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Abstract.  In this work, a trigonometric refined beam theory for the bending, buckling and free vibration 
analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is 
developed. The significant feature of this model is that, in addition to including the shear deformation effect, 
it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. 
The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with 
different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing 
the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. 
Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration 
responses of CNTRC beam are discussed. 
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1. Introduction 

 
Recently, Carbon nanotubes (CNTs) become a new class of fiber reinforcement in polymer 

matrix composites due to their superior mechanical, electrical, and thermal properties (Thostenson 
et al. 2001, Esawi and Farag 2007, Besseghier et al. 2015, Adda Bedia et al. 2015) and have taken 
a considerable research interests in the materials engineering community (Tounsi et al. 2013a, 
Benguediab et al. 2014). Compared with the classical carbon fiber-reinforced polymer composites, 
carbon nanotube-reinforced composites (CNTRCs) have the potential of improving increased 
strength and stiffness. The polymer composites reinforced by aligned CNT arrays were 
investigated in the first time by Ajayan et al. (1994). From then, many researchers (Odegard et al. 
2003, Thostenson and Chou 2003, Griebel and Hamaekers 2004, Fidelus et al. 2005, Hu et al. 
2005, Zhu et al. 2007) studied the material characteristics of CNTRCs. Using a finite element, 
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Ashrafi and Hubert (2006) analyzed the elastic properties of carbon nanotube array/polymer 
composites. Xu et al. (2006) studied the thermal response of single-walled carbon nanotubes 
(SWCNT) polymer–matrix composites. Han and Elliott (2007) investigated the elastic 
characteristics of polymer/carbon nanotube composites by employing molecular dynamics (MD). 
Wuite and Adali (2005) presented a multi-scale analysis of bending deflection and stresses of 
CNT-reinforced polymer composite beams. Vodenitcharova and Zhang (2006) presented a 
continuum mechanics model for the uniform bending of a nanocomposite beam with circular cross 
section, comprising of a SWCNT and a matrix. Ray and Batra (2007) presented a new carbon 
CNT-reinforced 1–3 piezoelectric composite for the active control of smart structures. A 
micromechanical analysis has been developed to determine the effective piezoelectric and elastic 
modulus of nanocomposite. Based on Timoshenko beam theory, Ke et al. (2013) studied the 
dynamic stability response of functionally graded (FG) nanocomposite beams reinforced by 
SWCNTs. Bakhti et al. (2013) studied the nonlinear cylindrical bending behavior of FG 
nanocomposite plates reinforced by SWCNTs using an efficient and simple refined theory. Kaci et 
al. (2012) investigated the nonlinear cylindrical bending of simply supported FG nanocomposite 
plates reinforced by SWCNTs. Zhu et al. (2012) employed the finite element method to examine 
the free vibration of FG-CNT reinforced composite plates. Wattanasakulpong and Ungbhakorn 
(2013) studied the bending, buckling and vibration behaviors of carbon nanotube-reinforced 
composite (CNTRC) beams where several higher-order shear deformation theories are presented 
and discussed in details. Lei et al. (2013a) utilized the element-free kp-Ritz method to investigate 
the free vibration of FG-CNT reinforced composite rectangular plates in a thermal environment. 
Lei et al. (2013b) presented a large deflection analysis of FG-CNT reinforced composite plates by 
considering different boundary conditions. Alibeigloo (2014) studied the bending behavior of a 
CNT reinforced composite rectangular host plate attached to thin piezoelectric layers subjected to 
thermal load and or electric field. Aydogdu (2014) investigated the vibration response of aligned 
carbon nanotube reinforced composite beams by using the Ritz method. Wu and Li (2014) 
presented a unified formulation of finite prism techniques based on Reissner’s mixed variational 
theorem for analysis of 3D free vibration of FG-CNT reinforced composite plates and laminated 
fiber-reinforced composite plates. Recently, the stability of FG sandwich plate was studied by 
Swaminathan and Naveenkumar (2014) using a higher order refined computational models. In 
literature survey, we can found also some studies dealing about beams resting on elastic 
foundations such as (Yesilce 2010, Yesilce and Catal 2009). 

