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Abstract.  In this paper, the effect of material-temperature dependent on the wave propagation of a 
cantilever beam composed of functionally graded material (FGM) under the effect of an impact force is 
investigated. The beam is excited by a transverse triangular force impulse modulated by a harmonic motion. 
Material properties of the beam are temperature-dependent and change in the thickness direction. The 
Kelvin–Voigt model for the material of the beam is used. The considered problem is investigated within the 
Euler-Bernoulli beam theory by using energy based finite element method. The system of equations of 
motion is derived by using Lagrange’s equations. The obtained system of linear differential equations is 
reduced to a linear algebraic equation system and solved in the time domain and frequency domain by using 
Newmark average acceleration method. In order to establish the accuracy of the present formulation and 
results, the comparison study is performed with the published results available in the literature. Good 
agreement is observed. In the study, the effects of material distributions and temperature rising on the wave 
propagation of the FGM beam are investigated in detail. 
 
Keywords:   wave propagation; temperature dependent physical properties; functionally graded 
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1. Introduction 

 
Elastic wave propagation through the monitored part is of considerable interest in many fields. 

The most striking example of the engineering applications is detection of damage or/and material 
difference in the investigated media. By investigating the character of waves, the type and position 
of damage can be determined. 

Functionally graded materials (FGMs) are a new generation of composites where the volume 
fraction of the FGM constituents vary gradually, giving a non-uniform microstructure with 
continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc. 
Typically, in a FGM, one face of a structural component is ceramic that can resist severe thermal 
loading and the other face is metal which has excellent structural strength. FGMs consisting of 
heat-resisting ceramic and fracture-resisting metal can improve the properties of thermal barrier 
systems because cracking and delamination, which are often observed in conventional layered 
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composites, are reduced by proper smooth transition of material properties. Since the concept of 
FGMs has been introduced in 1980s, these new kinds of materials have been employed in many 
engineering application fields, such as aircrafts, space vehicles, defense industries, electronics and 
biomedical sectors, to eliminate stress concentrations, to relax residual stresses, and to enhance 
bonding strength. Because of the wide material variations and applications of FGMs, it is 
important to study the responses of FGM structures to mechanical and other loadings. With the 
increased use of FGMs, understanding the mechanical behavior and safe performance of cracked 
FGM structures is very important. 

In the last decades, much more attention has been given to the elastic wave propagation of 
beam structures. Teh and Huang (1981) studied an analytical model, based on the elasticity 
equations, to investigate wave propagation in generally orthotropic beams. A finite element 
technique is developed for studying the flexural wave propagation in elastic Timoshenko and 
Bernoulli-Euler beams by Yokoyama and Kishida (1982). Wave propagation in a split beam is 
analyzed by treating each section separately as a waveguide and imposing appropriate 
connectivities at their joints by Farris and Doyle (1989). A direct mathematical approach method 
is developed to study the problem of coupled longitudinal and flexural wave propagation in a 
periodically supported infinite long beam by Lee and Yeen (1990). A spectral super-element 
model was used in Gopalakrishnan and Doyle (1995) to model transverse crack in isotropic beam 
and the dynamic stress intensity factor was obtained accurately under impact type loading. Palacz 
and Krawczuk (2002) investigated longitudinal wave propagation in a cracked rod by using the 
spectral element method. The use of the wave propagation approach combined with a genetic 
algorithm and the gradient technique for damage detection in beam-like structure is investigated by 
Krawczuk (2002). Krawczuk et al. (2002) studied a new finite spectral element of a cracked 
Timoshenko beam for modal and elastic wave propagation analysis. Usuki and Maki (2003) 
formulated an equation of motion for a beam according to higher-order beam theory using 
Reissner’s principle. They derived the Laplace transform of the equation and investigated 
wave-propagation behavior under transverse impact. A method of crack detection in beam is 
provided by wavelet analysis of transient flexural wave by Tian et al. (2003). Kang et al. (2003) 
applied the wave approach based on the reflection, transmission and propagation of waves to 
obtain the natural frequencies of finite curved beams. A spectral finite element with embedded 
transverse crack is developed and implemented to simulate the diagnostic wave scattering in 
composite beams with various forms of transverse crack by Kumar et al. (2004). The wave 
propagation model investigated herein is based on the known fact that material discontinuities 
affect the propagation of elastic waves in solids by Ostachowicz et al. (2004). A spectral finite 
element model for analysis of flexural-shear coupled wave propagation in laminated and 
delaminated, multilayer composite beams is presented by Palacz et al. (2005a, b). A new spectral 
element is formulated to analyse wave propagation in an anisotropic inhomogeneous beam by 
Chakraborty and Gopalakrishnan (2005). Watanabe and Sugimoto (2005) studied flexural wave 
propagation in a spatially periodic structure consisting of identical beams of finite length. Vinod et 
al. (2007) investigated a formulation of an approximate spectral element for uniform and tapered 
rotating Euler–Bernoulli beams. An experimental method of detecting damage using the flexural 
wave propagation characteristics is proposed by Park (2008). Chouvion et al. (2010) studied a 
systematic wave propagation approach for the free vibration analysis of networks consisting of 
slender, straight and curved beam elements and complete rings. Frikha et al. (2011) investigated 
physical analysis of the effect of axial load on the propagation of elastic waves in helical beams. 
Kocatürk et al. (2011) studied wave propagation of a piecewise homegenous cantilever beam 
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under impact force. Kocatürk and Akbas (2013) investigated wave propagation of a microbeam 
with the modified couple stress theory. In a recent study, wave propagation and localization in 
periodic and randomly disordered periodic piezoelectric axial-bending coupled beams are studied 
by Zhu et al. (2013). Akbaş (2014a) investigated the effect of the elastic foundation on the wave 
propagation of the cracked beams. Also, Akbaş (2014b) studied the estimation of the crack 
locations and the effect of cracks on the wave propagation of the circular beams. Islam et al. (2014) 
studied the torsional wave propagation and vibration of nanostructures based on nonlocal elastıcity 
theory. Akbaş (2015) investigated the effect of the cracks on the wave propagation of the FG 
beam. 

