determination of its relative efficiency with respect to the FEM is reserved for a future study.

10. Conclusions

A solution for the elastic buckling problem of a seismically excited liquid-storage tank has been
presented. Stability equations stemming from the nonlinear Fliigge shell theory were derived. These
equations include prebucking terms in the boundary conditions, and are more general than those o
Yamaki in that they can account for nonsymmetric cases. The equations were solved using the
differential quadrature approach. Numericauiés obtained using the solution cosmng well with
results found using the finite element method. The study demonstrates the usefulness of the
differential quadrature nilkod as a supportive compuational resource in cylindrical shell buckling
analysis
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