In the present work, the bending, buckling and vibration response of the CNTRC beams is 
investigated using a trigonometric refined beam theory. This theory is based on assumption that 
the in-plane and transverse displacements consist of bending and shear components, in which the 
bending components do not contribute toward shear forces and, likewise, the shear components do 
not contribute toward bending moments. The simply supported CNTRC beams are supported by 
the Pasternak elastic foundation, including a shear layer and Winkler spring. Novel analytical 
solutions of deflections, stresses, buckling loads, natural frequencies are developed and discussed 
in details. Several aspects of spring parameters, thickness ratios, CNT volume fractions, types of 
CNT distribution, etc., which have considerable impact on the analytical solutions are also studied. 
 
 

2. Functionally graded carbon nanotube-reinforced composites beams 
 
The CNTRC beam under the present study is made from a mixture of the SWCNTs and 

isotropic polymer matrix. Fig. 1(a) shows a CNTRC beam, having length (L) and thickness (h), 
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(a) (b) 

Fig. 1 Geometry of a CNTRC beam on elastic foundation (a); and cross sections of different 
patterns of reinforcement (b) 

 
 

supported by the Pasternak elastic foundation. Four different patterns of reinforcement over the 
cross sections are considered in this study as is indicated in Fig. 1(b). 

The material properties of CNTRC beams can be computed utilizing the rule of mixture which 
gives the effective Young’s modulus and shear modulus of CNTRC beams as (Bakhti et al. 2013, 
Kaci et al. 2012, Wattanasakulpong and Ungbhakorn 2013). 
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where ;11

cntE  
cntE22  and 

cntG12  are the Young’s modulus and shear modulus of SWCNT, respectively 
and 

pE  and 
pG  are the corresponding material properties of the polymer matrix. Also,  cntV  and 

pV  are the volume fractions for carbon nanotube and the polymer matrix, respectively, with the 
relation of .1 pcnt VV  To introduce the size-dependent material properties of SWCNT, the CNT 
efficiency parameters, i  (i = 1, 2, 3), are considered. They can be obtained from matching the 
elastic moduli of CNTRCs estimated by the MD simulation with the numerical results determined 
by the rule of mixture (Han and Elliott 2007). By employing the same rule, Poisson’s ratio (v) and 
mass density (ρ) of the CNTRC beams are expressed as 
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where ,cnt  

p  and ,cnt  
p  are the Poisson’s ratios and densities of the CNT and polymer 

matrix respectively. For different patterns of carbon nanotube reinforcement distributed within the 
cross sections of the beams as shown in Fig. 1(b), the continuous mathematical functions 
employing for introducing the distributions of material constituents are expressed below 
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where Wcnt is the mass fraction of CNTs. From Eq. (3), it can be seen that the O-, X-and V-Beams 
are some types of functionally graded beams in which their material constituents are varied 
continuously within their thicknesses; while, the UD-Beam has uniformly distributed CNT 
reinforcement. In this work, the CNT efficiency parameters (ηi) associated with the considered 
volume fraction )( *

cntV  are: 1  1.2833 and  32   1.0566 for the case of ;12.0* cntV  
3414.11   and 7101.132   for the case of ;17.0* cntV  3238.11   and 32    = 1.7380 

for the case of 28.0* cntV  (Yas and Samadi 2012). 
 
 

3. Theory and formulations 
 

3.1 Kinematics and constitutive equations 
 
The displacement field of the present theory, based on Ould Larbi et al. (2013), Al-Basyouni et 

al. (2015), Bourada et al. (2015) and Bennai et al. (2015) beam theory, can be obtained as 
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where u0 is the axial displacement, wb and ws are the bending and shear components of transverse 
displacement along the mid-plane of the beam. In this work, the shape function f(z) is chosen 
based on a trigonometric function as (Bouderba et al. 2013, Tounsi et al. 2013b) 
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The non-zero strains are given by 
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By assuming that the material of CNTRC beam obeys Hooke’s law, the stresses in the beam 
become 
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3.2 Equations of motion 
 
Hamilton’s principle is employed herein to determine the equations of motion as follows (Talha 

and Singh 2010, Li et al. 2010, El Meiche et al. 2011, Benachour et al. 2011, Shahrjerdi et al. 
2011, Jha et al. 2012, 2013, Berrabah et al. 2013, Nedri et al. 2014, Belabed et al. 2014, Hebali et 
al. 2014, Mahi et al. 2015, Ziane et al. 2015, Zemri et al. 2015) 
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where δU is the virtual variation of the strain energy; δV is the virtual variation of the potential 
energy; and δK is the virtual variation of the kinetic energy. 