In recent years, the wave propagation behavior of FG structures has been a topic of active 
research. Chakraborty and Gopalakrishnan (2004) studied wave propagation in anisotropic 
inhomogeneous layered media due to high frequency impact loading by using a new spectral layer 
element. Li et al. (2004) investigated the Love waves in a layered functionally graded piezoelectric 
structure. Chakraborty et al. (2005) used the thin-layer method to study the propagation of waves 
in inhomogeneous piezocomposite layered media caused by mechanical loading and electrical 
excitation. Sridhar et al. (2007) developed an effective pseudo-spectral finite element method for 
wave propagation analysis in anisotropic and inhomogeneous structures with or without vertical 
and horizontal cracks. Dineva et al. (2007) studied the elastic wave propagation in cracked, 
functionally graded materials with elastic parameters. Du et al. (2007) investigated the Love waves 
in functionally graded piezoelectric material layer bonded to a semi-infinite homogeneous solid 
with an exact approach. Bin et al. (2008) solved the propagation of harmonic waves in 
functionally gradednmagneto-electro-elastic plates composed of piezoelectric materials. Aksoy 
and Şenocak (2009) analyzed the wave propagation in FG and layered materials by using 
space-time discontinuous Galerkin method. Jiangong and Qiujuan (2010) investigated wave 
characteristics in magneto-electro-elastic FG spherical curved plates based on the Legendre 
orthogonal polynomial series expansion approach. Nonlinear thermoelasticity, vibration, and stress 
wave propagation analyses of thick-walled FG cylinders with temperature-dependent properties 
are examined by Shariyat et al. (2010). Sun and Luo (2011a, b, c, d and 2012) analyzed the wave 
propagation and transient response of an infinite FG plates under a point impact load. 
Safari-Kahnaki et al. (2011) investigated transient stress field and thermo-elastic stress wave 
propagation of FG thick hollow cylinder under arbitrary thermomechanical shock loading. Cao et 
al. (2012) studied the propagation behaviour of Lamb waves of th FG piezoelectric-piezomagnetic 
material plate with material parameters. Liu and Lu (2012) examined the dynamic stability of an 
Euler–Bernoulli beams resting on the elastic foundation including the stress wave  effect. 
Bouderba et al. (2013) studied the thermomechanical bending response of functionally graded 
plates resting on Winkler-Pasternak elastic foundations. Tounsi et al. (2013) investigated 
thermoelastic bending analysis of functionally graded sandwich plates with A refined 
trigonometric shear deformation theory taking into account transverse shear deformation effects. 
Zidi et al. (2014) studied bending response of functionally graded plates resting on elastic 
foundation and subjected to hygro-thermo-mechanical loading. Molaei Najafabadi et al. (2014) 
investigated the effect of thermal wave propagation on thermoelastic behavior of FG materials in a 
slab symmetrically surface heated using analytical modeling. Bourada et al. (2015) investigated 
developed a simple and refined trigonometric higher-order beam theory for bending and vibration 
of functionally graded beams. Mahi et al. (2015) investigated A new hyperbolic shear deformation 
theory applicable to bending and free vibration analysis of isotropic, functionally graded, sandwich 
and laminated composite plates. Ait Yahia et al. (2015) studied wave propagation in functionally 
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graded plates with different higher-order shear deformation plate theories. 
It is seen from literature that the effect of the temperature rising on the wave propagation of FG 

beams has not been broadly investigated. It is known that with investigation elastic wave 
propagation of the structures, it can be detected the mechanical changes of the structures. Hence, 
with using wave propagation techniques, it can be investigated and detected the mechanical 
changes FG structures for temperature rising by investigating the character of waves. A better 
understanding of the mechanism of how the different material distributions and temperature 
change response of wave propagation of a FGM beam is necessary, and is a prerequisite for further 
exploration and application of the FGM beams. Hence, the effects of different material 
distributions and temperature rising on wave propagation of FG beams are investigated in detail. 

In this study, the effect of material-temperature dependent on the wave propagation in a 
cantilever FG beam under the effect of an impact force is studied. The considered problem is 
investigated within the Euler-Bernoulli beam theory by using energy based finite element method. 
The Kelvin–Voigt model for the material of the beam is used. The material properties of the beam 
are temperature-dependent and change in the thickness direction of the beam. Three 
homogenization methods are deployable for the computation of the material properties namely: (1) 
the power law distribution; (2) the exponential distribution; and (3) the Mori–Tanaka scheme. The 
temperature is assumed to be uniform and only varies in the thickness of the beam. The system of 
equations of motion is derived by using Lagrange’s equations. The obtained system of linear 
differential equations is reduced to a linear algebraic equation system and solved in the time 
domain and frequency domain by using Newmark average acceleration method. In order to 
establish the accuracy of the present formulation and results, the comparison study is performed 
with the published results available in the literature. Good agreement is observed. In the study, the 
effects of material distributions and temperature rising on the wave propagation of the FG beam 
are investigated in detail. 
 

 
2. Theory and formulations 

 
Consider a cantilever FGM beam of length L, width b, thickness h, as shown in Fig. 1. The 

beam is subjected to an impact force in the transverse direction as seen from Fig. 1. 
In this study, the material properties are both temperature-dependent and position-dependent. 

The effective material properties of the functionally graded beam, P, i.e., Young’s modulus E, and 
 
 

 

Fig. 1 A cantilever FG beam subjected to an impact force and cross-section 
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mass density ρ vary continuously in the height direction (Y axis) and a function of temperature T 
(see Touloukian (1967)) as follows 
 

1 2 3

0 1 1 2 3( ) ( 1 )P T P P T P T P T P T
     (1)

 

where PT and PB are the material properties of the top and the bottom surfaces of the beam that 
depends on temperature (T), T = T0 + ΔT, where T0 is installation temperature and ΔT is the 
uniform temperature rise. 

Material properties of the FG beam are temperature-dependent and change in the thickness 
direction. Three homogenization methods are deployable for the computation of the material 
properties P(Y) namely: (1) the power law distribution; (2) the exponential distribution; and (3) the 
Mori–Tanaka scheme. For the power law distribution, the material properties are as follows 

 

1
( , ) ( ( ) ( )) ( )

2
T B B

n
Y

P Y T P T P T P T
h

    
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 

 (2)

 

It is clear from Eq. (3) that when X = -h/2, P = PB, and when X = h/2, P = PT. Where n is the 
non-negative power-law exponent which dictates the material variation profile through the height 
direction of the beam. In Eq. (1), P-1, P0, P1, P2 and P3 indicate the coefficients of temperature T 
and are unique to the constituent materials. In this study, the unit of the temperature is Kelvin (K), 
the unit of the Young’s modulus E is Pascal (Pa) and the unit of the mass density ρ is kg/m3. 

For the exponential distribution, the material properties are as follows 
 

, ,0( ) ( ) YY T Y TP P eb=  (3)
 

where P0 is the material properties at the midplane (Y = 0) of the beam. b is a constant 
characterizing the gradual variation of the material properties along thickness direction. When b = 
0, the material of the beam is homogeneous. According to Eq. (14) that when Y = -h/2, P = PB (PB 
is material properties of the bottom). When Y = h/2, P = PT and r = rT  (ET and rT is the material 
properties of the top). In this study, the ratio of material properties indicates as PR which ratio of 
material properties of bottom and top surfaces of the beam (PB / PT). When PR = 1, the material of 
the beam is homogeneous. In other words, when PR = 1, b = 0 according to Eq. (3). 

For Mori–Tanaka scheme, the material properties is given as (Shen and Wang 2012) 
 

,
1 (1 )( / 1)(1 ) / (3 3 )

( ) ( ) ( ( ) ( )) ( )T

T T B

V

V P PB T BY T T T TP P P P
n n+ - - + -

+ -=  (4)

 

Where VT = (0.5 + y/h)n is the volume fraction of the top materials. 
The beams considered in numerical examples are made of Zirconia and Aluminum Oxide. The 

bottom surface of the functionally graded beam is Zirconia and the top surface of the functionally 
graded beam is Aluminum Oxide. The coefficients of temperature T for Zirconia and Aluminum 
Oxide are listed in Table 1 and 2 (from Reddy and Chin 1998). 
Accoording to the coordinate system (X, Y, Z) shown in Fig. 1, based on Euler-Bernoulli beam 
theory, the axial and the transverse displacement field are expressed as 

 

0
0

( , )
( , , ) ( , )

v X t
u X Y t u X t Y

X


 


 (5)
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Table 1 The coefficients of temperature T for Zirconia (from Reddy and Chin 1998) 

The material properties P0 P-1 P1 P2 P3 

Thermal expansion coefficient αX (1/K) 12.766×10-6 0 -1.491×10-3 1.0006×10-5 -6.778×10-11

Young’s modulus E (Pa) 244.27×109 0 -1.371×10-3 1.214×10-6 -3.681×10-10

Poisson’s ratio n 0.2887 0 1.133×10-4 0 0 

Mass density r (kg/m3) 5700 0 0 0 0 

 
 

Table 2 The coefficients of temperature T for Aluminum Oxide (from Reddy and Chin 1998) 

The material properties P0 P-1 P1 P2 P3 

Thermal expansion coefficient αX (1/K) 6.8269×10-6 0 1.838×10-4 0 0 

Young’s modulus E (Pa) 349.55×109 0 -3.853×10-4 4.027×10-7 -1.673×10-10

Poisson’s ratio n 0.26 0 0 0 0 

Mass density r (kg/m3) 2700 0 0 0 0 

 
 

0( , , ) ( , )v vX Y t X t  (6)
 
Where u0 and v0 are the axial and the transverse displacements in the mid-plane, t indicates time. 

Using Eqs. (5) and (6), the linear strain- displacement relation can be obtained 
 

2

0 0

2

( , ) ( , )
xx

u X t v X tu
Y

X X X


 
  
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 (7)

 
According to Hooke’s law, constitutive equations of the FGM beam are as follows 
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Where σxx and ε are normal stresses and normal strains in the X direction, respectively. Based 

on Euler-Bernoulli beam theory, the elastic strain energy (Ui) of the beam is expressed as 
 

0

1
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L

i xx
A

U dAdX     (9)

 
By substituting Eqs. (7) and (8) into Eq. (9), elastic strain energy (Ui) can be rewritten as 

follows 
2 2
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where 
2, , ) (1, , )( , )(

A
XX XX XXB Y YE Y T dAA D    (11a)

 

, ) ( , ) (1, )( , )(
A

XT YTA Y T T YE Y T dAA     (11b)

 
Kinetic energy (V) of the FGM beam are expressed as follows 
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1
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2
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t t
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By substituting Eqs. (5) and (6) into Eq. (12), Kinetic energy (V) can be rewritten as follows 
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where 
 

2
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The potential energy of the external load can be written as 
 

0
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L

e
x
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
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The Kelvin–Voigt model for the FGM beam is used. The constitutive relations for the 

Kelvin–Voigt model between the stresses and strains become 
 

( , )( , ) ( )Y TE Y T
t

   
 


 (16)

 
where η is the damping ratios, as follows 
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c Y
Y T

E Y T
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where c is the coefficient of damping of the beam. the dissipation function of the beam is 
expressed as 

21
( , )

2
( , ) dV( )XX

V

R Y TE Y T
t


  (18)

 
By substituting Eq. (7) into Eq. (18) and reducing the volume integral to a one-dimensional 

integral, the dissipation function (R) can be rewritten as follows 
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2 2
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where 
2

1 2 3, , ( , ) (1, , )( , )( )
A

Y T Y YE Y T dAC C C    (20)

 
Lagrangian functional of the problem is given as follows 
 

( )eiI T U U   (21)
 
The problem is solved by using Lagrange’s equations and time integration method of Newmark 

(1959). 
Total nodal displacements q which is written for a two-node beam element, each node has three 

degrees of freedom, shown in Fig. 2 are defined as follows 
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The displacement field of the finite element is expressed in terms of nodal displacements as 

follows 
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Fig. 2 A two-node beam element 
where ui, vi and qi are axial displacements, transverse displacements and slopes at the two end 
nodes of the beam element, respectively. )(U

ij
 and 

)(V
ij

 are Hermitian shape functions for axial 
and transverse degrees of freedom, respectively, which are given in Appendix. 