The variation of the strain energy of the beam can be stated as 
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where N, Mb, Ms and Q are the stress resultants defined as 
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The variation of the potential energy by the transverse load q, the axial compressive force Nx0 
and the density of reaction force of foundation fe can be written as (Akavci 2014, Zidi et al. 2014, 
Yaghoobi and Fereidoon 2014, Yaghoobi et al. 2014) 
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where the reaction force of foundation is given by (Khalfi et al. 2014. Ait Amar Meziane et al. 
2014) 
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where Kw and Ks are the Winkler and shearing layer spring constants which can be determined 
from Kw = βwA110 / L

2 and Ks = βsA110 in which βw and βs are the corresponding spring constant 
factors. It is also defined that A110 is the extension stiffness or the value of A11 of a homogeneous 
beam made of pure matrix material. 

The variation of the kinetic energy can be expressed as 
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where dot-superscript convention indicates the differentiation with respect to the time variable t; 
ρ(z) is the mass density; and (I0, I1, J1, I2, J2, K2) are the mass inertias defined as 
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Substituting the expressions for δU, δV, and δK from Eqs. (10), (12), and (14) into Eq. (9) and 

integrating by parts versus both space and time variables, and collecting the coefficients of δu0, 
δwb, and δws, the following equations of motion of the CNTRC beam are obtained 
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By substituting Eq. (7) into Eq. (8) and the subsequent results into Eq. (11), the constitutive 
equations for the stress resultants are obtained as 
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where A11, B11, etc., are the beam stiffness, defined by 
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Eq. (16) can be expressed in terms of displacements (u0, wb, ws) by using Eqs. (17) and (16) as 

follows 
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3.3 Analytical solution 
 
The Navier solution method is employed to obtain the analytical solutions for a simply 

supported CNTRC beam. The solution is assumed to be of the form 
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where Um, Wbm, and Wsm are arbitrary parameters to be determined, ω is the eigenfrequency 
associated with mth eigenmode, and λ = mπ / L. The transverse load q is also expanded in Fourier 
series as 
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Substituting the expansions of u0, wb, ws, and q from Eqs. (20) and (21) into the equations of 

motion Eq. (19), the analytical solutions can be obtained from the following equations 
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011 Im  ,  112 Im  ,  113 Jm  , 
2

2022 IIm  ,  2
2023 JIm  ,  2

2033 KIm   
(25b)
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4. Numerical results and discussion 
 
In this section, numerical results of bending, buckling and vibrations behaviors of CNTRC 

beams are presented and discussed. The effective material characteristics of CNTRC beams at 
ambient temperature employed throughout this work are given as follows. Poly methyl 
methacrylate (PMMA) is utilized as the matrix and its material properties are: vp = 0.3; ρp = 1190 
kg/m3 and Ep = 2.5 GPa. For reinforcement material, the armchair (10, 10) SWCNTs is chosen 
with the following properties (Yas and Samadi 2012): vcnt = 0.19; ρcn = 1400 kg/m3; cntE11  600 
GPa; cntE22  10 GPa and cntG12  17.2 GPa. 

For convenience, the following nondimensionalizations are employed 
 

 For bending analysis: ,100
4

0

3

w
Lq

hE
w p  ,

2
,

20









hL

Lq

h
xx     ,0,0

0
xzxz

Lq

h    

 For buckling: 
110

0

A

N
N x  

 For vibration analysis: 
110

00 
A

I
L   

 
where A110 and I00 are A11I00 and I0 I0 of beam made of pure matrix material, respectively. 