By substituting Eqs. (23) and (24) into Eqs. (10), (11) and (19), energy functions can be 
rewritten as follows 
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After substituting Eqs. (23) and (24) into Eq. (21) and then using the Lagrange’s equations 

gives the following equation 
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kDQ is the generalized damping load which can be obtained from the dissipation function by 
differentiating R with respect to .)(e

kq  Where 
)(e

kq  indicates the time derivatives of nodal 
displacements q. 

The Lagrange’s equations yield the system of equations of motion for the finite element and by 
use of usual assemblage procedure the following system of equations of motion for the whole 
system can be obtained as follows 
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where, [K] is the stiffness matrix, [D] is the damping matrix, [M] is mass matrix and {F(t)} is the 
load vector. 

The components of the stiffness matrix [K] 
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where 
( ) ( )

0

[ ]
e U

TL U

XX
A A

d dK dX
dX dX
   

  
    

  , (31b)

 
( ) ( )

0

2

2
[ ]

e V U
TL

XX
B B

d dK dX
dXdX

    
    

    
  , (31c)

 
( ) ( )

0

2 2

2 2
[ ]

e V V
TL

XX
D D

d dK dX
dX dX
    

   
      

  , (31d)

 
Where Le indicates the length of the finite beam element. The mass matrix [M] can be 

expressed as a sum of four sub-matrices as shown below 
 

[ ] [ ] [ ] [ ] [ ]U V UM M M MM      (32)
 

Where [MU], [MV] and [Mq] are the contribution of u, v and q degree of freedom to the mass matrix, 
[MUq] is coupling mass matrix due to coupling between u and q. Explicit forms of [M] are given as 
follows 

( ) ( )
1

0

[ ] [ ][ ]
e

U U

L
T

UM I dX   , (33a)

 

( ) ( )
1

0

[ ] [ ][ ]
e

V V

L
T

VM I dX   , (33b)

 
( ) ( )

1
0

[ ] [ ][ ]
e V VL

Td d
M

dX dX
I dX

 
  , (33c)

 

( )
( ) ( )

( )
2

0

[ ] [ ] [ ][ ]
e

T U

U

L V V
U TM

d d
I

dX dX
dX

 
 

      
 , (33d)

 
The components of the damping matrix [D] 
 

[ ] [ ]

[ ] [ ]
[ ]

T

A B

B D

D D
D D

D
 
 
  

 , (34a)

 
where 

( ) ( )

1

0

[ ]
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TL U
A C

d d
D dX

dX dX
    

    
   

 , (34b)
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( ) ( )

2
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2

2[ ]
e V U

TL
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d d
D dX

dXdX
 


   

    
    

 , (34c)

 
( ) ( )

3

0

2 2

2 2[ ]
e V V

TL
D C

d d
D dX

dX dX
    

    
      

 , (34d)

 
The load vector {F(t)} is expressed as 
 

0

{ ( )} ( , ) d( ){ }
eL

x

TX F X t XF t 


   (35)

 
The motion equations which is given by Eq. (30), are solved in the time domain by using 

Newmark average acceleration method (Newmark 1959). 
 
 

3. Numerical results 
 

In the numerical examples, the effects of the different material distributions and temperature 
rising on the wave propagations of the FG beam are presented in figures. The beams considered in 
numerical examples are made of Zirconia and Aluminum Oxide. The bottom surface of the FG 
beam is Zirconia and the top surface of the FG beam is Aluminum Oxide. When the power index n 
= 0, the beam material is reduced to full Aluminum Oxide (homogeneous Aluminum Oxide). The 
coefficients of temperature T for Zirconia and Aluminum Oxide are listed in Tables 1 and 2 (from 
Reddy and Chin 1998). In this study, the unit of the temperature is Kelvin (K). In numerical 
examples, the initial temperature (installation temperature) of the beam is assumed to be T0 = 300 
K. In numerical calculations, the number of finite elements is taken as 100 elements. Unless 
otherwise stated, it is assumed that the width of the beam is b = 0.1 m, height of the beam is h = 
0.1 m and length of the beam is L = 3 m in the numerical results. In the numerical integrations, 
five-point Gauss integration rule is used. 

Numerical calculations in the time domain are made by using Newmark average acceleration 
method. The system of linear differential equations which are given by Eq. (30), is reduced to a 
linear algebraic system of equations by using average acceleration method. The beam is excited by 
a transverse triangular force impulse (with a peak value 1 N) modulated by a harmonic function 
(Fig. 3) (Ostachowicz et al. 2004). In this study, higher frequency excitation impulse is used for 
detection of the cracks. The frequencies used in this technique are much higher than those 
typically used in modal analysis based methods but are lower than the frequencies used for 
ultrasonic testing. In our case the excited frequencies lies in the range between 200 and 1200 kHz, 
with dominant one about 700 kHz. At such high frequencies, the response is dominated by the 
local mode and the wavelength of the excitation is small enough to detect incipient or potentially 
significant damage. 
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(a) (b) 

Fig. 3 The shape of the excitation impulse in the (a) time domain; and (b) frequency domain 
 
 

Table 3 Comparison of the dimensionless fundamental frequency iw of intact FG beams 

PR Present Yang and Chen (2008) Ke et al. (2009) 

0.2 0.8283 0.83 0.8235 

1 0.8786 0.88 0.8752 

5 0.8283 0.83 0.8235 

 
 
In order to establish the accuracy of the present formulation and the computer program 

developed by the author, the results obtained from the present study are compared with the 
available results in the literature. For this purpose, the dimensionless fundamental frequency 













1/ IDXX

  of a FG cantilever beam according to the exponential distribution are calculated 

for different exponential ratios PR for L/h = 20 compared with those of Yang and Chen (2008) and 
Ke et al. (2009). As seen from Table 3, the present results are in good agreement with that the 
results of Yang and Chen (2008) and Ke et al. (2009). 