 
4.1 Bending analysis of CNTRC beams 
 
For bending analysis of UD beams with and without elastic foundations, the present method 

agree well with the bending results of Wattanasakulpong and Ungbhakorn (2013) using third shear 
deformation theory as shown in Tables 1 and 2. It can be observed that the beams supported by 
elastic foundation have lower displacements and stresses compared to those of the beams without 
elastic foundation. Moreover, increasing amount of CNTs makes the CNTRC beams stiffer. 

Figs. 2 and 3 present respectively the effect of both Winkler modulus parameter and the 
Pasternak shear modulus on the deflection of different types of CNTRC beams under uniform load. 
It is observed that as the Winkler and the Pasternak shear parameters increase the transverse 

 
 

Table 1 Dimensionless displacements and stress of UD-Beam with and without elastic foundation under 
uniform loads 

*
cntV  L / h Theory 

βw = 0, βs = 0 βw = 0.1, βs = 0.02 

w  x  xz  w  x  xz  

0.12 

10 
Ref (a) 0.704 8.399 0.701 0.594 7.053 0.602 

Present 0.703 8.458 0.718 0.593 7.103 0.617 

15 
Ref (a) 0.524 11.849 0.716 0.400 9.556 0.568 

Present 0.524 11.888 0.736 0.400 9.019 0.584 

20 
Ref (a) 0.461 15.448 0.725 0.311 10.316 0.520 

Present 0.460 15.479 0.746 0.311 10.336 0.536 
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Table 1 Continued 

*
cntV  L / h Theory 

βw = 0, βs = 0 βw = 0.1, βs = 0.02 

w  x  xz  w  x  xz  

0.17 

10 
Ref (a) 0.449 8.268 0.704 0.403 7.374 0.638 

Present 0.448 8.319 0.722 0.401 7.419 0.654 

15 
Ref (a) 0.344 11.762 0.719 0.286 9.737 0.614 

Present 0.344 11.796 0.739 0.286 9.764 0.631 

20 
Ref (a) 0.307 15.384 0.726 0.232 11.568 0.575 

Present 0.307 15.410 0.748 0.232 11.587 0.592 

0.28 

10 
Ref (a) 0.325 8.562 0.697 0.299 7.869 0.647 

Present 0.324 8.631 0.713 0.299 7.933 0.662 

15 
Ref (a) 0.235 11.959 0.714 0.206 10.469 0.638 

Present 0.234 12.004 0.733 0.206 10.511 0.655 

20 
Ref (a) 0.203 15.530 0.723 0.167 12.751 0.613 

Present 0.203 15.566 0.743 0.167 12.781 0.631 

(a) Taken from Wattanasakulpong and Ungbhakorn (2013) 
 
 

Table 2 Dimensionless displacements and stress of UD-Beam with and without elastic foundation under 
sinusoidal loads 

*
cntV  L / h Theory 

βw = 0, βs = 0 βw = 0.1, βs = 0.02 

w  x  xz  w  x  xz  

0.12 

10 
Ref (a) 0.704 8.399 0.701 0.594 7.053 0.602 

Present 0.703 8.458 0.718 0.593 7.103 0.617 

15 
Ref (a) 0.524 11.849 0.716 0.400 9.556 0.568 

Present 0.524 11.888 0.736 0.400 9.019 0.584 

20 
Ref (a) 0.461 15.448 0.725 0.311 10.316 0.520 

Present 0.460 15.479 0.746 0.311 10.336 0.536 

0.17 

10 
Ref (a) 0.449 8.268 0.704 0.403 7.374 0.638 

Present 0.448 8.319 0.722 0.401 7.419 0.654 

15 
Ref (a) 0.344 11.762 0.719 0.286 9.737 0.614 

Present 0.344 11.796 0.739 0.286 9.764 0.631 

20 
Ref (a) 0.307 15.384 0.726 0.232 11.568 0.575 

Present 0.307 15.410 0.748 0.232 11.587 0.592 

0.28 

10 
Ref (a) 0.325 8.562 0.697 0.299 7.869 0.647 

Present 0.324 8.631 0.713 0.299 7.933 0.662 

15 
Ref (a) 0.235 11.959 0.714 0.206 10.469 0.638 

Present 0.234 12.004 0.733 0.206 10.511 0.655 

20 
Ref (a) 0.203 15.530 0.723 0.167 12.751 0.613 

Present 0.203 15.566 0.743 0.167 12.781 0.631 
(a) Taken from Wattanasakulpong and Ungbhakorn (2013) 
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Fig. 2 Effect of Winkler modulus parameter on the dimensionless transverse displacements of 
CNTRC beams under uniform load (L/h = 10; βs = 0; *

cntV = 0.12) 
 
 

Fig. 3 Effect of Pasternak shear modulus parameter on the dimensionless transverse displacements of 
CNTRC beams under uniform load (L/h = 10; βs = 0.4; *

cntV = 0.12) 
 
 

Fig. 4 Dimensionless transverse displacements of X Beam on elastic foundation with various 
thickness ratios (βw = 0.1, βs = 0.02) 
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displacement decreases. This decreasing trend is attributed to the stiffness of the elastic medium. 
Indeed, it is found from Eq. (24) that the foundation parameters appear in the stiffness matrix [S] 
and at last increase the total stiffness of the CNTRC beam. It can be also observed that the 
strongest beam is the X-Beam with the smallest deflection, and followed by the UD-, V-and 
O-Beams, respectively. 

The influence of volume fractions of CNTs on the deflection of the strongest beam (X-beam) is 
demonstrated in Fig. 4 by employing the trigonometric refined beam theory. Increasing the volume 
fractions of CNTs leads to reduction in the deflections. The dramatic reduction of the deflections is 
observed in the range of L / h = 10 to 30. 

 
4.2 Buckling analysis of CNTRC beams 
 
In this section, numerical results of buckling analysis of CNTRC beams are discussed. The 

present results based on the refined trigonometric beam theory are in a good agreement with the 
buckling results of third shear deformation CNTRC beam theory and Timoshenko CNTRC beams 
documented by Wattanasakulpong and Ungbhakorn (2013) and Yas and Samadi (2012), 
respectively, as shown in Table 3. Because of the presence of stretching-bending coupling  

 
 

Table 3 Comparison of critical loads for CNTRC beam with and without elastic foundation (L / h = 15, 
*

cntV = 0.12) 

Source 
βw = 0, βs = 0 βw = 0.1, βs = 0.02 

UD O X UD O X 

FSDT (a) 0.1032 0.0604 0.1367 0.1333 0.0905 0.1668 

TSDT (a) 0.0985 0.0575 0.1291 0.1287 0.0876 0.1590 

Ref (b) 0.0986 0.0588 0.1288 0.1287 0.0889 0.1590 

Present 0.0985 0.0575 0.1291 0.1286 0.0876 0.1592 
(a) Taken from Wattanasakulpong and Ungbhakorn (2013) 
(b) Taken from Yas and Samadi (2012) 

 
 

Fig. 5 Effect of Winkler modulus parameter on the critical buckling loads of CNTRC beams (L/h = 10; 
βs = 0; 

*
cntV = 0.12) 
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Fig. 6 Effect of Pasternak shear modulus parameter the critical buckling loads of CNTRC beams 
(L/h = 10; βs = 0.4; 

*
cntV = 0.12) 

 
 
 

characteristic in V-Beam due to its asymmetry, this coupling engenders deflections and bending 
moments when the beam is under compressive loading. Therefore, V-Beam has no bifurcation- 
type buckling (Liew et al. 2003). According to bending study, the X-Beam is the strongest beam 
that supports the largest buckling load and followed by the UD-Beam and O-Beam. 

Figs. 5 and 6 show respectively the influence of both Winkler modulus parameter and the 
Pasternak shear modulus on the buckling load of different types of CNTRC beams. It is observed 
that the buckling loads increase linearly as the increase of the spring constant factors. 