 
 

 

Fig. 4 Transverse accelerations at the free end of the homogeneous beam 
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Fig. 5 Young’s Modulus versus temperature rising for Zirconia and Aluminum Oxide 
 
 
To further verify the present results, the transverse accelerations at the free end of the 

homogeneous cantilever beam are plotted for compared with those of Ostachowicz et al. (2004) 
for b = 0.02 m, h = 0.02 m, E = 72.7 GPa, Poisson ratio = 0.33 and mass density ρ = 2700 kg/m3. It 
is clearly seen that the curves of Fig. 4 of the present study are very close to those of Fig. 4 of Li et 
al. Ostachowicz et al. (2004). 

Young’s Modulus versus temperature rising is illustrated in Fig. 5 by using Eqs. (1) and (2) for 
Zirconia and Aluminum Oxide. 

It is seen from Fig. 5 that with increase in temperature, Young’s modulus decreases. Because, 
with the temperature increase, the intermolecular distances of the material increase and inter- 

 
 

 

Fig. 6 Young’s Modulus distributions along the height of the beam for some given values of the 
power-law exponent n for the temperature environment T = 400 K 
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molecular forces decrease. As a result, the strength of the material decreases. 
In Fig. 6, the variations of material properties (Young’s Modulus) distributions along the height 

of the beam are presented for some given values of the power-law exponent n for the temperature 
environment T = 400 K. 

It is seen from Fig. 6 that, when the material power law index n increases, Young’s modulus 
decreases. Because when the material power law index n increase, the material of the beam get 
close to the bottom material (pure Zirconia) and it is known from the physical properties of the 
pure Zirconia and the top material (Aluminum Oxide) that the Young modulus of pure Aluminum 
Oxide is approximately greater than that of Zirconia. 

In Fig. 7, the variations of Young’s Modulus distributions along the height of the beam are 
presented for some given values of the temperature T and some given values of the power-law 
exponent with temperature dependent physical properties. 

It is seen from Fig. 7 that with increase in temperature, the Young’s Modulus of beam varies 
considerably. Also, it is seen from Fig. 7 that, the material power law index n play an important 
role on the properties of the materials. 

In Figs. 8-15, the effects of the uniform temperature rising on the wave propagation of the FG 
beam are investigated for the power law distribution. For this purpose, the effect of the 
temperature on the transverse accelerations at the free end of the FG cantilever beam are illustrated 
in Figs. 8, 9, 10 and 11 for the n = 0, n = 0.5, n = 1 and n = 2, respectively. Also, the effect of the 
temperature on the transverse displacements at the free end of the FG cantilever beam on the 
frequency domain are illustrated in Figs. 12, 13, 14 and 15 for the n = 0, n = 0.3, n = 1 and n = 3, 
respectively. 

 
 

 

Fig. 7 Variations of Young’s Modulus with some given values of the temperature T: (a) n = 0; 
(b) n = 0.5; (c) n = 2; and (d) n = 20 

 

1434



 
 
 
 
 
 

Wave propagation of a functionally graded beam in thermal environments 

 
 
Fig. 8 Transverse accelerations at the free end of the FG beam for n = 0. (a) T = 300 K; (b) T = 

500 K; (c) T = 700 K; and (d) T = 900 K 
 
 
 

 
 
Fig. 9 Transverse accelerations at the free end of the FG beam for n = 0.5. (a) T = 300 K; (b) T = 500 K; 

(c) T = 700 K; and (d) T = 900 K 
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Fig. 10 Transverse accelerations at the free end of the FG beam for n = 1. (a) T = 300 K; (b) T = 

500 K; (c) T = 700 K; and (d) T = 900 K 
 
 

 
Fig. 11 Transverse accelerations at the free end of the FG beam for n = 2. (a) T = 300 K; (b) T = 

500 K; (c) T = 700 K; and (d) T = 900 K 
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Fig. 12 Transverse accelerations at the free end of the FG beam on the frequency domain response for 
n = 0. (a) T = 400 K; (b) T = 600 K; and (c) T = 800 K 

 
 

 

Fig. 13 Transverse accelerations at the free end of the FG beam on the frequency domain response 
for n = 0.3 (a) T = 400 K; (b) T = 600 K; and (c) T = 800 K 
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Fig. 14 Transverse accelerations at the free end of the FG beam on the frequency domain response 
for n = 1. (a) T = 400 K; (b) T = 600 K; and (c) T = 800 K 

 
 

 

Fig. 15 Transverse accelerations at the free end of the FG beam on the frequency domain response 
for n = 3 (a) T = 400 K; (b) T = 600 K; and (c) T = 800 K 
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It is seen from Fig. 8 that three waves occur (namely the excitation and the reflected wave. The 
first wave, namely the excitation, is occurred by the impact force. The second and third waves (See 
Circle) occur because of reflecting from the boundaries of the clamped support. Also, it is seen 
from figures that, the waves disappear as time progressed because of the damping. 

It is seen from Figs. 9, 10 and 11 that with increase the power law index n, additional waves 
occur at the end of the primary waves (the excitation and the reflected waves). This is because: the 
material properties of the beam vary continuously in the height direction and the bending rigidity 
and mass moment of inertia are variable over the entire height of the beam as seen from Fig. 6. 
However, the additional waves do not occur in the case of homogeneous beam (n = 0) as seen 
from Fig. 8, because the material distribution is uniform over the entire height of the beam. It 
shows that the determination of the inhomogeneous distribution or functionally graded distribution 
in the structures can be found by investigating the wave propagation analysis. 

Also, it is seen from Figs. 9, 10 and 11 that with increase temperature, the amplitude of the 
additional waves increases in the case of functionally graded material. This is because: with 
increase in the temperature, the distribution of the material more vary over the entire height of 

 
 

 

Fig. 16 Transverse accelerations at the free end of the FG beam for T = 400 K. (a) n = 0; (b) n = 1; 
(c) n = 3; (d) n = 10; n = 12 and n = 20 
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the beam because of temperature-dependent physically properties. Even if the temperature 
distribution is uniform, the bending rigidity and mass moment of inertia change over the entire 
height of the beam because of temperature-dependent physically properties as seen from Fig. 7. 
With increase temperature, due to the disorder of the material distribution increases, the effects of 
the inhomogeneous distribution grow. As a result, the amplitude of the additional waves increase. 

It is seen from Fig. 12, with increase the temperature, the relationship between frequency (w) 
and displacements is almost never changed. However, it is seen from Figs. 13, 14 and 15 that with 
increase the temperature relationship between frequency (w) and displacements changes seriously 
because the disorder of the material distribution increases. It shows that the material power law 
index n play an important role on responses of the frequency domain of the FG beam. 

In Fig. 16, the effects of the power law index n on the wave propagation of the FG beam are 
investigated. For this purpose, the effect of the power law index n on the transverse accelerations 
at the free end of the FG cantilever beam are illustrated for T = 400 K. 

As seen from Fig. 16 that, it is mentioned before that, with increase the power law index n, the 
amplitude of the additional waves increases seriously. With a increase in the power law index n, 
the additional waves interfere more with primary waves. Whereas, the additional waves do not 
interfere with the primary waves in the case of homogeneous beam as seen from Fig. 16(a). It is 
dedicated figures that the material distributions play an important role in the wave propagation of 
the functionally graded beam. With using FGM, the negative effects of the waves and impact loads 
can be reduced. 

In Figs. 17, 18 and 19, the effects of the different types of material distribution and temperatures 
 
 

Fig. 17 Transverse accelerations at the free end of the FG beam for PR = 1 for the exponential 
distribution. (a) T = 300 K; (b) T = 500 K; (c) T = 700 K; and (d) T = 900 K 
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Fig. 18 Transverse accelerations at the free end of the FG beam for PR = 2 for the exponential 
distribution. (a) T = 300 K; (b) T = 500 K; (c) T = 700 K; and (d) T = 900 K 

 
 

Fig. 19 Transverse accelerations at the free end of the FG beam for PR = 10 for the exponential 
distribution. (a) T = 300 K; (b) T = 500 K; (c) T = 700 K; and (d) T = 900 K 
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Fig. 20 Transverse accelerations at the free end of the FG beam for T = 300 K for the Mori–Tanaka 

scheme. (a) n = 0; (b) n = 0.5; (c) n = 1 and (d) n = 5 
 
 

 
 
Fig. 21 Transverse accelerations at the free end of the FG beam for T = 500 K for the Mori–Tanaka 

scheme. (a) n = 0; (b) n = 0.5; (c) n = 1 and (d) n = 5 
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Fig. 22 Transverse accelerations at the free end of the FG beam for T = 700 K for the Mori–Tanaka 
scheme. (a) n = 0; (b) n = 0.5; (c) n = 1; and (d) n = 5 

 
 

on the wave propagation of the beam are presented for the exponential distribution (Eq. (3)). 
It is seen from Figs. 17, 18 and 19 that with increase the ratio of material properties PR (PB / PT), 

the amplitude of the additional waves increases seriously for the exponential distribution. Also, 
with increase the PR, the additional waves interfere more with primary waves as like as the power 
law distribution. 

In Figs. 20, 21 and 22, the effects of the different types of material distribution and temperatures 
on the wave propagation of the beam are presented for Mori–Tanaka scheme (Eq. (4)). 

It is seen from Figs. 20, 21 and 22 that with increase the gradient index n, the amplitude of the 
additional waves decreases seriously for the Mori–Tanaka scheme. Also, with increase the n, the 
additional waves interfere more with primary waves as like as the power law and the exponential 
distribution. It is seen the figures, the wave propagation characteristics of the power law and the 
exponential distribution are almost the same. However, the wave propagation characteristics of the 
Mori–Tanaka scheme is different from the wave propagation characteristics of the power law and 
the exponential distribution. 

 
 

4. Conclusions 
 
In this paper, the effect of the temperature on the wave propagation behavior of a functionally 

graded cantilever beam under impact force is studied considering the temperature dependent 
material properties. The effects of temperature and different material distributions on the wave 
propagations of the FGM beams are investigated in detail. It is observed from the investigations 
that the temperature rising and material distributions play important role in the wave propagation 
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of the functionally graded beams. With increase in the temperature, the wave propagation behavior 
of the FG beam change seriously. Also, it is observed from the figures that the material 
distributions play an important role in the wave propagation of the functionally graded beam. The 
determination of the inhomogeneous distribution or functionally graded distribution in the 
structures can be found by investigating the wave propagation analysis and the additional waves. It 
can be reduced the negative effects of the waves by using FGM. It is necessary to consider 
temperature dependent material properties for getting more realistic results of the wave 
propagation of the FG structures under the thermal effects. Future work should be devoted to the 
investigation of the nonlinear wave propagation of functionally graded or different composite 
structures under temperature effects. 
 
 
References 
 
Ait Yahia, S., Ait Atmane, H., Ahmed Houari, M.S. and Tounsi, A. (2015), “Wave propagation in 

functionally graded plates with porosities using various higher-order shear deformation plate theories”, 
Struct. Eng. Mech., Int. J., 53(6), 1143-1165. 

Akbaş, Ş.D. (2014a), “Wave propagation analysis of edge cracked beams resting on elastic foundation”, Int. 
J. Eng. Appl. Sci., 6(1), 40-52. 

Akbaş, Ş.D. (2014b), “Wave propagation analysis of edge cracked circular beams under impact force”, Plos 
One, 9(6), e100496. 