The effect of volume fractions of CNTs on the critical buckling load of the strongest beam 
(X-beam) is shown in Fig. 7 using the trigonometric refined beam theory. Decreasing the volume 
fractions of CNTs leads to reduction in the buckling loads. The dramatic reduction of the buckling 
loads is observed in the range of L / h = 10 to 30. 

 
 
 

Fig. 7 Dimensionless critical buckling loads of X Beam on elastic foundation with various 
thickness ratios (βw = 0.1, βs = 0.02) 
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Table 4 Comparison of fundamental frequencies for CNTRC beam with and without elastic foundation (L/h 
= 15, *

cntV = 0.12) 

Source 
βw = 0, βs = 0 βw = 0.1, βs = 0.02 

UD O X V UD O X V 

FSDT (a) 0.9976 0.7628 1.1485 0.8592 1.1339 0.9339 1.2688 1.0142 

TSDT (a) 0.9749 0.7446 1.1163 0.8443 1.1140 0.9192 1.2397 1.0016 

Ref (b) 0.9753 0.7527 1.1150 0.9453 1.1144 0.9258 1.2386 1.0883 

Present 0.9749 0.7446 1.1163 0.8442 1.1140 0.9192 1.2397 1.0015 
(a) Taken from Wattanasakulpong and Ungbhakorn (2013) 
(b) Taken from Yas and Samadi (2012) 

 
 
4.3 Vibration analysis of CNTRC beams 
 
In order to prove the validity of the present formulation in the case of vibration analysis, the 

computed frequencies of CNTRC beams are numerically compared with those of 
Wattanasakulpong and Ungbhakorn (2013) and Yas and Samadi (2012) in Table 4. It can be 
observed that the results obtained from the proposed formulation are in excellent agreement with 
those obtained from previous results, especially with the third shear deformation theory used by 
Wattanasakulpong and Ungbhakorn (2013). It is also found that the O-Beam has the lowest natural 
frequency, while the X-Beam, the highest. 

Figs. 8 and 9 show the variation of the fundamental frequency parameter )(  of different 
types of CNTRC beams with Winkler modulus parameter and the Pasternak shear modulus, 
respectively. It can be deduced from Figs. 8 and 9 that frequency of the X-Beam are higher than 
those of beams with other CNTs distributions. It is also seen that the frequencies increase almost 
linearly as the increase of the spring constant factors. 

The effects of CNT volume fractions and the thickness ratios on frequency parameter of the 
 
 

Fig. 8 Effect of Winkler modulus parameter on the fundamental frequencies of CNTRC beams 
(L/h = 10; βs = 0; 

*
cntV = 0.12) 
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Fig. 9 Effect of Pasternak shear modulus parameter the fundamental frequencies of CNTRC 
beams (L/h = 10; βs = 0.4; 

*
cntV = 0.12) 

 
 

Fig. 10 Dimensionless fundamental frequencies of X Beam on elastic foundation with various 
thickness ratios (βw = 0.1, βs = 0.02) 

 
 

X-Beam are shown in Fig. 10. The increase of CNT volume fractions conducts to an increase of 
frequencies. As is seen in the case of buckling analysis, the increase of thickness ratios leads to a 
decrease of frequencies, especially in the range of L/h = 10 to 30. 

 
 

5. Conclusions 
 
In this work, a trigonometric refined beam theory is used to investigate the bending, free 

vibrations and buckling of nanocomposite beams reinforced by single-walled carbon nanotubes 
resting on Pasternak elastic foundation. The equations of motion have been obtained using the 
Hamilton’s principle. The accuracy of the present theoretical method is numerically checked by 
comparison with some available results. From the numerical results, it is found that the X-Beam is 
the strongest among different types of CNTRC beams in supporting the flexure and buckling loads, 
while the O-Beam is the weakest. An improvement of the present formulation will be considered 
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in the future work to consider the thickness stretching effect by using quasi-3D shear deformation 
theories (Bessaim et al. 2013, Saidi et al. 2013, Bousahla et al. 2014, Hamidi et al. 2015, Fekrar et 
al. 2014, Hebali et al. 2014, Houari et al. 2013, Larbi Chaht et al. 2015, Meradjah et al. 2015, 
Sayyad and Ghugal 2014). 
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