Akbaş, Ş.D. (2015), “Wave propagation in edge cracked functionally graded beams under impact force”, J. 
Vib. Control. DOI: 10.1177/1077546314547531 

Aksoy, H.G. and Şenocak, E. (2009), “Wave propagation in functionally graded and layered materials”, 
Finite Elem. Anal. Des., 45(12), 876-891. 

Bin, W., Jiangong, Y. and Cunfu, H. (2008), “Wave propagation in non-homogeneous magneto-electro- 
elastic plates”, J. Sound Vib., 317(1-2), 250-264. 

Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), “Thermomechanical bending response of FGM thick 
plates resting on Winkler–Pasternak elastic foundations”, Steel Compos. Struct., Int. J., 14(1), 85-104. 

Bourada, M., Kaci, A., Ahmed Houari, M.S. and Tounsi, A. (2015), “A new simple shear and normal 
deformations theory for functionally graded beams”, Steel Compos. Struct., Int. J., 18(2), 409-423. 

Cao, X., Shi, J. and Jin, F. (2012), “Lamb wave propagation in the functionally graded piezoelectric- 
piezomagnetic material plate”, Acta Mechanica, 223(5), 1081-1091. 

Chakraborty, A. and Gopalakrishnan, S. (2004), “Wave propagation in inhomogeneous layered media: 
Solution of forward and inverse problems”, Acta Mechanica, 169(1-4), 153-185. 

Chakraborty, A. and Gopalakrishnan, S. (2005), “A spectral finite element for axial-flexural-shear coupled 
wave propagation analysis in lengthwise graded beam”, Computat. Mech., 36(1), 1-12. 

Chakraborty, A., Gopalakrishnan, S. and Kausel, E. (2005), “Wave propagation analysis in inhomogeneous 
piezo-composite layer by the thin-layer method”, Int. J. Numer. Method. Eng., 64(5), 567-598. 

Chouvion, B., Fox, C.H.J., McWilliam, S. and Popov, A.A. (2010), “In-plane free vibration analysis of 
combined ring-beam structural systems by wave propagation”, J. Sound Vib., 329(24), 5087-5104. 

Dinevay, P.S., Rangelov, T.V. and Manolis, G.D. (2007), “Elastic wave propagation in a class of cracked, 
functionally graded materials by BIEM”, Computat. Mech., 39(3), 293-308. 

Du, J., Jin, X., Wang, J. and Xian, K. (2007), “Love wave propagation in functionally graded piezoelectric 
material layer”, Ultrasonics, 46(1), 13-22. 

Gopalakrishnan, S. and Doyle, J.F. (1995), “Spectral super-elements for wave propagation in structures with 
local non-uniformities”, Comput. Method. Appl. Mech. Eng., 121(1-4), 77-90. 

Farris, T.N. and Doyle, J.F. (1989), “Wave propagation in a split Timoshenko beam”, J. Sound Vib., 130(1), 
137-147. 

Frikha, A., Treyssede, F. and Cartraud, P. (2011), “Effect of axial load on the propagation of elastic waves 

1444



 
 
 
 
 
 

Wave propagation of a functionally graded beam in thermal environments 

in helical beams”, Wave Motion, 48(1), 83-92. 
Islam, Z.M., Jia, P. and Lim, C.W. (2014), “Torsional wave propagation and vibration of circular 

nanostructures based on nonlocal elasticity theory”, Int. J. Appl. Mech., 6(2), 1450011. 
Jiangong, Y. and Qiujuan, M. (2010), “Wave characteristics in magneto-electro-elastic functionally graded 

spherical curved plates”, Mech. Adv. Mater. Struct., 17(4), 287-301. 
Kang, B., Riedel, C.H. and Tan, C.A. (2003), “Free vibration analysis of planar curved beams by wave 

propagation”, J. Sound Vib., 260(1), 19-44. 
Ke, L.L., Yang, J., Kitipornchai, S. and Xiang, Y. (2009), “Flexural vibration and elastic buckling of a 

cracked Timoshenko beam made of functionally graded materials”, Mech. Adv. Mater. Struct., 16(6), 488- 
502. 

Kocatürk, T, and Akbaş, Ş.D. (2013), “Wave propagation in a microbeam based on the modified couple 
stress theory”, Struct. Eng. Mech., Int. J., 46(3), 417-431. 

Kocatürk, T., Eskin, A. and Akbaş, Ş.D. (2011), “Wave propagation in a piecewise homegenous cantilever 
beam under impact force”, Int. J. Phys. Sci., 6(16), 4013-4020. 

Krawczuk, M. (2002), “Application of Spectral beam finite element with a crack and iterative search 
technique to damage detection”, Finite Elem. Anal. Des., 38(6), 537-548. 

Krawczuk, M., Palacz, M. and Ostachowicz, W. (2002), “The dynamic analysis of a cracked Timoshenko 
beam by the spectral element method”, J. Sound Vib., 264(5), 1139-1153. 

Kumar, D.S., Mahapatra, D.R. and Gopalakrishnan, S. (2004), “A spectral finite element for wave 
propagation and structural diagnostic analysis of composite beam with transverse crack”, Finite Elem. 
Anal. Des., 40(13-14), 1729-1751. 

Lee, S.Y. and Yeen, W.F. (1990), “Free coupled longitudinal and flexural waves of a periodically supported 
beam”, J. Sound Vib., 142(2), 203-211. 

Li, X.Y., Wang, Z.K. and Huang, S.H. (2004), “Love waves in functionally graded piezoelectric materials”, 
Int. J. Solid. Struct., 41(26), 7309-7328. 

Liu, Y. and Lu, F. (2012), “Dynamic stability of a beam on an elastic foundation including stress 
wave effects”, Int. J. Appl. Mech., 4(2), 1250017. 

Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), “A new hyperbolic shear deformation theory for bending 
and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates”, 
Appl. Math. Model., 39(9), 2489-2508. 

Molaei Najafabadi, M., Ahmadian, M.T. and Taati, E. (2014), “Effect of thermal wave propagation on 
thermoelastic behavior of functionally graded materials in a slab symmetrically surface heated using 
analytical modeling”, Compos. Part B: Engineering, 60, 413-422. 

Newmark, N.M. (1959), “A method of computation for structural dynamics”, ASCE Eng. Mech. Div., 85(3), 
67-94. 

Ostachowicz, W., Krawczuk, M., Cartmell, M. and Gilchrist, M. (2004), “Wave propagation in delaminated 
beam”, Comput. Struct., 82(6), 475-483. 

Palacz, M. and Krawczuk, M. (2002), “Analysis of longitudinal wave propagation in a cracked rod by the 
spectral element method”, Comput. Struct., 80(24), 1809-1816. 

Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005a), “The spectral finite element model for analysis of 
flexural-shear coupled wave propagation, Part 1: Laminated multilayer composite beam”, Compos. Struct., 
68(1), 37-44. 

Palacz, M., Krawczuk, M. and Ostachowicz, W. (2005b), “The spectral finite element model for analysis of 
flexural-shear coupled wave propagation. Part 2: Delaminated multilayer composite beam”, Compos. 
Struct., 68(1), 45-51. 

Park, J. (2008), “Identification of damage in beam structures using flexural wave propagation characteristics”, 
J. Sound Vib., 318(4-5), 820-829. 

Reddy, J.N. and Chin, C.D. (1998), “Thermoelastical analysis of functionally graded cylinders and plates”, J. 
Therm. Stress., 21(6), 593-626. 

Safari-Kahnaki, A., Hosseini, S.M. and Tahani, M. (2011), “Thermal shock analysis and thermo-elastic 
stress waves in functionally graded thick hollow cylinders using analytical method”, Int. J. Mech. Mater. 

1445



 
 
 
 
 
 

Şeref Doğuşcan Akbaş 

Des., 7(3), 167-184. 
Shariyat, M., Khaghani, M. and Lavasani, S.M.H. (2010), “Nonlinear thermoelasticity, vibration, and stress 

wave propagation analyses of thick FGM cylinders with temperature-dependent material properties”, Eur. 
J. Mech., A/Solids, 29(3), 378-391. 

Shen, H.S. and Wang, Z.X. (2012), “Assessment of Voigt and Mori–Tanaka models for vibration analysis of 
functionally graded plates”, Compos. Struct., 94(7), 2197-2208. 

Sridhar, R., Chakraborty, A. and Gopalakrishnan, S. (2007), “Wave propagation analysis in anisotropic and 
inhomogeneous uncracked and cracked structures using pseudospectral finite element method”, Int. J. 
Solid. Struct., 43(16), 4997-5031. 

Sun, D. and Luo, S.-N. (2011a), “Wave propagation and transient response of a FGM plate under a point 
impact load based on higher-order shear deformation theory”, Compos. Struct., 93(5), 1474-1484. 

Sun, D. and Luo, S.-N. (2011b), “Wave propagation and transient response of functionally graded material 
circular plates under a point impact load”, Compos. Part B: Engineering, 42(4), 657-665. 

Sun, D. and Luo, S.-N. (2011c), “The wave propagation and dynamic response of rectangular functionally 
graded material plates with completed clamped supports under impulse load”, Eur. J. Mech., A/Solids 
30(3), 396-408. 

Sun, D. and Luo, S.-N. (2011d), “Wave propagation of functionally graded material plates in thermal 
environments”, Ultrasonics, 51(8), 940-995. 

Sun, D. and Luo, S.-N. (2012), “Wave propagation and transient response of a functionally graded material 
plate under a point impact load in thermal environments”, Appl. Math. Model., 36(1), 444-462. 

Teh, K.K. and Huang, C.C. (1981), “Wave propagation in generally orthotropic beams”, Fibre Sci. Technol., 
14(4), 301-310. 

Tian, J., Li, Z. and Su, X. (2003), “Crack detection in beams by wavelet analysis of transient flexural waves”, 
J. Sound Vib., 261(4), 715-727. 

Touloukian, Y.S. (1967), Thermophysical Properties of High Temperature Solid Materials, Macmillan, New 
York, NY, USA. 

Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), “A refined trigonometric shear 
deformation theory for thermoelastic bending of functionally graded sandwich plates”, Aerosp. Sci. 
Technol., 24(1), 209-220. 

Usuki, T. and Maki, A. (2003), “Behavior of beams under transverse impact according to higher-order beam 
theory”, Int. J. Solid. Struct., 40(13-14), 3737-3785. 

Vinod, K.G., Gopalakrishnan, S. and Ganguli, R. (2007), “Free vibration and wave propagation analysis of 
uniform and tapered rotating beams using spectrally formulated finite element”, International Int. J. Solid. 
Struct., 44(18-19), 5875-5893. 

Watanabe, Y. and Sugimoto, N. (2005), “Flexural wave propagation in a spatially periodic structure of 
articulated beams”, Wave Motion, 42(2), 155-167. 

Yang, J. and Chen, Y. (2008), “Free vibration and buckling analyses of functionally graded beams with edge 
cracks”, Compos. Struct., 83(1), 48-60. 

Yokoyama, T. and Kishida, K. (1982), “Finite element analysis of flexural wave propagation in elastic 
beams”, Technol. Reports of the Osaka University, 32(1642), 103-112. 

Zhu, H., Ding, L. and Yin, T. (2013), “Wave propagation and localization in a randomly disordered periodic 
piezoelectric axial-bending coupled beam”, Adv. Struct. Eng., 16(9), 1513-1522. 

Zidi, M., Tounsi, A., Houari, M.S.A., Adda Bedia, E.A. and Anwar Bég, O. (2014), “Bending analysis of 
FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory”, Aerosp. 
Sci. Technol., 34, 24-34. 

 
CC 
 
 

1446



 
 
 
 
 
 

Wave propagation of a functionally graded beam in thermal environments 

Appendix 
 
The interpolation functions for axial degrees of freedom are 
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The interpolation functions for transverse degrees of freedom are 
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Where Le indicates the length of the finite beam element. 
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